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An inequality forefinite permutation groups

Masao Kiyota

(University of Tokyo)

0. Introduction

Let (G,Q) be a permutation group of degree n. For any

subset X of G, we put

F(X):= {o(e.Q ’VXeX o(xzoc}

£(X):= |F(X) | .
For x eG, we use f(x) instead of f({x}).
(Definition 1) Let ,Zi (i=1, ---,r) be integers such that
0§f1<-~<‘[r<n. We say that (G,Q) is an {fl,'“,fr} -group,
if | £(x) | xeG, xAL} C {hy, 0k} -

E. Bannai and M. Deza posed us the following conject;zre ;
if (G,Q) is an [fl,'“,jr} -group of degree n, theanlgﬂ(n—fi).
In §1 this conjecture is proved. In¢é§ 2,3 we consider Itzl'lle case
|G’=W(n—li). Finally in § 4, using the same method as in

Theorem 1, we give a proof of the Burnside-Brauer Theorem.

1. Proof of the conjecture
Here we prove the conjecture mentioned above,
Theorem 1. f5] rLet (G’,Q) be an { fl,-,[r} -group of degree N

Then |G| divides ﬂ(n-[i) .
i=1
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proof. Let 9 be the permutétion character of G, and let 1G be
the principal character of G. Then it is well known that
ﬂw
A
is & generalized character of G. By the definition of @, we
have H(g)zO for all geG, g#l. Hence, the multiplicity of 1, in
g is glven by
1
(& )—ng@’g’“ml bev=1g

Thus, we get the des1red result.

:JW

n—[&).

i=1

Corollary 2. Assume the hypothesis of Theorem 1. Then we

X A
have that lG|=~rT(n—£g) if and only if f is the regular

. 1= A
character of G,lﬁhere @ igs defined in the proof of Theorem 1.

2. {L&,-~,1}} -sharp groups
(Definition 2) Assume the hypothesis of Theorem 1. We say
that (G,Q) is an {lﬂ,-~,1}} -sharp group, if lG]=—rT(n-1a).

We remark that {O, 1,“3r—1}—sharp group is shaﬁély r—-
transitive (see Corollary 4). Hence our concept is a
generalization of sharply transitivity. It is natural that one
hopes to classify all {[&,~‘,1}} -sharp groups. But in general
it seems to be difficult. So we must study special cases at
first.

Now we state some examples and known results.

Example 1. Zy2%, is a { 0, 2})-sharp group of degree 2 /.

Example 2. { 1,3)}-sharp groups
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(1) e=s, ;Q=40U/, GA=S3, G’7=s4.
(2) G=PSL(2,7) ;Q=aAu/’, G* is 2-transitive of degree 7,

G” is 2-transitive of degree 8.

Known results. For the following L= {fl,~',j}}, L-sharp

groups have been classified.
L={2} Iwahori [37]
L={3}  Iwahori and Kondo [ 4 )
L= { 0,2} Tsuzuku[6 )

The following lemma is duwe to E. Bannai.
Lemma 3. Let G be a {O,j%,u.,f}} —-sharp group onf2. Then G
is transitive on(), and G, is an {#p=1y---y 4~1} —sharp group on

Q- {ot}, where o«/is any element of().

Applying Theorem 1 to G4 , we can easily get the proof of

Lemma 3.

Corollary 4. Let G ve a { 0,1,-+-,r=1} =sharp group.

Then G is sharply r-transitive.

The following Theorem, due to T. Ito, is an extension of
Corollary 4.

Theorem 5. [2) Let G be an.{f,ﬂ+l,~~,j+r-l}-sharp group on
Q(r>2). Then f(G)=/and G is sharply r-transitive on()-F(G).

-3 -
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Remark. It looks very likely that every {11,'n,j}} -sharp
group has ,€1+l orbits. Note that Lemma 3 is a special case

where.fi:O.

3. The case r=2

Now we consider the case r=2 i.e.{jﬂé#s} -sharp groups.
In this case we can show that f(G) is considerably large and
that /-f(G) is bounded by a function of s. Hence the essential
parameter is s alone. More precfﬁﬁ‘ly we have
Theorém 6. [2] Let G be an [/,/+s } —sharp group.

Put s’ t=max {1, [351] } , :a‘[+(l-s)s’+s’2~l.

Then we have f(G)=>m,

For s=1,2,3,4 this inequality is best possible. For s>5 we
guess that f£(G)=m does not occur. But I can not prove it yet.

Using Theorem 6, we can classify all {[,ﬁ#s } =sharp groups
for s=1,2,3,4. For example, the [/,/+2} -sharp groups are fhé
following groups ; G=Dg, Sy GL(2,3), PSL(2,7). These groups
are determined up to permutation isomorphism. For more details

see [2]. The case s>5 is very difficult.

4. Final remark
We give another example which can be proved by the same
method as in the prddf of Theorem 1. Let G be a finite group,

and let £ be a faithful character of G. Let 9(1)=ai,<x2,-~,(xm

S
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‘ ' A n
be the distinct values taken by . We put § :=ﬂ(€—a‘i).

=2

-

Since # is faithful, we have

A _

A .

hH = o(_-/cr?= Z A XUy whereo(=[é—[>9(l)€—‘0.

A X e Irr(Gl : A .
Since £ (1)#0, we haveX #0. On the other hand # is a C-linear
combination of 53' for 0<j<m, as it can be seen from the
definition of é\ Then every)(elfr(G) must be a constituent
of some 93. Thus we obtain »
Theorem.(Burnside-Brauer cf. [1) p49) Let £ be a faithful
character of G and suppose #(g) takes exactly m different

values for ge G. Then every Y elIrr(G) is a constituent of

‘one of the characters Qj for 0< j<m.

_ If some o(;=0, then é\is a C-linear combination of 93 for
0<j<m. Thus we obtain .

Corollary. Assume the hypothesis of the Theorem. Suppose
that £(g) =0 for some geG. Then every X cIrr(G) is a

constituent of one of the characters 93 for 0<j<m.

We remark that every non-linear faithful irreducible

- character of G satisfies the hypothesis of the Corollary.
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