5

Hyperbolic nonwandering sets

without dense periodic points

bу

Masahiro Kurata

Let $f: \mathbb{M} \longrightarrow \mathbb{M}$ be a C^{∞} diffeomorphism of a closed C^{∞} manifold \mathbb{M} , and let $\Omega(f)$ be the nonwandering set of f. $\Omega(f)$ is hyperbolic if $\Omega(f)$ is compact and the restriction $T_{\Omega(f)}^{\mathbb{M}}$ of the tangent bundle $T\mathbb{M}$ of \mathbb{M} on $\Omega(f)$ splits into the Whitney sum of Tf-invariant subbundles

$$T_{\Omega(f)}M = E^S \oplus E^u$$
,

such that given a Riemannian metric on TM there are positive numbers c and $\lambda < 1$ such that $|\mathrm{Tf}^n v| < c\lambda^n |v|$, for $v \in E^S$ and n > 0, and $|\mathrm{Tf}^{-n} v| < c\lambda^n |v|$, for $v \in E^U$ and n > 0. The following problem was suggested in [3].

Problem. If a nonwandering set $\Omega(f)$ is hyperbolic, are the periodic points dense in $\Omega(f)$?

Newhouse and Palis proved that the answer is affirmative when M is a two dimensional closed manifold ([1], [2]).

In this paper we give the following.

Theorem. Suppose dimM \geq 4. Then there is a diffeomorphism $F:M \longrightarrow M$ such that the nonwandering set $\Omega(F)$ is hyperbolic but its periodic points are not dense in $\Omega(F)$.

Construction.

To simplify the construction, we assume dimM = 4.

1. Denote D = $[-2, 6]X[-1, 3] \subset \mathbb{R}^2$. Let an embedding $f:D \longrightarrow D$ satisfy the followings (figure 1). Suppose that real numbers a_{-1}, \dots, a_{6} satisfy

figure 1

and the rectangle A_i ($i = 0, \dots, 6$) is given by

$$A_{i} = \{ (x,y) \in D \mid a_{i-1} \le x \le a_{i} \}.$$

Then f satisfies $1.2 \sim 1.5$.

1.2 f/A₀, f/A₂ and f/A₆ are contractions with three sinks (-1,0), (1,0) and (5,2),

 $1.3 \quad f(A_4) \subset intA_0$

 $\underline{1.4}$ $f|A_i:A_i \longrightarrow f(A_i)$ (i=1,3,5) maps A_i linearly onto a rectangle $f(A_i)$, expanding horizontally and contracting vertically. There are two hyperbolic fixed points, (0,0) and (4,2).

- 1.5 There are numbers $\alpha > 1$ and $0 < \beta < 1$ such that $f(x,y) = \left\{ \begin{array}{ll} (\alpha x, \, \beta y) & \text{for } (x,y) \in A_1 \\ (\, \alpha (x-4)+4 \, , \, \beta (y-2)+2 \,) & \text{for } (x,y) \in A_5 . \end{array} \right.$
- 2. Let $D' \subset \mathbb{R}^2$ satisfy the followings (figure 2). D' is a neighbourhood of ($\{0\} \times [-1, 1]$) $\bigcup ([-2, 0] \times \{0\}$) which is diffeomorphic to a 2-dimensional disk, and there is a sufficiently small positive number ϵ such that

$$\{(x,y)\in D'\mid |y+1|\leq \varepsilon\}=[-\varepsilon, \varepsilon]\times[-1-\varepsilon, -1+\varepsilon]$$

and

$$\{(x,y) \in D' \mid |x+1| \le \varepsilon \} = [-1-\varepsilon, -1+\varepsilon] \times [-\varepsilon, \varepsilon].$$

Let an embedding g:D' \longrightarrow D' satisfy $2.1 \sim 2.9$.

- $2.1 g(D') \subset intD'$,
- 2.2 g is isotopic to the identity,

$$\underbrace{2.3}_{n>0} \bigcap g^{n}(D') = (\{0\} \times [-1, 1]) \bigcup ([-2, 0] \times \{0\}),$$

figure 2

 $\underline{2.4}$ There are five fixed points: three sinks (-2,0), (0,1), (0,-1), and two saddle points (0,0), (-1,0).

$$2.5 \quad W^{u}((0,0)) = \{0\} \times (-1,1),$$

$$2.6 \quad W^{u}((-1,0)) = (-2,0) \times \{0\}$$

$$2.7 \quad W^{S}((0,0)) \cap D' = \{(x,0) \in D' \mid x \ge -1 \},$$

where $W^{S}(p)$ (resp. $W^{U}(p)$) is the stable (resp. unstable)

manifold through p. (-1,1) and (-2,0) denote open intervals.

$$\frac{2.8}{2.8}$$
 g(x,y) = $(\frac{1}{2}x, \frac{1}{2}(y+1)-1)$ if $|y+1| \le \varepsilon$,

$$\frac{2.9}{2.9}$$
 g(x,y) = (2(x+1)-1, $\frac{1}{2}$ y) if |x+1| $\leq \varepsilon$.

3. Define

$$N = D \times D' \bigcup_{\Psi} D^{3}(\delta) \times [0, 1],$$

where

$$D^{3}(\delta) = \{(y_{1}, y_{2}, y_{3}) \in \mathbb{R}^{3} \mid \sqrt{y_{1}^{2} + y_{2}^{2} + y_{3}^{2}} \leq \delta \}$$

and

$$0 < \delta < \frac{1}{\pi} \epsilon$$
.

The attaching map

$$\psi: D^3(\delta) \times ([0, \epsilon] \cup [1-\epsilon, 1]) \longrightarrow D \times D'$$

is given by

$$\psi(y_{1},y_{2},y_{3},t) = \begin{cases} (y_{1},y_{2},t,y_{3}-1) & \text{if } 0 \leq t \leq \epsilon \\ (y_{1}+4,y_{2}+2,y_{3}-1,1-t) & \text{if } 1-\epsilon \leq t \leq 1 \end{cases}$$

(figure 3).

In $4 \sim 10$, we will construct an embedding F:N \longrightarrow N.

After this, (x_1,x_2,x_3,x_4) (resp. (y_1,y_2,y_3,t)) denotes a point of D×D' \subset N (resp. $D^3(\delta)$ \times [0, 1] \subset N).

4. For $(x_1, x_2, x_3, x_4) \in D \times D'$ with $|x_3+1| \ge \varepsilon$ and $|x_4+1| \ge \varepsilon$, define

figure 3

$$\underline{4.1}$$
 F(x₁,x₂,x₃,x₄) = (f(x₁,x₂),g(x₃,x₄)).

5. For
$$(x_1, x_2, x_3, x_4) \in D \times D'$$
 with $\frac{1}{4} \epsilon \le |x_4+1| \le \epsilon$, define

 $\frac{5.1}{t} \quad F(x_1, x_2, x_3, x_4) = (f_{|x_4+1|}(x_1, x_2), g(x_3, x_4)), \text{where}$ $f_t: D \longrightarrow D \quad (0 \le t \le \varepsilon) \quad \text{is an isotopy satisfying} \quad \underline{5.2} \sim \underline{5.6}.$ Suppose that positive numbers b_1, \dots, b_4 satisfy

$$\frac{5.2}{ab_1}$$
 0 < b_1 < b_2 < δ < b_3 < b_4 < a_1 ,

and

$$b_{4} < \min\{ 4-a_{4}, a_{5}-4 \}.$$

Then

$$5.3$$
 $f_t(x_1, x_2) = f(x_1, x_2)$ if $|x_1| < b_1$ or $|x_1| > b_4$,

$$\frac{5.4}{t}$$
 f_t = f for $\frac{1}{2}\epsilon \le t \le \epsilon$,

$$5.5$$
 $f_t = f_0$ for $0 \le t \le \frac{1}{4}\varepsilon$,

and

 $\underline{5.6} \quad f_t(x_1,x_2) = (\overline{f}_t(x_1), \beta x_2) \quad \text{for } |x_1| \leq b_4,$ where \overline{f}_t is an isotopy of a neighbourhood of 0 in \mathbb{R}^1 and \overline{f}_0 has five fixed points: three sources 0, $\pm b_3$, and two sinks $\pm b_2$.

6. For $(x_1, x_2, x_3, x_4) \in D \times D'$ with $|x_4+1| < \frac{1}{4}\epsilon$, F is defined as follows. Let

$$\underline{6.1} \quad \text{U = } \{(x_1, x_2, x_3, x_4) \in D \times D \text{'} \mid \sqrt{x_1^2 + x_2^2 + (x_4 + 1)^2} \leq \delta\},$$
 and

Then F is defined as follows.

$$\begin{array}{lll} \underline{6.3} & F(x_1,x_2,x_3,x_4) = (f_0(x_1,x_2),g(x_3,x_4)) \\ & & \text{ if } (x_1,x_2,x_3,x_4) \in D \times D'-U \quad \text{ and } |x_4+1| < \frac{1}{4}\epsilon, \\ \underline{6.4} & F(x_1,x_2,x_3,x_4) = (f_0(x_1,x_2),\overline{g}(x_1,x_2,x_3,x_4), \frac{1}{2}(x_4+1)-1) \\ & & \text{ if } (x_1,x_2,x_3,x_4) \in U \cap F^{-1}(U), \end{array}$$

where \bar{g} satisfies $6.5 \sim 6.7$.

$$\underline{6.5}$$
 $\overline{g}(x_1,x_2,x_3,x_4) = \frac{1}{2}x_3$ near the frontier of U,

$$\frac{6.6}{g}(x_1, x_2, x_3, x_4) = 2x_3$$
if $(x_1, x_2, x_3, x_4) \in U_1$ and $-\frac{1}{4}\varepsilon \le x_3 \le \frac{1}{2}\varepsilon$,

and

$$\underline{6.7}$$
 $\overline{g}(x_1,x_2,x_3,x_4)$ does not depend on x_1 if $|x_1| < b_1$.

$$\underline{6.8}$$
 F({(x_1, x_2, x_3, x_4) $\in U \mid x_3 < 0$ })

$$\subset \{(x_1, x_2, x_3, x_4) \in U \mid x_3 < 0 \}.$$

In $\{(x_1, x_2, x_3, x_4) \in U \mid x_3 < 0\}$ there are only a finite number of nonwandering points, which are hyperbolic fixed points.

Furthermore F satisfies the conditions in 10.

7. On
$$D^3(\delta) \times [0, 1-\epsilon]$$
, F is given as follows

 $\frac{7.1}{2} \quad F(y_1, y_2, y_3, t) = (f_0(y_1, y_2), \frac{1}{2}y_3, \phi(y_1, y_2, y_3, t)) \in D^3(\delta) \times [0, 1],$ where ϕ satisfies the followings.

If
$$\sqrt{y_1^2 + y_2^2 + y_3^2} < \delta_1$$
 or $\frac{1}{2} < t$,

$$\frac{7.2}{}$$
 $\phi(y_1,y_2,y_3,t)$ depends only on t

and

$$\frac{7.3}{2t}$$
 $\frac{\partial \phi}{\partial t} > 0$.

$$\frac{7.4}{2}$$
 $\phi(y_1, y_2, y_3, t) = 1 - \frac{1}{2}(1-t)$ for $1-2\epsilon \le t \le 1-\epsilon$.

$$\frac{7.5}{1}$$
 $\phi(y_1, y_2, y_3, t) = \overline{g}(y_1, y_2, t, y_3 - 1)$ if $0 \le t \le \epsilon$.

Moreover F satisfies 10.

8. For
$$(x_1, x_2, x_3, x_4) \in D \times D'$$
 with $|x_3+1| < \frac{1}{4}\varepsilon$,

F is given as follows. Let $h_t\!:\! D \longrightarrow D$ ($0 \le t \le \epsilon$) be an isotopy such that

8.1
$$h_t = f$$
 if $\frac{1}{2}\epsilon \le t \le \epsilon$,

8.2
$$h_t(x_1,x_2) = f(x_1,x_2)$$

if $-2 \le x_1 \le 4-b_4$ or $4+b_4 \le x_1 \le 6$,

and

 $\frac{8.3}{\text{ht}} \quad h_{t}(x_{1}, x_{2}) = f(x_{1}-4, x_{2}-2) + (4,2) \quad \text{if} \quad |x_{1}-4| < b_{4}.$ Then

 $\frac{8.4}{\text{F}} \quad \text{F}(x_1, x_2, x_3, x_4) = (h_0(x_1, x_2), \overline{h}(x_1, x_2, x_3, x_4), \frac{1}{2}x_4),$ where \overline{h} satisfies the followings.

$$\frac{8.5}{h}(x_1, x_2, x_3, x_4) = \frac{1}{2}(x_3+1)-1$$
if $\sqrt{(x_1-4)^2 + (x_2-2)^2 + (x_3+1)^2} \le \delta$ and $x_4 > \frac{2}{3}\epsilon$,

$$\frac{8.6}{h} \frac{h(x_1, x_2, x_3, x_4) = 2(x_3+1)-1}{if \sqrt{(x_1-4)^2+(x_2-2)^2+(x_3+1)^2}} \ge \delta_2 \text{ or } x_4 < \frac{1}{3}\epsilon,$$
 where $\delta < \delta_2 < \frac{1}{4}\epsilon$.

 $\underline{8.7}$ $\overline{h}(x_1,x_2,x_3,x_4)$ does not depend on x_1 if $|x_1-4| < b_1$. Furthermore F satisfies 10.

9. For $(x_1, x_2, x_3, x_4) \in D \times D'$ with $\frac{1}{4}\epsilon \le |x_3+1| < \epsilon$, define

$$\underline{9.1} \quad F(x_1, x_2, x_3, x_4) = (h_{|x_3+1|}(x_1, x_2), 2(x_3+1)-1, \frac{1}{2}x_4).$$

10. F is an embedding of N such that

$$10.1$$
 F(N) \subset intN,

and

10.2 F is isotopic to the identity.

11. Straightening the corner (and modifying F near the

corner), we can regard N as a submanifold of M which is diffeomorphic to $\mathrm{D}^3 \times \mathrm{S}^1$. Extend F to a diffeomorphism of M such that the nonwandering sets of F in M-N consists of a finite number of hyperbolic fixed points.

- 12. The nonwandering set of F consists of a finite number of hyperbolic fixed points and two non-periodic orbits $\{(x_1,x_2,0,0)\in D\times D'\mid (x_1,x_2) \text{ satisfies } 12,i\} \quad (i=1,2),$ where
 - there is an integer n_0 such that $f^n(x_1,x_2) \in A_5 \qquad \text{if} \qquad n < n_0,$ $f^n(x_1,x_2) \in A_3 \qquad \text{if} \qquad n = n_0,$ $f_n(x_1,x_2) \in A_1 \qquad \text{if} \qquad n > n_0,$

and

there is an integer
$$n_0$$
 such that
$$f^n(x_1,x_2) \in A_5 \qquad \text{if} \qquad n < n_0,$$

$$f^n(x_1,x_2) \in A_1 \qquad \text{if} \qquad n \geq n_0.$$

The details will be published elsewhere.

References

- [1] S.Newhouse and J.Palis, Hyperbolic nonwandering sets on two-dimensional manifolds, Dynamical Systems, ed. M.M.Peixoto, Academic Press, 1973.
- [2] J.Palis and C.C.Pugh, Fifty problems in dynamical systems, Dynamical Systems Warwick 1974, ed. A.Manning, Lecture Notes in Math., 468, Springer-Verlag, 1975.
- [3] S.Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc., 73 (1967), 747-817.