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Dimension Subgroups

Ken-ichi Tahara

Let G be a group, ZG the group ring of G over Z , and
I(G) be the augmentation ideal of ZG. Then we define the nth

dimension subgroup of G as follows:
n
D (G)={geG| g-1eI (&)} ,

where 1'(G)= (1(6)". Let G=G 26,2 ---2G 2G_,

26 2 .-+« be the
= n= n+l=

.

lower central series of G. Then we have easily Dn(G)/;Gn, n>1.

Now the dimension subgroup problem is to investigate if Dn(G) is

equal to Gn for what group G, more generally to determine the
structure of Dn(G) for any group G. To do so we consider the

following additive groups
n Lon+l
Qn(G) =I(G)/I (G), n> 1.

In this connection, the first result is the following classical

one:

Theorem 1. Ql(G) ~ Gl’G for any group G.

2

As its corollary we have
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Corollary 2. D2(G) =G for any group G.

2

This equality is given by Passi [7] through cohomological
methods of groups.
The second one is the folloWing given by Bachmann-Grunenfelder

[1], Losey [4], Passi [7] and Sandling [11]:

Theorem 3. If G is a finitely generated group, then
2 n R
Qz(G) ~ sp (Gl/Gz) ® G2/G3 , where sp (Gl/GZ) is the nth symme

tric power of the abelian group Gl/G2 .

As its corollary we have

Corollary 4. D3(G) = G, for any group G.

3

This equality is also given by Passi [7] through cohomologi-
cal methods of groups.
Let G be a finite group. Then for any k >1 the finite

. . - . G
abelian group Gk/Gk+l has a basis { in} 2<i<h (k) with X ;e G

and x, .

ki~ *ki Gk+l (1<i<r (k)). 1In particular we denote by d(i)

and 4'(i) the order of ;l—i and ;—;i' respectively. Here we
may assume that d(i)|d(i+l) and d'(i)|d'(i+1l). Then we have

(for example cf.[17]).

3 . . .
Lemma 5. I (G) has a Z-basis consisting of
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(1) (xli—l)d(i), d(i) 23, 1<i<x(l)

@ -0 1cian
(3) AW Gx =D (x-1), 12123 <A ()

(4) P(a), a:basic, W(a)x3.
The third one is the following given by ourselyes:
Theorem 6. If G is a finite group,. then
QBkG) ~(sp°(6,/6,) @ (6,/6,®6,/6) D 6,/G,} /R,

. 3
where R is the submodule of sp (Gl/G2) @(Gl/G2®G2/G3)@G3/G4

generated by the following:

a(j — — — 4 d
(@) Gepy v E v %) ‘3)\ Y G VLY BN

137 a) (l;i<j;>\(l)).
_(_j_) d(l) — d(3j) d(j) ,_d(i)
+{ D x @ (xli® xlj )}+d(i) [xli , xlj]

This isomorphism V¥ is given by

v ((x, -3 _r, a4

1i
v ((x2i—l) d (i)) =
¥ (d(d) (xli—l) (xlj—l)) =_(§(231)) (qivv qlv 9+ (x nXd(l) + |
oD

y ((x —l) (x —1) (xlk—l)) =xli'y' xljv xlk +R



b4 ((xli—l)(x2j—l)):=xlfg X2j + R

¥ (x3i—1) ) = x3i *R

¥ (P(a)) =R, a:basic, W(a) >4.

As its corollary we can completely determine D4(G). We put

for 1<i< A1)

A _ S Siz e
1i 21 %22 T T Taa(2) T3 73T T3

Corollary 7. If G is a finite group with G4=l, then

D4(G) is the subgroup of G3(written additively) generated by the

elements

ag)  a)
1<i<isan Yiya P o ¥y

for all integers uij(L;i<i;A(l)) satisfying the following

a(in - .
() uij( ,2') = 0 (mod a(i))

and for 1 <1i<X(1) and 1<k<X(2)

a@) _ = g
%) 29 0i Ui T nk Zi<j;)\(l) 43Sy =0 (mod(d(i),d" () -

This corollary implies many results as follows:

1) If G is a finite p-group with p# 2, then D4(G)= G4.

This equality is first quen by Passi [7] through cohomolo-

gical methods.
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2) Exp(D4(G)/G4):;2 for any group G.

This one is given by Losey [4], Sjogren [12] and Tahara [13,

15].

3) There exist infinitely many counterexamples to D4(G)= G4 for

finite 2-groups G.

Rips [10] copstructed only one counterexample to D4(G)= G4
in 1972, but the interpretation of this example has been indistinct
till now. However we can understand the meaning of it, and we can
construct infinitely many counterexamples containing Rips' one as
the smallest one in this family.

The last result is one for free groups [16].

Theorem 8. If F is a finitely generated free group, then

a a a
1 2 s
-~ -+ ’—) o o e
Q (F) 2 P {sp (F, /Fy ) ®sp “(F, /F +l)® ® sp (F, /P, +1)}
1 "1 2 2 s s
n>1, where I runs all natural integers ajrrtray bl;---, bS
i e + e+ = i
with bl< b2< < bS and albl asbs n for possible natural

integers s.

The denominator submodule R in general case is trivial for

these free groups. As its corollary we have

Corollary 9. If F is any free group, then Dn(F)==Fn, n>1.

-5 ~
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This is the first result on dimension subgroups which is

given by Grin [3] and Magnus [6] in 1937. Moreover we have

Corollaxry 10. If F is a finitely generated free abelian.

group, then Qn(F); spn(F), n>1.

This is Passi's result [8].

Thus by considering of the structure of Qn(G) ;, Wwe can
determine the structure of D4 (G) , and moreover we can understand
all results on dimension subgroups, which are given separately by

cohomological methods, Lie ring's methods and so on.

We want to determine the structure of Qn(G) for all n> 4.
To do so we have to determine Z~basis of In(G) for all n;él.

Finally we have the following conjecture:

Conjecture 11. Let G be a finite group and o*(x. .) be the

ki

O (%)

is contained
ki

order of in € Gk/Gk+l .

1<i<A(k), then we have DSL(G)=G£L for l;l;u+2 .

If for 1<k<u-1, x

1 Gk+2 !

For u=2,3, this conjecture is true. Moreover if this is
proved, then this result is a generalization of both results of

P. M. Cohn [2] and D. G. Quillen [9].
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