goooboooogn
0 3270 19780 82-87

w
g

SMALLESTNESS AND MINIMALITY OF PAIRWISE SUFFICIENT SUBFIELDS

by H. Morimoto
(Osaka City University)

This is a continuation of the preceding articlel[l] by J.K.
Ghosh. The same definitions and notations as ih that article will

be used here, except that the basic space L) is now replaces by

X = {x}'..

1. The smallest subfield with pairwise sufficiency and contain-
ment of carriers.

We begin with a simple example which, however, retains all
the essential features of fhe discrete case in general.

[Example 1] Let X be an uncountable space, A the sigma-field
of all the subsets of X and P be the‘family of all one-point
probability measures on X. Define C to be the family of all the
countable and cocountable sets and for each x in X define C(x)
to be the family of all the countable sets which do not contain
x and all the cocountable sets which contain x. Clearly both of
‘these families are sub-sigma-fields(simply,"subfields") of A.

It follows from Theorem 5 of [1] that C(x) is minimal pairwise
sufficient (MPS, in short) and that C is. pairwise minimum
sufficient (PSS, as I would rather call it pairwise smallest
sufficient).

I would like to point out that C(x) is also PSS. In fact,
all the subfields which shares the same partition as a PSS
subfield are also PSS, because in the discrete case, if two

subfields have a same partition they are equivalent in terms
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of the partial order (II) defined in [1]. Hence there are great
many PSS in this case: All the separating subfields are PSS.
Here, of course, a subfield B is called separating if for any
two points in X there is a set in B which contains one and only
one of them. (Here the example ends).

‘To single out one "smallest" subfield, one other concept
seems to me more convenient: The smallest subfield with pair-
wise sufficiency and containment of supports(SPSC). This is
defined as the smallest(minimum, in terms of [1l]) one wrt. the
partial order(I), among all the pairwise sufficient subfields
which contain supports of all P in P relative to P itself,
according to Definition 1 of [l]. In the foregoing example,

C is SPSC, as well as the particulér PSS written épms const-
ructed in Theorem 1 of [1l]. This coincidence is not an accident,
as the following theorem shows.

[Theorem 1] Suppose for each P in P the supports relative
to P exists. Then épms is SPSC.

[Outline 6f the proof] Assume that B is pairwise sufficient.

then - the functions VY defined in Theorem 1 of [1] must

Ple

be B-measurable. If we assume that B contains the supports of
all P in P, then the functions I which appear in the same
Theorem are B-measurable. Hence B includes épms' (End)

Thus the existence of SPSC and its being PSS is proved
under the same generality as the existence of the latter has

thus far been proved. A possible criticism of this concept iu;nT -
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be that while pairwise sufficiency is a "pairwise consept"”,
that is, one preserved by the equivalence in termes of (II),
the concept of support is not,and the definition of SPSC

has a sort of inconsistency in its combining‘these two
concepts belonging to two different categories. On the othef
hand, SPSC emerges gquite naturally from the following theorem
which holds under a slightly more generél conditions than
what is called weak domination.

[Generalized Neyman Factorization Theorem] (Yamada and
Morimoto) A subfield B is pairwise sufficient and contains the
supports of all P in P if and only if every P in P has a
B-measurable density wrt. a pivotal measure.

Under the-same‘generality, the existence of SPSC immediately
follows: The subfield generated by all the versions of the
densities of all P in P wrt. a pivotal measure is SPSC.

I would not state explicitly the conditions for the theorem
or the definition of a pivotal measure here, because Neyman
factorization is not the main subject here,vand the existence

of SPSC has been proved in [1] under a more general condition,

that is, the existence of supports.

2. Characterization of minimal pairwise sufficient
subfields in the discrete case.

I state in this section recent results by Namba[2]..I again
take up Example 1, although the resﬁlts are easily rephrased for
the discrete case in general. Theorem 4 of [1] is now specialized

to: A subfield is piarwise sufficient if and only if it is



s eparating. Thus our problem is to decide whether a given

separating subfield is a minimal one of that kind or not.

Suppose-that B is separating and let E={Fi; i€ I} be a

family of sets which generates B. Define ZI to be the

space of all functions on I to {0,1}. Here I is the set

' of indices attached to the sets in F. Points in this

space are written jf(y(i); i€ 1), z=(z(i); ie 1) etc.

We define a mapping f on X onto a subset Y of 2I_as

follows: A point x in X is mapped to a point y=f(x)

which satisfies y(i)= 1 if x belongs to F. and.y(i)=0

otherwise. By f, F is carried to the family of all such

sets that arewritten as{y; y(i)= l} for some i in I.

And B is carried by f to the sigma-field generated by it.

We conveniently denote them by F and B again. A neighbour-

hood of y in Y is defined to be a set N(y;K), where K is any

- countable subset of I, which is the totality of‘those points

z in Y which satisfies z(i)= y(i) for all i in K. The

neighbourhoods, when y ranges over Y and K assumes to be all

countable subsets of I, give rise to a topology on Y. Y is

called CUl—compact wrt. this topology if the following condition

is satisfied: Assﬁme that to each y in Y there corresponds

a neighbourhood N(y;K(y)). Then one can choose a countable

number of points yO’le"'yk"" such that#£ZN(y;K(yk)) =Y.
We now state a theorem of Namba[2] which gives a complete

characterization of minimality of a separating subfield.
[Theorem 2] gvis minimal separating if and only if Y is

Lol—compact.
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Let us see how this theorem works with the subfields
- given in Example 1.

[Example 2] Under the framework of Example 1, take the
following generators F and F(x) of C and C(x), réspectively:

F = all the singletons in X.:

F(x)= all the singletons except x .
Corresponding sets of indices I for these generatdrs are X and
X -{x}, respectively. By the correspondence‘f, ﬁhe space X is -
mapped to one of the following two spaces, depending'on cases:

Y = all y such that y(i)=1 for one single i in I=X.

Y(x)= all y such that Y(i) = 1 for on single i in I=X -{x},

and 0.

Here, 0 denotes the point of 2t such that 0(i)= 0 for all i in I.
Notice that f(x) = 0. |

The qu4compaétness of ¥(x) is proved as follows: Suppose that
N(y;K(y)) corfésponds to y, for each y in Y. If a point y does
not belong tva(O,K(O)), the neighbourhood corresponding to 0,
then there exists i in K(0) such that y(i)il. As K(0) is coun-
tablé and as each y can assume the value 1 for at most one i,
there are a countable number of points which do not belong to
N(0,K(0)). Take them as YyrYoreser¥pree- and 0 as Yo- Then it
is clear that the neighbourhoods comwesponding these points
collectively cover Y. |

This proof does not work for Y, because it does not contain

0. On the other hand it is easy to disprove CUi—Compactness.

¢m.5'~_~
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There exists an example of a minimal separating subfield
which does not contain any singletons:

[Example 3] Let I be an uncountable set of indices i and
for each non-negative integer n let ane the set of all
functions I to {0,1} which assume the value 1 for at most
n indices in I. Put Y==Cth, the set of all functions assuming
the value 1 for a finitg-gumber of indices i in I. Let F be the
family of all sets of the form:~{y ; y(i) = l}’ for some i in I.
Define B as the subfield generated by F, which is equal to the
totality of the sets B for which there exists a countable
subset K(B) of I such that y B and Y(i)=z (i) for all i in K(B)
imply y €B. Then it is clear that B is separating and B does not
contain any singletons. To prove that it is minimal, we are
sufficed to prove the ﬁjl-compactness of Y.

The proof is similar in nature to that given in the previous

example, excépt only that we need induction over n.
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