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The simplicity of the Green heart

Three lectures to the Japanese Group Theory Conference,

Kyoto, 10th - 13th ganuary, 1978

Peter M. Neumann

Lecture 1 : Groups of prime degree.

The subject of my lectures will be a new technique for
studying finite permutation groups that is based on an idea'of
J. A. Green. I suppose it is best described as an application of
modular representation theory to permutation groups: but such
a grandiose description is unwise, in that it may frighten some
mathematicians, and inaccufate, in that we hardly need anything

from the modular representation theory proper. It is really no

more than an intelligent use of linear algebra over finite fields.

The following notation is intended to remain fixed through-

out these three lectures:

n a natural number;
0 a set with n elements;
G a permutation group on L (thus G < Sym({L): the

action will usually be assumed to be faithful);
P a prime number, almost always a divisor of n ;
F a field of chéracteristic o)
Generally G will be assumed to be transitive, iﬁdeed usually
primitive on fL , and so p will divide |G| . Our plan is to
study the FG-module F{l , and to derive information about the

action of G on f) from knowledge of its submodules. To do
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this, let
< | ‘
T := %,A,awugl a, ¢ F, a, = ag for all p, s ¢ oy,
S := % Sa.wla.eF, Ta,=0}

Then T 1is obviously a 1l-dimensional trivial submodule of F .2

(the "trace'" submodule) and S 1is a submodule of codimension 1

(the "augmentation"). Moreover, given that p divides n , we
haver T € S . Following J. A. Green we define
H := S/T

and call this the heart of the FG-module . F{

In order to give you a flavour of the subject and to show
that it is not entirely superficial I would like to spend this
first lecture proving the simplicity of the heart (remember, a
module is said to be simple, or irreducible, if it has no non-
zero proper submodules) for groups of prime degree. This was
first proved by me in [jIMN (1972)], but is essentially due to
Walter Feit [(1966)]. The elegant proof that I shall give here

is due to Michael Klemm [(1977)].

. Theorem 1. If G is insoluble and transitive of prime
degree (that is, n = p), then H 1is a simple FG-module.

Proof. Let P be a Sylow p-subgroup of G . Certainly p
divides |G| , but ]G} divides p! and so p2 does not divide
|Gl: thus P has order p and is cyclic, with generator a ,
say. We can identify {1 with the prime field F, so that P

is the group of translations and a :wir— w + 1 (mod p)

Claim 1. There is a unique series

FQ

N
<
I

f0) = V< Vp <V, e LY



of P-invariant subspaces of Ff)  such that dim V.=

This is elementary linear algebra: we have that aP =1, so
(a - 1)p = 0 ; on the other hand, because F{L is a free FP-
module,'we have that (a - 1)P_1 # 0 ; it follows that in any such
series V. = ker(a - 1)7 . It is simply the fact that the Jordan

canonical form for a 1is the matrix

o

Next we make an important notational observation: we can

identify F{L  with the function space

F-oi= {f: Q — F§

t
) s . . e
The identification makes the function f & F correspond to the
linear combination 2; f)w e FLL . The action of G 1is

easily seen to be given by the formula
£8(w) = flwg™h)
Notice that E*" is naturally an algebra under the usual laws

of pointwise addition and multiplication of functions (we call this

the Wielandt algebra) and that G acts as a group of automorphisms

of it: if £, £, ¢ F then

g ¢ 8 _ g
£.8 £,8 = (££,)

for all g & G
Clainm 2. P = FIx] P L

This may be seen as follows. We have identified fL with F



and -Fp is of course a subfield of F , so polynomials do give
functions on Fp , that is on {2 , to F . 1In fact
xP1 | a; € F}

{ag + ajx + -0 4 a1

is a p-dimensional vector. space of functions and so it is all of
L

F7o. The polynomial x is then the imbedding function Fp——* F ,
and so xP = x

Claim 3. V. = {ao tagx o+ o 4 ar_lxr_l lai 3 F}

For, notice that - x* = x -1 and so if f(x) ¢ Fn' then

f(x)a = £(x-1) . Thus deg f = deg £2 , and so the space of poly-
"nomials of degree at most r-1 is P-invariant. Since there is

only one P-invariant subspace of dimension r this space must be

V. -
We make one last general observation-. For fl’ fz e P&
define |
fps £, 55 2 610 £,
Claim 4. The function < , > is a non-singular, symmetric

bilinear form and is G-invariant. Moreover,

That oy > is bilinear and symmetric should be clear. Also,
if f # 0 then there exists « € {L such that f(x) # 0 , and if

h ¢ PEl is define by

1 Cif = o
hw) := { .
0 ifwE A
then LE; hy = £ # 0 : thus { , > 1is non-singular. It

is easy to see that < , t> is G-invariant. Finally, since \

r
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is P-invariant so also is Vr , and since < , > is non-

singular dim V;' = p-r , so it follows that Vr = Vp—r

Up to this point I have simply been describing the notational
ideas that were introduced by Wielandt in his Ohio Notes [1969].
Here comes Klemm's neat calculation which is the heart of the proof.

Let . X be a G-invariant subspace of F{l such that T <

X £ S and such that X/T 1is a minimal G-submodule of the heart

S/T. In our situation clearly T = V1 , S = Vp—l and X = Vr
for some r such that 1< r £ p-1 . Let us assume that the
heart is not simple. Then X <SS and r <p-1. It then follows

from Claim 4 that r < p/, because x! is also a G-invariant
. ' -
subspace lying properly between V1 and Vp_1 , so X =YV

and, by minimality of X , we have r < p-r

p-T

Now 12> 2 , so stx and x € X .  Then <xglgéG>
(here < » denotes linear span) is a subspace of X and is G-

invariant, so by minimality

X = <:xg’ g € G :> .

Consequently there exists g ¢ G such that

g . r-1
X ag * ajx + *a, X where a._ 1 # 0
Suppose, for the moment, that T > 3 . Then xz € X and so
(xz)g ¢ X . But
2
xHE = (x8)

= r-1,2

= (ag + a;x + *a, X )

= ao2 + ZaOaik + + ar?l x?T°2  (since 2r-2 < p)

é Vr~ (since 2r-2 > r).
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This is impossible. Therefore r = 2 and for all g ¢ G there

exist a

0’ @

1 in F such that

and so G 1is soluble. Thus if G 1is insoluble then the heart of

FlL is simple.



Lecture 2 : Consequences of simplicity.

Let me begin this lecture with some generalities about modules
and permutation groups. If X, Y are FG-modules we put

i(X, Y) := dimF homFG(X, Y)
Lemma. If U< X and V= X/U then
i(X, Y) £ i(U, Y) + i(V, Y)

This comes directly from the fact that the short exact sequence

0 —> U X > V 0
gives the exact sequence

0«-e»homFG(V,Y) —> homFG(X, Y) _—ﬁ>homFG(U, Y)

Corollary. If 0 = X0 < X1 é’Xz S .00 K Xk = X then
k
. < .
1(X’ Y) s r:§=:1 1(XI'/XI._1 > Y)

The connection between this very general module theoretic

concept and permutation groups is the following
Lemma. If Xll and £12 are G-spaces then
i = X

One can prove this as follows. For each orbit A of G in

fll X 11.2 define
$, + FEQy —> FN(ZZ
b ' ~ _ ”
Y %g Powy > w ,
: ;€ Al
where A (w) := {602 € !12{ (W, @W,) € A4} , for all W, € le
One then needs to show — and I leave this to you as an exercise

— that these maps g; are G-homomorphisms, that the different



G asizk ranges over the G-orbits in 111 X 522 are linearly

independent, and that they span homFG(Flll,
has two well-known and important special cases (each of which can,

F(lz) . The lemma

of course, be proved very easily directly):

Corollaries. (1) i(F, FQ1) = #orb (G, (1) ;

(ii) Our group G is 2-transitive on (L if and only if

dimp endp. (FQL) = 2

Notice that, if F has characteristic zero then these may be
interpreted character theoretically and we retrieve the famous
enumeration theorems of Frobenius (1887). For example, (i)

becomes the formula

,1 |
ToT ZG \fix, ()] = #orb (G, Q) ,
ge

which is nowadays so often attributed incorrectly to Burnside.

This is enough of preparation. We can come now to some
consequences of the simplicity of the heart. I shall assume in
wha£ follows

(1) that G 1is transitive on (1 ;

(2) that n¥ 4 and p divides n ; and

(3) that the heart H of F({] is a simple module.

Then we have thé

Proposition. Either G is 2-fold transitive or p = 2, n

= 2m where m is odd, and G is an imprimitive group having
two blocks of imprimitivity of size m (and is of rank 3).
Proof. Since the module FJ.L is self-dual (the fourth

"Claim" in my argument in the first lecture was actually a proof



of this) so also is H , and moreover, H 1is a submodule of FJ(L
if and only if it is also a quotient module. Consequently there
‘are only two possibilities for the structure of F{L : either

T 1is the unique minimal submodule, in which case S 1is the
unique maximal submodule; or FL)  has a submodule, hence also

a quotient module, isomorphic to H , and there is then a 2-
dimensional submodule KX such that F{ 2= K@®H . The lattices

of submodules of F() in the two cases look like this:

R
s
H
H
|
\
|
T
F

> {0}

Case (1)  Case (2)

In case (1) it is very easy to see that dim end (F{L) = 2 , and
so G is doubly transitive on ()
In case (2) the linear transformations induced by G on K

can be described by matrices of the form ( 1 0) , and so
u 1

el :
this group is an elementary aﬁiﬁéan p-group. Therefore the
derived group G'  acts trivially on K and, as it is easy to see

that fiXH(G') i 0} , we have that
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These

Since N
H must split

by Clifford's

dimP homFGv (F, FQ) = 2,
so G' Thas precisely 2 orbits ﬁll and ﬁlz in £1
are blocks of imprimitivity for G and if N is the stabiliser
of these two sets then ‘N must have index 2 in G
acts trivially on K it follows that P =2 Also,
as a direct sum of two N-modules H1 and H2 (which,

Theorem, must be irreducible), such that

F @H1 =

F@®H, =
and it follows that n/2
transitive on 511 and

Fill i
{
! as FN-modules,
Fﬂz J
must be odd (also, that N

10}

2 G  has rank

and that

is 2-

3 on L

(which is equivalent to the fact that Ny is still transitive

on 522 for o 6.111)).

It is perhaps worth observing that the wreath product Smwr S,

-when m is odd and n =

(2).

2m , is an example that illustrates case

The significance of the proposition is that, in general,

simplicity of the heart implies double transitivity: in particular,

this is so if G

(mod 4).

is primitive, or if p

is odd,

or if

n # 2

We should not expect the converse to be true, and indeed

it is not: the affine groups AGL(d, pr) give the easiest counter-

examples. Nevertheless, for the known doubly transitive groups

it turns out surprisingly often that the heart is simple,

there are some interesting cases where it is not.

Dr.

although

Mortimer (presently at Carleton University, Ottawa, Canada) has

undertaken an extensive study of this phenomenon.
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As a corollary of this elementary propsition and the theorem

that I proved in the first lecture we have

Burnside's Theorem : An insoluble transitive group of prime

degree is doubly transitive.

I feel that simplicity of the heart (when p divides n) is
generally rather stronger than double transitivity. The following
theorem, whose proof follows ideas of J. A. Green very closely

(cf. also Klemm [1977]), is intended to illustrate what I mean.

Theorem 2. Suppose

(i) that the heart H of F(L is a simple module and that
p is odd ; |

(ii) that G contains a transitive (hence regular) abelian
subgroup A ; and

(iii) that G contains an element b such that b Llab = a1

for all a &€ A .

The conclusion is : that G 1is 3-fold transitive.

Proof. I will say that the FG-module X is

negative if fixX(A) # {0} and xb -x for all x ¢ fixX(A);

positive if fixX(A) # {0} and xb x for all x ¢ fixX(A);

mixed otherwise.

Now we have

Observation 1 : The heart H is a negative module.

For this we need to see first that fixH(A) # {0} . Let P
be the p-primary constituent of A and Q the maximal p'-subgroup,

so that A =P xQ . 1If



u = zi x & FA
x&Q
and U := (F{Q)u , then U is an A-invariant subspace of F{L of
dimension |P| , on which Q acts trivially and P acts regular-

ly. Certainly T €U and, if V/T 1is a minimal non-zero FA-
submodule of U/T then bdth P and Q céntralise‘ V/T , so

V/T €-fiXH(A) . Hence fixH(A) # {0} . Now let x € fixH(A)

We write x = y + T for some y ¢ F(Q . If ae¢ A then xa = x ,

and so there exists z, € T such that

ya =y + z,

Then also ya—l =y - z

Therefore“

ya + yanlb

]

(y + ybla

]

(y +'2,) + (v - 2,)b

y + yb

This is true for all a in A , that is, y + yb & fiXFKL(A) s

and so, as A 1is transitive, y + yb &€ T . Hence x + xb =0
in F{Q /T and xb = -=x , which is what I promised to‘show.
{2}
Observation 2 : The module FQ l is positive, where
12} .. 3
L denotes the G-space consisting of unordered pairs of

elements of L)

To see this, let D := gp (A, b) . Since A acts regularly
on £L we have that Cg(A) = A, and since b2 centralises A
therefore. b2€ A . Hence [D: Al=2 . Let «<¢ £l . The

stabiliser D, is a complement for A in D and without loss
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of generality we may suppose that b € Dy : thus b is an

involution and o € fix (b) . Now let [° be an A-orbit in iz .

Then [ contains {4 ,@} for some B in () ; now B8 = ola

for some a € A ; and
{ol, py b = {olb, olab}
= {ot, opa ]
={ A, da'l}
- {oat, o}
={ «, (Xa}‘a_l
={ot,pfat
thus o, A jb € [T . Since b normalises A it acts to
permute the A-orbits in jfZ} and so the fact that r'n [ b # ¢
implies that ["=Tb . Thus every A-orbit in _552} is a
D-orbit, and it follows that '
fix (D) = fix (A)
Fof?! F o'
Hence x = xb for all x ¢ fix JZ}CA) , and so ijZ} is positive,
FQ

as I claimed.
The proof of the theorem now goes as follows. Since H is

simple a consequence of our two observations is that

i, 0¥ )y = 0
By the corollary to our first lemma we have

iFa, Fad ) < 2, FPy «im, ro'?)
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Now G 1is doubly transitive (by the proposition), so it is

{21
transitive on i}fz‘ and hence 1i(F, Fgfz%) = 1 . Therefore

irn, F'Y) < 2

and, by the second lemma, this means that

' 2
#orb (G, Qx_()j 5) < 2
Let
) := {(“1’{“ﬁ) wZ}) { wl, u}ze fl, wl # ch}
and

{(Wl,{}uz,ac3§).{tﬂl,tuz,uis all different}

)
W

Then () and & are G-invariant subsets of XLX,jfZ} Since

G has only two orbits on this set it follows that it is transitive
on ¢ . Let ( ﬁ, f) be a transposition of the involution b
(which, recall, has « as a fixed point). Then, given Lcl,
LCZ, ccs , distinct members of {1 , there exists g in G such
that | |

(wy, w,, wg = {(o(,ﬁ,f) or
(o, ¥, 8),
and so either g or gb takes (Lcl,toz,aos) to- the triple

(o, &, j) . Hence G 1is transitive on ordered triples and this
i

is what we wanted to prove.
As a corollary, or perhaps a special case, we have the

Theorem (TTMN [1972]). If G 1is an insoluble transitive
group of prime degree p , and if the normaliser of a Sylow p-

subgroup has even order, then G 1is 3-fold transitive.



Lecture 3 : Groups containing regular abelian subgroups.

In this last lecture we shall return to the theme of my first
talk, and variations on it.
Theorem 3. (Klemm [1977]). If G 1is primitive and contains
m

a transitive cyclic subgroup A , and if n = p where m 22 ,

then the heart of F (L 1is simple.

Proof. (L. L. Scott). Let a be a generator of A , so
that a 1is a cyclic permutation (&,, w,, -+, w ) . As
0 1 pm_l
FA-module F(L is uniserial : 1if Vr := ker (a - 1)T then
oYy =v,<v, <V, <:--- <V  =FQ
0 1 2 pm
is an FA-composition series, 'and it is unique: if U 1is any

A-invariant subspace then U = Vr where 1 = dim U (compare
"Claim 1" in the first lecture).

Let X be a G-invariant subspace with T £ X <S8 . Then of
course X 1is A-invariant and so X = Vr for some T 'in the range
1<r<p™-1

Now let P* be a Sylow p-subgroup of Sym (£L) such that
AL P* . Certainly F(L is an FP*-module, and, as P* is a
p-group and char F = p , any composition series has l-dimensional
trivial factors. Such a composition series consists of A-invariant
subspaces and so, since the FA-composition series is unique we see
that

fo} =vy<v <v, < --e <me = FOL

1s the unique FP -composition series also. Consequently X is
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'P%—invariant, and, if c* .= <G, P*:> < Sym'(ll) , then X 1is
G*-invariant. |

The group ¥ is certainly primitive since G* > G ; and G*
contains a p-cycle having p™ - p fixed points because P* does.
By a well-known theorem of Jordan (see, for example, Wielandt
[1964], Theorems 13.2 or 13.9) it follows that G* > Alt ((L)
vIt is quite easy to show, by an inductive argument which I leave
.to you as an exercise (but.be careful; since the induction is on n
you will want to define the “heart"ralso in case n #0 (mod p)),
thatvthé>heart of F{l is simple as a module‘fof F.A1t (QU)
Hence X =S or X =T and so S/T is a Simple FG-module as I
- claimed.

From,the results of Lecture 2 we now have

Corollaries : (1) (Burnsid¢, 190l). A primitive group of

m

degree p (where m > 2) that contains a pm?cycle is 2-transitive.

(2) (Klemm [1977]). With the hypotheses of the theorem, if
there exists b &€ G such that b—lab = a_l , and if p > 2 , then

G 1is 3-transtivie.

Burnside, onrp.343 of the second edition of his book [1911],
suggests that a theorem similar to the first corollary should be -
true for any primitive group G- that contains a*transitive abelian
subgfoup A >A1though this is certainly false in general many
interesting special cases have been proved, and work on it by
Schur, Wielandt, Kochendorffer and Bercov has served to develope

a very useful technique known as the theory of Schur—rings or S-

~rings. (See Wielandt [1964] for a survey). Two of the older



theorems in the area will serve very well as illustrations:
in 1933 Schur proved that if A is cyclic then G

is 2-transitive (unless n = p and G is soluble);

in 1935 Wielandiproved that if A has a cyclic Sylow
p-group for some prime p (and n # p) then G is

2-transitive.

The module theory that I have been discussing throws new 1ight.

on these theorems for we have the

Almost Theorem - If G 1is primitive and contains a

transitive abelian subgroup A , if the Sylow p-subgroup of A
is cyclic, and if n > p , then the heart of F{L is simple
(over any field F of characteristic p). '

Using the method of proof of Theorem 3 I have proved this
statemént in case the Sylow p-subgroup of A has order. pm

m > 2 , but I have not yet been able to complete the proof in

case m =1

To finish these lectures vaould_like to mention tdlyou two
related matters where investigation of the Green heart- is turning
out to be instructive and profitable.

Mr. Prabir Bhattacharyé, a student at Oxford, is, I believe,
very close now to proving that ifv G 1is primitive of degree p2
then the heart of F (L is simplé unless G is similar to a
- subgroup of the wreath product Spwr C2 or to a subgroup of the

affine group AGL(2, p) . His proof is based on the methods of

Wielandt [1969] and Klemm [1977]. It would be very interesting

17
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to know what can be done for groups of higher prime-power degrees.

The second question is this: is the heart simple for a 2-
transitive group of degree 3p ? In 1975.Jan Saxl and I showed
that the heart is simple when vG -is 2Z-transitive of degree 2p
Our proof is quite short, but is based on consideration of the
so-called "Brauer Tree'" for the brincipal p-block of G : thus
it uses some of ;he deeper theory of modular representations, and
is therefore very different from the kind of argument that I
have shown you in these lectures. Dr. Karin Erdmann, Professor
Harvey Blau and I have tried to do a similar thing for groups
of degree 3p , but the question appears to be related to problems
about groups having several 1ow—dimensiona1>representations in
characteristic p (where 'low' here means something like 'less
than 2p'), and this is a subject of notorious difficulty. So,
although my question about groups of degree 3p 1is a very special
one, I see it as a test question which could provide a focus for

further work on the modular representations of permutation groups.
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