Ergodic theory of diffeomorphisms

D. Ruelle

(I.H.E.S.)

1. A "almost everywhere" stable manifold theorem

Theorem. Let M be a compact differentiable manifold and $f: M \rightarrow M$ a diffeomorphism of class $C^{r,\theta}$ (r integer ≥ 1 , $\theta \in (0,1]$). Let d be a Riemann metric on M.

There is a Borel set Γ **c** M with the following properties

- (a) f Γ c Γ and $\sigma(\Gamma)$ = 1 for every f-invariant probability measure σ on M
- (b) Let $x \in \Gamma$ and $\lambda_X^{(1)} \longleftrightarrow \lambda_X^{(r)}$ be the strictly negative characteristic exponents of Tf. Define $\psi_X^{(1)} \subset \cdots \subset \psi_X^{(r)}$ by

$$\psi_{x}^{(p)} = \{ y \in M : \limsup_{n \to \infty} \frac{1}{n} \log d(f^{n}x, f^{n}y) \le \lambda_{x}^{(p)} \}$$

for p = 1,...,r. Then $\psi_x^{(p)}$ is the image of $V_x^{(p)}$ by an injective $C^{r,\theta}$ immersion tangent to the identity at x.

- Characterictic exponents will be explained later.
- This is an "almost everywhere" stable manifold theorem, where several stable manifolds with different rates of convergence may be present at a point.

- The proof of the theorem can be reduced to proving the existence of local stable manifolds.
- Using exponential maps, the local theorem can be formulated as a theorem about invariant manifolds for a non linear vector bundle map T over $\tau: M \mapsto M$. The differentiability of T_x : $E_x \mapsto E_{\tau x} \quad \text{is used, but } \tau: M \mapsto M \quad \text{is just assumed to be a measure preserving transformation.}$
- In particular, one can take the vector bundle to be trivial, i.e. one studies the ergodic properties of nonlinear maps F_X , $x \in M$, such that F_X maps the unit ball of \mathbb{R}^m , into \mathbb{R}^m and $F_Y = 0$.
- The linear version of this problem is the multiplicative ergodic theorem which we have to study first.

2. The multiplicative ergodic theorem.

Let (M, Σ, ρ) be a fixed probability space, and $\tau: M \mapsto M$ a measurable map preserving ρ . We denote by f^+ the positive part of a real function f.

Theorem. Let $T:\, M \mapsto \underline{M}_m$ be a measurable function to the real $m \times m$ matrices such that

$$\log^+ || T(\cdot) || \in L^1(M, \rho)$$

and write $T_x^n = T(\tau^{n-1}x)...T(\tau x)T(x)$.

There is $\Gamma \subset M$ such that $\tau \Gamma \subset \Gamma$ and $\rho(\Gamma) = 1$. Furthermore, if $x \in \Gamma$, $u \in \mathbb{R}^m$,

$$\lim_{n\to\infty} \frac{1}{n} \log ||T_x^n u|| = \chi(x,u)$$

exists, finite or $-\infty$.

The values of $\chi(x,u)$ for $u \neq 0$ are called characteristic exponents. Notice that

$$V_{x}^{\lambda} = \{u \in \mathbb{R}^{m} : \chi(x, u) \leq \lambda \}$$

is a linear subspace of \mathbb{R}^{m} .

Complement.

Let * denote matrix transposition. One may take Γ such that, if x ϵ Γ ,

(a)
$$\lim_{n \to \infty} (T_x^{n*} T_x^n)^{1/2n} = \Lambda_x \underline{\text{exists}}$$

(b) the characteristic exponents $\lambda_X^{(r)}$ are the log's of the eigenvalues of Λ_X . The space V_X^{λ} is the sum of the eigenspaces $U_X^{(r)}$ of Λ_X corresponding to the eigenvalues $\leq \lambda$. The functions $x \to \lambda_X^{(r)}$, $x \mapsto m_X^{(r)} = \dim U_X^{(r)}$ are τ -invariant.

The proof can be obtained in two steps.

I. Prove that

$$\lim_{n \to \infty} \frac{1}{n} \log ||(T_x^n)^{\Lambda q}|| \tag{*}$$

exists almost everywhere (this follows from a "subadditive ergodic theorem" and insures the existence of a limit for the sum

of the largest q eigenvalues of $(T_x^{n} T_x^n)^{1/2n}$.

II. From

$$\lim_{n\to\infty} \sup \frac{1}{n} \log ||T(\tau^n x)|| \le 0$$
 (**)

and (*) for q = 1,...,m one obtains without further assumption the existence of the limits asserted by the multiplicative ergodic theorem.

3. Proof of a local stable manifold theorem

To prove the desired nonlinear version of the multiplicative ergodic theorem, we put

$$F_x^n = F_{\tau^{n-1}x} \circ \cdots \circ F_{\tau^x} \circ F_x$$

and assume that

$$\int \rho(\mathrm{d}x) \log^+ ||F_x||_{r,\theta} < +\infty.$$

We want to prove the existence of a measurable set $\Gamma \subset M$ with $\tau \Gamma \subset \Gamma$, $\rho(\Gamma) = 1$, and measurable functions $\beta > \alpha > 0$ on Γ such that if $x \in \Gamma$, and $\lambda < 0$ is not a characteristic exponent of T = Tf at x,

$$D_{x} = \{u \in \mathbb{R}^{m} : ||u|| \leq \alpha(n), ||F_{x}^{n}u|| \leq \beta(x)e^{n\lambda} \text{ for all } n \geq 0\}$$

is a $C^{\mathbf{r},\theta}$ submanifold of the ball $\|\mathbf{u}\| \leq \alpha(\mathbf{x})$, tangent at 0

to $V_{\mathbf{x}}^{\lambda}$.

If F_x is replaced by its linear part $T(x) = T_x f$, this follows from the multiplicative ergodic theorem. The idea of the proof of the nonlinear theorem is to consider F_x as a perturbation of T(x). If $u \in D_x$, $F_x^n u$ tends exponentially fast (with n) to 0, therefore the deviation of F_x from $T(\tau^n x)$, at the relevant point $F_x^n u$, goes exponentially to zero. The heart of the proof reduces thus to the following fact.

If $(T_{\mathbf{x}}^{\bullet})$ is a sequence of $n \times n$ matrices and

$$\sup_{n} \|T_{n}' - T(\tau^{n-1}x)\| e^{n\eta}$$

is sufficiently small (for some $\eta > 0$, and $T(\tau^{n-1}x)$ such that the limits (*) exist and (**) holds), then, if we write

$$T^{\dagger n} = T_n^{\dagger} \cdot \cdot \cdot T_1^{\dagger}$$

the limit

$$\lim_{n\to\infty} (T^{n*T^n})^{1/2n} = \Lambda_x^n$$

exists and has the same eigenvalues (including multiplicity) as $\Lambda_{_{\rm X}}.$ The eigenspaces depend continuously on the perturbation.

4. Abstract results about matrix products

1. Theorem. Let $T = (T_n)_{n>0}$ be a sequence of real $m \times m$

matrices such that

$$\lim_{n\to\infty} \sup_{n} \frac{1}{n} \log ||T_n|| \le 0$$

We write $T^n = T_n \cdots T_2 \cdot T_1$ and assume that the limits

$$\lim_{n\to\infty} \frac{1}{n} \, \log \, \|\, (\mathtt{T}^n)^{\boldsymbol{\Lambda}^q} \,\|\,$$

exist for $q = 1, \dots, m$.

(a)
$$\lim_{n \to \infty} (T^{n*}T^n)^{1/2n} = \Lambda$$

exists, where * denotes matrix transposition.

(b) Let $\exp \lambda^{(1)} < \cdots < \exp \lambda^{(s)}$ be the eigenvalues of Λ [real $\lambda^{(r)}$, possibly $\lambda^{(1)} = -\infty$], and $U^{(1)}, \cdots, U^{(s)}$ the corresponding eigenspaces. Writing $V^{(0)} = \{0\}$ and $V^{(r)} = U^{(1)} + \cdots + U^{(r)}$, we have

$$\lim_{n \to \infty} \frac{1}{n} \log ||T^n u|| = \lambda^{(r)} \quad \text{when} \quad u \in V^{(r)} \setminus V^{(r-1)} \quad \underline{\text{for}}$$

r = 1, ..., s.

 \bigcirc The eigenvalues of $(\mathtt{T}^{n*}\mathtt{T}^n)^{1/2n}$ send to limits

$$\lambda^{(1)} < \cdots < \lambda^{(s)}$$

- Let $U_n^{(r)}$ be the space spanned by the eigenvectors of $(T^{n*}T^n)^{1/2n}$ corresponding to eigenvalues sending to $\lambda^{(r)}$.

2 Lemma. Given
$$\delta > 0$$
 $\exists K > 0$ s.t., for all $k > 0$,

$$\max\{ |(u,u')| : u \in U_n^{(r)}, u' \in U_{n+k}^{(r')}, ||u|| = ||u'|| = 1 \}$$

$$\leq K \exp[-n(|\lambda^{(r')} - \lambda^{(r)}| - \delta)]$$

Equivalently: if $\lambda^{(r)} = \lambda$, $\lambda^{(r')} = \lambda'$, $U_n^{(r)} = U_n$, $U_n^{(r')} = U_n'$, if v is the orthogonal projection in U_{n+k}' of $u \in U_n$, then

$$\|v\| \le K\|u\| \exp[-n(|\lambda'-\lambda| - \delta)]$$

- If $\lambda < \lambda'$, k = 1, then for large n

$$||\,v||\,\exp[\,(\,n+1\,)\,(\,\lambda\,{}^{\dag}-\frac{\delta}{4}\,)\,\,]\,\,\leq\,\,||\,T^{n+1}u\,||$$

$$\leq \|\mathbf{T}_{n+1}\|\|\mathbf{T}^n\mathbf{u}\| \leq \exp[\mathbf{C} + (n+1)\frac{\delta}{2}] \cdot \|\mathbf{u}\| \exp[\mathbf{n}(\lambda + \frac{\delta}{4})]$$

$$\Rightarrow ||v|| \leq \exp[C-\lambda' + \frac{3}{4}\delta] \cdot \exp[-n(\lambda' - \lambda - \delta)] \cdot ||u||$$

- Induction on k $(\lambda < \lambda')$
- Orthogonality

$$(\mathbb{U}_{n}^{(r)})_{n>0}$$
 is Cauchy \Rightarrow (a) $\mathbb{U}_{n}^{(r)} \to \mathbb{U}^{(r)}$

$$\Rightarrow \max\{|(u,u')|: u \in U^{(r)}, u' \in U_n^{(r')}, ||u|| = ||u'|| = 1\}$$

$$\leq$$
 K exp[-n(| $\lambda^{(r')}$ - $\lambda^{(r)}$ | - δ)]

 \Rightarrow (b)

2. Theorem. Let the notation and assumptions be as in theorem 1. Furthermore, assume that det $\Lambda \neq 0$.

Let $\eta > 0$ be given and, for $T' = (T'_n)_{n>0}$, write

$$||T'-T|| = \sup_{n} ||T'_{n}-T_{n}|| e^{3n\eta}$$

and $T^{n} = T_{n}^{n} \cdot \cdot \cdot T_{2}^{n} \cdot T_{1}^{n}$. Then there are $\delta, A > 0$ and, given $\epsilon > 0$, there are $B_{\epsilon} > 0$, $B_{\epsilon}^{n} > 1$ with the following properties. If $||T^{n} - T|| < \delta$

$$\lim_{n \to \infty} (T^{n*}T^{n})^{1/2n} = \Lambda^{n}$$
 (1)

exists and has the same eigenvalues as Λ (including multiplicity). Furthermore, if $P^{(r)}(T')$ denotes the orthogonal projection of Λ' corresponding to $\exp \lambda^{(r)}$, and $||T''-T|| < \delta$, we have

$$\|P^{(r)}(T')-P^{(r)}(T'')\| \le A \|T'-T''\|$$
 (2)

$$B_{\varepsilon} \exp n(\lambda^{(r)} - \varepsilon) \leq ||T^{n}P^{(r)}(T^{n})|| \leq B_{\varepsilon}^{n} \exp n(\lambda^{(r)} + \varepsilon)$$
 (3)

① To prove the existence of (1) and spectrum Λ = spectrum Λ ', it suffices to show

$$\lim_{n\to\infty} \frac{1}{n} \log \| (\mathbf{T}^n)^{\mathbf{A}^{\mathbf{Q}}} \| = \lim_{n\to\infty} \frac{1}{n} \log \| (\mathbf{T}^n)^{\mathbf{A}^{\mathbf{Q}}} \|$$

In fact it suffices to do this for q = 1. Equivalently, it suffices to find an open set $U \subset \mathbb{R}^m$ such that

$$\lim_{n\to\infty}\frac{1}{n}\log||T^{n}u||=\lambda^{(s)}\qquad \text{for }u\in U$$

This results from the following

$$\lim_{n\to\infty}\frac{1}{n}\log\|T^{n}u\|=\lambda^{(s)}$$

whenever $0 < \alpha \le 1$, $||T'-T|| \le \delta \alpha$, and $u \in U$, where

$$U = \{ \sum_{k=1}^{m-1} u_k \frac{\xi_k}{\alpha} + u_m \xi_m : \max_{k < m} |u_k| < |u_m| \}$$

- The lemma implies $||P^{(r)}(T')-P^{(r)}(T)|| \leq A ||T'-T||$
- \bigoplus Proof of the lemma (α = 1 for simplicity).

Let $\xi_k^{(n)}$: unit vector $\sim T^n \xi_k$, and $\xi^{(n)}$ the matrix with columns $\xi_k^{(n)}$. Then $\|\xi_k^{(n)}\| < \sqrt{m}$ and

$$D_{\varepsilon} = \sup_{n} e^{-n\varepsilon} \|\xi^{(n)-1}\| < +\infty \qquad \text{if } \varepsilon > 0$$

$$T_{n}\xi_{k}^{(n-1)} = t_{k}^{(n)}\xi_{k}^{(n)} \qquad \lim_{n \to \infty} \frac{1}{n} \log \prod_{j=1}^{n} t_{k}^{(j)} = \lambda^{(r(k))}$$

where we may assume r(k) increasing with k.

- For any $u \in \mathbb{R}^m$, let $T^n u = \sum_{k} u_k^{(n)} \xi_k^{(n)}$ Let μ be the smallest integer such that

$$(\forall n) \qquad \max_{j \le \mu} |u_j^{(n)}| \ge \max_{k > \mu} |u_k^{(n)}|$$

Assuming
$$||T'-T|| \leq \delta$$
, we estimate the $u_k^{(n)}$ recursively

$$- |u_k^{(n)}| \le t_k^{(n)} |u_k^{(n-1)}| + D\delta e^{-2n\eta} \sum_{\ell} |u_{\ell}^{(n-1)}|$$

Replace the $t_k^{(n)}$ by $t_k^{(n)*}$ so that

$$\lim_{N\to\infty} \frac{1}{N} \sum_{r=1}^{N} \log t_k^{(n)*} = \lambda^{(r(\mu))} \quad \text{for } k \leq \mu$$

$$t_{\mu}^{(n)*} = t_{\mu}^{(n)}$$

Choose C such that (for all $\nu \geq 0$, N > ν , k, l $\leq \mu$)

$$\prod_{\substack{n=\nu+1\\n=\nu+1}}^{N-1} t_{\ell}^{(n)*} / \prod_{\substack{n=\nu+1\\n=\nu+1}} t_{k}^{(n)*} \leq Ce^{N\eta}$$

Then, if $U^{(v)} = \max_{\ell} |u_{\ell}^{(v)}|$,

$$|u_k^{(n)}| \le \prod_{n=\nu+1}^{N} t_k^{(n)*} \cdot \prod_{n=\nu+1}^{N} (1+mCD\delta e^{-n\eta}) U^{(\nu)}$$

Choosing $\delta = \frac{1}{mCD} \prod_{n=1}^{\infty} (1-e^{-n\eta})^2$ yields, for N > ν

$$|u_{k}^{(N)}| \leq C \prod_{n=\nu+1}^{N} t_{k}^{(n)} \cdot \prod_{n=\nu+1}^{N} (1-e^{-n\eta}) \cdot U^{(\nu)}$$
(4)

with $C' \leq \frac{1}{mCD\delta}$

- Choose
$$\nu$$
 so that $|u_{\mu}^{(\nu)}| = \max_{k} |u_{k}^{(\nu)}| = U^{(\nu)}$, then

$$|u_{\mu}^{(N)}| \ge \prod_{n=\nu+1}^{N} t_{\mu}^{(N)} \cdot \prod_{n=\nu+1}^{N} (1-e^{-n\eta}) \cdot U^{(\nu)}$$
(5)

$$-\lim_{n\to\infty}\frac{1}{n}\log||\mathrm{T'}^n\mathrm{u}||=\lambda^{(\mathrm{r}(\mu))} \implies \mathrm{lemma}\;(\mathrm{r}(\mu)=\mathrm{s}).$$

- \bigcirc (2) and (3) be obtained from (4) and (5).
- For instance the second half of (3) follows from (4).