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Ergodic theory cof diffeomorphisms

D. Ruelle

(I.H.E.S.)

1. A "almost everywhere" stable manifold theorem

Theorem. Let M be a compact differentiable manifold and

r,0

f+ M » M a diffeomorphism of class C (r integer > 1,

€ (0,1]). Let d be a Riemann metric on M.

There is a Borel set T ¢ M with the following properties

(a) freT and o(T') = 1 for every f-invariant proba-

bility measure o on M

1) <eesl A(r) be the strictly

(
(b) Let xeT and Ax X

negative characteristic exponents of Tf. Define VogL)c---c7%f)

by

’Vﬂgp) = {yeM : lim sup % log d(fnx, £y) < Aip)}

n-o

for p = 1,***,r. Then 7n§p) is the image of Vip) by an

injective Cr’e immersion tangent to the identity at x.

- Characterictiec exponents will be explained later.
- This is an "almost everywhere" stable manifold theorem,
where several stable manifolds with different rates of convergence

may be present at a point.

Corollary. I p 1is ergodic and all the characteristic

exponents of Tf are < 0 a.e., then p 1s carried by an

attracting periodic orbit.
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~ The proof of the theorem can be reduced to proving the
existence of 1local stablé manifolds.

- Using exponential maps, the local theorem can be formulated
as a theorem about invariant manifolds for a non linear vector
bundle map T over 1T : M~ M. The differentiability of TX:

EX g ETX is used, but 1t : M» M 1is just assumed to be a measure
preserving transformation.

- In particular, one can take the vector bundle to be trivial,

i.e. one studies the ergodic properties of nonlinear maps FX,

x € M, such that FX maps the unit ball of Rm, into R"™ and

F._0 = 0.
X
-~ The linear version of this problem is the multiplicative

ergodic theorem which we have to study first.

2. The multiplicative ergodic theorem.

Let (M,Z,p) be a fixed probability space, and 1 : M » M
a measurable map preserving p. We denote by f+ the positive

part of a real function f.

Theorem. Let T : M+~ M be a measurable function to the

real m x m matrices such that

log"|

I T() ]l e LY, p)

n-1
X

and write TQ = T(t Y...T(1x)T(x).

There is Te¢ M such that 1TcT and p(I') = 1. Furthermore,

if xeT ,11eRm,
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1
lim & log HT;u|| = x(x,u)

Y1->oo

exists, finite or -,

The values of x(x,u) for u # 0 are called characteristic

exponents. Notice that
A m
VX = {fueR : x(x,u) < A}
is a linear subspace of Rr™,

Complement.

Let * denote matrix transposition. One may take I such

that, if x € T,

. n¥ n.1/2n
(a) lim (TX TX)

n->o

= A exists
X ——————

(b) the characteristic exponents Aﬁr) are the log's of

the eigenvalues of Ax’ The space V; is the sum of the

eigenspaces Uir) of AX corresponding to the eigenvalues < A.

The functions x - Aﬁr), X & m;r) = dim U§P> are Tt-invariant.

The proof can be obtained in two steps.

I. Prove that

.1 n\Ag
lim = log H(TX) || (*)
n->w

exists almost everywhere (this follows from a "subadditive

ergodic theorem” and insures the existence of a limit for the sum

- 3 -
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*
of the largest q eigenvalues of (Tg T2)1/2n.
ITI. From
. 1 n
lim sup = log ||T(t x)|| < 0 (*¥*)
n->oo n -
and (¥) for g = 1,...,m one obtains without further assumption

the existence of the limits asserted by the multiplicative ergodic

theorem.

3. Proof of a local stable manifold theorem

To prove the desired nonlinear version of the multiplicative

ergodic theorem, we put

Fx =F n-1 °rrre FTXOFX

and assume that

+
Jp(dx)log HFxllr g <t

We want to prove the existence of a measurable set T'c¢cM with
tTeT, p(I') = 1, and measurable functions B > a > 0 on T such

that if x € ', and X < 0 1is not a characteristic exponent of

w}
n

{ueR™: ull < a(n), HFQu || < g(x)e™  for all n > 0}

submanifold of the ball |ju|} < a(x), tangent at 0



If FX is replaced by its linear part T(x) = Txf, this
follows from the multiplicative ergodic theorem. The idea of
the proof of the nonlinear theorem is to consider FX as a
perturbation of T(x). If u e Dx’ qu tends exponentially
fast (with n) to 0, therefore the deviation of F n from
T(TnX), at the relevant point Fiu, goes exponentiail? to zero

The heart of the proof reduces thus to the following fact.

If (T%) is a sequence of n x n matrices and

n-1 nn

sup [|T) - T(t  "x)|| e
n

n-—lx>

is sufficiently small (for some n > 0, and T(t such

that the limits (¥) exist and (¥*¥) holds), then, 1f we write

the 1limit

Lim (TrMep)1/20 < g

n-—o

)

exists and has the same eigenvalues (including multiplicity) as

AX. The eigenspaces depend continuously on the perturbation.

4, Abstract results about matrix products

1. Theorem. Let T = (T ) be a sequence of real m X m

_______ == n'n>0
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matrices such that

lim sup % log ”Tnlli 0

n-+w©

]
=]

T, T and assume that the limits

We write T T Ty

1im + log || (1A%

n->w
exist for q =1, ,m.
*
(a) 1im (T 7H)1/20 2y
n->o

exists, where ¥ denotes matrix transposition.

A(S)

(b) Let exp A(l) <+++< exp be the eigenvalues of

A [real A(r), possibly A(l) = -»], and U(l),"',U(S) ‘EEE
(r)

corresponding eigenspaces. Writing V(O) = {0} and V =
U(l)+n . -+U(r)

, we have

(r-1)-

1im % log ||T"ul| = AT ynen uweviTI\y for

1/2n

#
(D The eigenvalues of (T T) send to limits

A1) e (8)
r)

be the space spanned by the eigenvectors of
(7).

(
- Let Un

*
(Tn Tn>l/2n corresponding to eigenvalues sending to

-6 -



® Lemma. Given &6 > 0 JIK > 0 s.t

max{|(u,u')|: u eUér), u' e U(P )

<K exp[—n(lk(r')-k(r>|

., for all k > 0,

> b= Jhatl

97

=l}

Equivalently: ir AT = a, A0 oo, g oy | u®") ooy
n n n
if v 1is the orthogonal projection in U£+k of ueU,, then
Ivil < X|| u llexpl-n(|x'=X] - 8)]
- If X < A', k =1, then for large n
+
lvllexpl (n+1) (A'-p) ] < [T |
<t < exple+(n+1) ST ullexpn(A+2) ]
= n+1 - 2 P I
= |lvll < explc-At+38].expl-n(A'=2-6)T-||u]]
- Induction on k (A < A')
- Orthogonality
(r) . (r) (r)
Q (@ )psog 1s Cauchy = (a) U/ > U
= max{|(u,u) | uev™, wev ™l = lu )= 1

<k expl-n(2 7)) L sy
= (b)
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2. Theorem. Let the notation and assumptions be as in

theorem 1. Furthermore, assume that det A # 0.

Let n >0 be given and, for T' = (Tﬂ)n>0’ write

- _ 3nn
llT'-T]| = sup T -T Il e

and T'" = Tﬁ---Té-Ti. Then there are &§,A > 0 and, given

€ > 0, there are Be > 0, Bé > 1 with the following properties.

1 flTr-T) < s

*
1im (T'Ppemyl/en _opy (1)

n-o

exists and has the same eigenvalues as A (including multiplicity).

Furthermore, if P(r)(T’) denotes the orthogonal projection of

A' corresponding to exp A(r), and ||T"-T|| < 8, we have

HP(r)(T')-P(P)(T")H < A ||lTr-Tm| (2)

B XD n(A(T)_¢) < HT'nP(r)(T')]lj B! exp n(A (T se) (3)

@) To prove the existence of (1) and spectrum A = spectrum A',

it suffices to show

1lim % log H(T'n)Aq||= lim % log|l(Tn)AqH
n

N> 00

In fact it suffices to do this for g = 1. Equivalently, it

suffices to find an open set UcR™ such that
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lim % log ||T' ™| = A(s) for uelU

n-o

This results from the following

a9

() Lemma. Let (El,...,im) be an orthonormal basis of iRm

he largest eigen-

diagonalizing A, with Em corresponding to t

hat

value exp A(S). There is then § > 0 such t
1im £ log |7 "u]l = a(®)
n->o n

whenever 0 < o < 1, ||T'-T||] < 8a , and ue€U,

3

m-1 K
U = {kzl u 57— ¥ ug g ¢ max lu, | < |

|
k<m k

m

Q) The lemma implies |IP(r)(T')—P(P)(T)|]§ A
@ Proof of the lemma (a = 1 for simplicity).
Let Ein): unit vector ~ Tngk, and E(n)

columns Eﬁn). Then Hgén)”</ﬁ and

D, = sup e I < e it
n
(n-1) _ . (n),(n) 1
Tngk tk gk iig n log

where we may assume r(k) increasing with k.

0
h. N

- For any 11eIﬁh let T'™y = ) uin)ién)
k
Let wu Dbe the smallest integer such that

(vn) max Iugn)] > max|u

(n) I
J2u k>u K

-9 -

where
u |}
|| 7" -7

the matrix with

€ >0

n
(3) oy (r(k))
Tt =)

j=1
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(n)
K

Assuming ||T'-T|| < §, we estimate the u recursively

- lui“)l < tﬁn)|u£n-l)] + Dae'2“”§[u§?'1)|

Replace the so that

(n)
tk by

(n)*
Cy

=2

*
lim % ) log tén) =ATO) e k < u
N> r=1

SF L (n)
H H

Choose C such that (for all v > 0, N > v, k,% < u )

N-1

N
* )%
i e m (M < el
n=v+1l n=v+1l
Then, if v - nax ]uév)l,
2
N . N _
|uén)| < 1 ti“) -1 (1+mcpse My
n=v+1l n=v+l
Choosing & = 1 g (l—e—nn)2 yields, for N > v
mCD
n=1
N . N
<o o oW 1 ey (4)
n=v+l n=v+1l
. 1
1 —_
with C' < D3
- Choose Vv so that Iu(v)l = max ]uév)| = U(V), then
k
N N
™ o M qeey gV (5)
n=v+l n=v+l
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For

1im % Tog |7 %)l = AT o tamma (r(u)=s).
n->o

(2) and (3) be obtained from (4) and (5).

instance the second half of (3) follows from (4).
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