78

An inequality for finite permutation groups

Masao Kiyota
(University of Tokyo)

0. Introduction

Let (G,Ω) be a permutation group of degree n. For any subset X of G, we put

$$F(X) := \left\{ \alpha \in \Omega \mid \forall x \in X \quad \alpha^{X} = \alpha \right\}$$

$$f(X) := \left| F(X) \right|.$$

For $x \in G$, we use f(x) instead of $f(\{x\})$.

(Definition 1) Let ℓ_i (i=1,...,r) be integers such that $0 \le \ell_1 < \dots < \ell_r < n$. We say that (G,Ω) is an $\{\ell_1,\dots,\ell_r\}$ -group, if $\{f(x) \mid x \in G, x \ne 1\} \subseteq \{\ell_1,\dots,\ell_r\}$.

E. Bannai and M. Deza posed us the following conjecture; if (G,Ω) is an $\{\ell_1,\cdots,\ell_r\}$ -group of degree n, then $|G| \leq \prod_{i=1}^r (n-\ell_i)$. In §1 this conjecture is proved. In §§ 2,3 we consider the case $|G| = \prod (n-\ell_i)$. Finally in §4, using the same method as in Theorem 1, we give a proof of the Burnside-Brauer Theorem.

1. Proof of the conjecture

Here we prove the conjecture mentioned above.

Theorem 1. [5] Let (G,Ω) be an $\{\ell_1,\dots,\ell_r\}$ -group of degree n. Then |G| divides $\prod_{i=1}^r (n-\ell_i)$.

proof. Let θ be the permutation character of G, and let 1_G be the principal character of G. Then it is well known that

 $\widehat{\theta} := \prod^{\mathbf{r}} (\theta - \ell_{\mathbf{i}} \mathbf{1}_{\mathbf{G}})$

is a generalized character of G. By the definition of $\hat{\theta}$, we have $\hat{\theta}(g) = 0$ for all $g \in G$, $g \neq 1$. Hence, the multiplicity of 1_G in $\hat{\theta}$ is given by

 $(\widehat{\theta}, 1_G) = \frac{1}{|G|} \sum_{g \in G} \widehat{\theta}(g) = \frac{1}{|G|} \widehat{\theta}(1) = \frac{1}{|G|} \prod_{i=1}^{r} (n - \ell_i).$

Thus, we get the desired result.

Corollary 2. Assume the hypothesis of Theorem 1. Then we have that $|G| = \prod_{i=1}^{r} (n-\ell_i)$ if and only if $\hat{\theta}$ is the regular character of G, where $\hat{\theta}$ is defined in the proof of Theorem 1.

2. $\{l_1, \dots, l_r\}$ -sharp groups

(Definition 2) Assume the hypothesis of Theorem 1. We say that (G,Ω) is an $\{\ell_1,\cdots,\ell_r\}$ -sharp group, if $|G|=\prod_{i=1}^r (n-\ell_i)$.

We remark that $\{0, 1, \dots, r-1\}$ -sharp group is sharply r-transitive (see Corollary 4). Hence our concept is a generalization of sharply transitivity. It is natural that one hopes to classify all $\{\ell_1, \dots, \ell_r\}$ -sharp groups. But in general it seems to be difficult. So we must study special cases at first.

Now we state some examples and known results.

Example 1. $Z_{\ell} \setminus Z_{2}$ is a {0, ℓ }-sharp group of degree 2ℓ .

Example 2. {1,3}-sharp groups

- (1) $G=S_4$; $\Omega = \Delta U/7$, $G^2=S_3$, $G^7=S_4$.
- (2) G=PSL(2,7); $\Omega = \Delta U/7$, G^{Δ} is 2-transitive of degree 7, $G^{\prime\prime}$ is 2-transitive of degree 8.

Known results. For the following L= $\{\ell_1, \dots, \ell_r\}$, L-sharp groups have been classified.

L= { 2 } Iwahori [3]

L= { 3 } Iwahori and Kondo [4]

L= { 0,2 } Tsuzuku [6]

The following lemma is due to E. Bannai.

Let G be a $\{0, \ell_2, \dots, \ell_r\}$ -sharp group on Ω . Then G is transitive on Ω , and G_{α} is an $\{\ell_2-1, \dots, \ell_r-1\}$ -sharp group on $\Omega-\{\alpha\}$, where α is any element of Ω .

Applying Theorem 1 to ${\tt G}_{\alpha}$, we can easily get the proof of Lemma 3.

Corollary 4. Let G be a $\{0,1,\dots,r-1\}$ -sharp group. Then G is sharply r-transitive.

The following Theorem, due to T. Ito, is an extension of Corollary 4.

Theorem 5. [2] Let G be an $\{l, l+1, \dots, l+r-1\}$ -sharp group on $\Omega(r \ge 2)$. Then f(G) = l and G is sharply r-transitive on $\Omega-F(G)$.

Remark. It looks very likely that every $\{\ell_1,\cdots,\ell_r\}$ -sharp group has ℓ_1+1 orbits. Note that Lemma 3 is a special case where $\ell_1=0$.

3. The case r=2

Now we consider the case r=2 i.e. $\{\ell,\ell+s\}$ -sharp groups. In this case we can show that f(G) is considerably large and that $\ell-f(G)$ is bounded by a function of s. Hence the essential parameter is a lone. More preciply we have $\frac{Se}{2}$ be an $\{\ell,\ell+s\}$ -sharp group. Put $s':=\max\left\{1,\left\lceil\frac{s-1}{2}\right\rceil\right\}$, $m:=\ell+(1-s)s'+s'^2-1$. Then we have $f(G)\geq m$.

For s=1,2,3,4 this inequality is best possible. For $s \ge 5$ we guess that f(G)=m does not occur. But I can not prove it yet.

Using Theorem 6, we can classify all $\{\ell,\ell+s\}$ -sharp groups for s=1,2,3,4. For example, the $\{\ell,\ell+2\}$ -sharp groups are the following groups; G=D₈, S₄, GL(2,3), PSL(2,7). These groups are determined up to permutation isomorphism. For more details see [2]. The case $s \ge 5$ is very difficult.

4. Final remark

We give another example which can be proved by the same method as in the proof of Theorem 1. Let G be a finite group, and let θ be a faithful character of G. Let $\theta(1) = \alpha_1, \alpha_2, \cdots, \alpha_m$

be the distinct values taken by θ . We put $\hat{\theta} := \frac{m}{1}(\theta - \alpha_i)$. Since θ is faithful, we have

 $\widehat{\theta} = \alpha \cdot f_{G} = \sum_{\chi \in I_{rr}(G)} \alpha \cdot \chi(\chi) \chi, \text{ where } \alpha = \frac{1}{|G|} \widehat{\theta}(1) \in \mathbb{C}.$ Since $\widehat{\theta}(1) \neq 0$, we have $\alpha \neq 0$. On the other hand $\widehat{\theta}$ is a C-linear combination of θ^{j} for $0 \leq j < m$, as it can be seen from the definition of $\widehat{\theta}$. Then every $\chi \in Irr(G)$ must be a constituent of some θ^{j} . Thus we obtain

Theorem. (Burnside-Brauer cf. [1] p49) Let θ be a faithful character of G and suppose $\theta(g)$ takes exactly m different values for $g \in G$. Then every $\chi \in Irr(G)$ is a constituent of one of the characters θ^j for $0 \le j \le m$.

If some $\alpha_i=0$, then $\widehat{\theta}$ is a C-linear combination of θ^j for 0< j< m. Thus we obtain

Corollary. Assume the hypothesis of the Theorem. Suppose that $\theta(g) = 0$ for some $g \in G$. Then every $\chi \in Irr(G)$ is a constituent of one of the characters θ^j for 0 < j < m.

We remark that every non-linear faithful irreducible character of G satisfies the hypothesis of the Corollary.

References

1. I. M. Isaacs, Character theory of finite groups, Academic Press, 1976.

- 2. T. Ito and M. Kiyota, in preparation.
- 3. N. Iwahori, On a property of finite groups, Jour. Fac. Sci. Tokyo. 11 (1964), 47-64.
- 4. N. Iwahori and T. Kondo, On a finite group admitting a permutation representation P such that trP(σ)=3 for all σ≠1, Jour. Fac. Soc. Tokyo. 11 (1964), 113-144.
- 5. M. Kiyota, An inequality for finite permutation groups, to apper.
- 6. T. Tuzuku, Transitive extension of certain permutation groups of rank 3, Nagoya Math. J. 31 (1968), 31-36.