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ON THE MULTIPLICITY OF LUCAS SEQUENCES
K. K. KUBOTA
UNIVERSITY OF KENTUCKY
LEXINGTON, KENTUCKY
A Lucas sequence of the first kind is a sequence {Un} of rational integers

satisfying a linear recurrence relation

(1) Un+2=MUn+1—NUn,U=Q?U=1

where M and N are relatively prime integer constants. The recurrence {Un}

is called non-degenerate if the roots and the ratio of the roots of the companion
polynomial X2 - MX + N =0 are non-zero non-roots of unity. The multiplicity
of {U } is the supremum taken over all integers c¢ of the number m(c) of

times the integer c occurs in {U_}

In [4], it was shown that with the single exception of the Lucas sequence of
multiplicity 4 corresponding to M = -1 and N = 2 , non-degenerate Lucas sequen-
ces of the first kind have multiplicity at most three., This will be sharpened as

follows.

Theorem.~- A non-degenerate Lucas sequence of the first kind has multiplicity at

most two except in the cases M=1 , N=3o0or5 and M=+1, N=2 |

For applications to exponential diophantine equations, a more useful multi-
plicity is given by m (¢) + m (-¢c) . The above theorem can be made more precise

in the following way.

Theorem.- If ¢ # + 1 , then for every non-degenerate Lucas sequence, one has

the inequality

(2) m(c) + m(-c) < 2

If M=+ 1 , the same inequality holds for ¢ =1 except in the cases
N=2,3,and 5 . If M#¥#+1 , then m(1l) + m(-1) <3 , and inequality (2)

holds with ¢ = 1 provided that N # 2 (mod 48) .
1
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In the cases M =1, N= 2,3,5, the multiplicity of all integers occurring
more than once in {Un} has been determined [1,127]. These results will be gene-
ralized for various infinite classes of Lucas sequences. Amongst others, the fol-

lowing results will be shown,

Theorem,- Let {Un} be a non-degenerate Lucas sequence of the first kind satis-
fying Eq. (1) with W - 4N<O and N # 2,3,5 , If M= -1, then the sequence
[Un} is of multiplicity one., If M =1 , then U1 = U2 =1 are the only occur-

rences of 1 and no other integer occurs more than once in [Un} .

Theorem.- Let {Un} be a non-degenerate Lucas sequence of the first kind satis-
fying Eq. (1) with ¥ - 4N <0 . Then {Un} is of multiplicity one in each of

the following cases.
(i) M=3 or 5 (mod 8) and N =1 (mod 8)
(ii) ZI‘M and N =1 (mod 8)

(i11) 4|M and N =3 (mod 8)

7 (modik)

il

S[M and N

The above results, and especially their more precise forms given below yield
by a standard translation [6,1], results on the existence and uniqueness of solu-
tions of certain kinds of exponential diophantine equations. One might mention in
particular that assertion (c) above suffices to prove a conjecture of Lewis [6,
p. 10687 to the éffect that the equation X2 + 7 = Ny where N is a fixed pdd

integer, has at most one solution.
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1.~ Preliminaries.

A number of definitions and formulas essential to the subsequent argument
are collected together in this section. Recall that a second order linear recur-

rence is a sequence {an} of rational integers satisfying a recurrence relation

(3) " Ma - Na lao‘ + Ja;| >0

where M and N are integer constants which except where otherwise noted are
assumed relatively prime. A Lucas sequence of the second kind is a second order

linear recurrence satisfying

(4) Vi =MV =NV ,V =2,V =N

We denote by B, , B (resp. A) the roots (resp. discriminant) of the companion

2
polynomial X2 - MX + N=0 and say that the recurrence {an} is non-degenerate
if By > 32 and 51/52 are non-zero non-roots of unity. The multiplicity of

{a ]} and the function m(c) are defined as in the case of Lucas sequences of

the first kind.

An easy induction argument shows that

_ n n
(5) % T AL Bt Ay B
for n > 0 where A1 and A2 are determined by the system of equations
(6) A+ A, =a, , AR +AB8 =a

In particular, one has

n n
By - B

(7) U =_1._.__-2. s
noB B



39

(8) Vo= B + 8,

for all n > 0 ; from these, we derive

(9) B? - g, =U_Va

(10) B; = U, B - NU for n >0

(11) V,=MU -2NU .

where the square root is chosen so that \[A = By ~ By -

An induction argument using the recurrence relation (3) shows

= -NTU
m-

(12) a

a
n+m Um n+l

for all n>0 , m>1 where {U_

he
fying¥same linear recurrence relation as

formula are the following

lan

1} 1is the Lucas sequence of the first kindsatis-

does {an} . Some useful special cases of this

(13) Und+i = Yat1 Yn-1)aws ~ N V% Ya-nyasi-1 = Y1 Y(n-1)d+i
=,.. = Ud+1 Ui (mod Ud) s
(14) Una1 = Yas1 Y@a-1)a11 ~ Y Y% Yw-1)a = Y41 Yn-1)ds1
_ . 2
= LL.= Ud+1 (mod Ud) s
and
(15) Und-1 = Ya Una = ¥ Uqg Upgoy = N Uy ) Uiy
= =(-NU )n—l U (mod U2)
N Uy d-1 a
which can be rewritten as
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= n 2
(16) 1+ N Und =1 -(-NU_, ) (mod Ud)

d-1

The above congruences are consequences of (12) and the following

result of Lucas [9].

Lemma 1.- Let {Un} (resp. {Vn}) be the Lucas sequence of first (resp. second)

kind which satisfies Eq. (1) (resp. Eq. (4)).
(i) For all n > 0 , one has

(U,N) =(V,N) =1 and (U ,V) =1 or 2 .
n n n n

(ii) For all na,m > O , one has (Un,Um) = lU(m,n)I
(iii) 1f for some prime p , one has ptllUm s pu[|k,t >0, and k>0 ,
tH t t+u
then p U, - If further one has p >2, then p ,IUkm .

For all integers n >m , one has
(17) vv=u ., u _+NTyg
n m

since by Eq.(9)

2 _ ,.n n n+m n-+m n-m n-m
s -v U )= (g - 32) (B -8, ) (B -8 )
- ’2(5132)n + B;1+m n-m B? m n+m = (51 - Bz
n-m 2
= N AUm

Combining Eqs. (15, 17), one obtains

_ 2(n-1) . 2n 2(n-1) d-2.n
(18) Uiy = (-0 Ugp = (- Uy Uy, + 875

Nnd_2 (mod Ud) .

n
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The formula

L2 m-i-1 241, i
(19) U 1§o G M (-

where (7) 1is defined to be zero for j < 0 1is useful whenever one needs to

i

express some Un as a polynomial in M and N ; it is easily verified using

the Pascal triangle identity and Eq.(1). In particular, ome has

(20) U = ¥ (mod W)
= (. n
(21) Uyl = (-N) (mod M) .
If r >0 and s >0 are fixed ihtegers, then b_ = a defines a linear
z n rn+s

recurrence satisfying

r

(22) b,,=V,b . -NDb

as is easily verified using Eqs. (5,8) and N = B, B, . In particular, the se-
quences {Urn/Ur} and {Vrn} are Lucas sequences of the first and second kinds

respectively. If {an} is non-degenerate, then so is since the roots

{arn+s}

of the characteristic polynomial x2 - VfX + N =0 are just B; .and B; by

Eq. (8) .
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2.~ The p-adic argument.

The following application of Strassman's Lemma is a refinement of Theorem 1

of [4]. The proof does not require M and N to be relatively prime.

Theorem 1.~ Let {an} be a non-degenerate rational integer second order linear
recurrence satisfying Eq. (3) and {Un} be the Lucas sequence of the first kind
satisfying the same recurrence relatién. For q € ]N+ , CEZ , and p a ra-

tional prime not dividing N , set

K = mi d U ord (NU + 1))
min (or p Uqg > _

q-1

e = § (Kronecker §) .

2p

If K>e , then for each fixed index i with 0 < i <q , the equation

a ;. =cC
qn+i

has at most one non-negative integer solution n unless

_ 2K-e
qqmii = © (mod p )

for all non-negative integers m

Proof.- With the notation of the last section, one has by the definition of K

1 (mod pK) for j =1,2 . Let

f

and Eq. (10) th 9=y g, -NU
ne =4 that By = Ug B; q-1

= d i i = -
éj Bj - Since A, B, = a A

1 L B; by Eq. (5), one has also that
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(23) 8nes = A1 51 + A, 52 2
- j i (n 3
= foA 31< ) (8) = 17 + 4, 8, () (8 - 1)
= a, +n (aq+i—ai)
+ 5 (){A 51(5 -1>J+<a - A 51) (s, - iy
j=2
=a; +n (aq+i - ai) + h(n)
. . ] .
where h(n) = 5 D @y g {6y - 1D - (6, - DI} + 2, (5, - 1)
= JEz (J) c, -
Now
A, gb (¢ LA 1)3}—j1( It -1) A el v
1 B 08y - - 8y - { zg & - 6y - Y ap - BB Uy

since by Eq. (9) one has

= 4 q _
(61—1)—(52-1)-51—32~(Bl—32)uq

By Cramer's rule applied to Eq. (6) ,

(g, - By A, = |é leA €Z

and so it follows that pKklck for all k >2 . Since j ! (?) is a polynomial

in n with integer coefficients, it is straightforward to verify that the coef-

«

ficients of h(n) considered as a power series in n are all divisible by

2K-e - ,
p . The condition a. , =c¢ can be written
gqn+i

0= (ai -.¢) + nfa - ai) + h(n) .

q+i

By Strassman's Lemma [10,11], it follows that the number of solutions of

a = ¢ 18 no more than one unles
qn+i less ¢
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2K—e)

a, - ¢c =a -a; =0 (mod p

2K—e)

But then a = ¢ (mod p for all n >0 by Eq. (23). This proves Theorem

qn+i
1.

The next result is a natural analogue of Theorem 2 of [4] .

Theorem 2.- Let {Un] be a non-degenerate Lucas sequence of the first kind sa-
tisfying Eq. (1) with A= M2 - 4N < 0 . Suppose that for some positive integer

d , one has ptiIUd where p 1is a rational prime and t > e , e = 62

p

(Kronecker §). Let Vv be the multiplicative order of -N Ud ) modulo pe+1 s

u v ,

p ||(-N Ud—l) -1, and c¢ be any integer.

(1) If u#t and p}c , then for each integer i with 0 <i <d-1
and p +Ui+l there is at most one occurrence of ¢ in the subse-
quence {Und+i}

(ii) If ¢c=1 or -1 and ptn2e + M , then c¢ occurs at most once in
the subsequence {U , .}

(iii) The integer ¢ occurs at most once in each subsequence

{(Vgvnia} » 0Lk <Y

Proof.- Let r be the multiplicative order of -N Ud-l modulo pt and q = dr.
Then r = pwv where w = max (0,t-u)., Further, by Eq. (16) and Lemma 1, the
parameter K of Theorem 1 is at least t . Suppose that p { c¢ . If p‘Ui for

some fixed i , then by Eq. (13) we have plUdn+i for all n>0 , and so ¢

does not occur in the subsequence {Udn+i} . On the other hand, if »p + u; then
by the same equation and the definition of r , there is for fixed 1 at most

one integer s such that 0<s <r and U = ¢ (mod pt) for some and hence

qn+sr+i

all n >0 . For the other values of s, the integer ¢ cannot occur in

q
{an+sr+i}
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For the first assertion, one may assume that p + Ui . Note that by Egs.
(12,1), one has

24 U .-U,=U ,U, -NU U, ., -U,
(24) q+j j g+l 7] q j-1 j

MU ~-NU ,) U, -NU.TU, - U,
( q q-1" 7j q j-1 j

= (M U; - N Uj_l) Ug - Uy 1+ Uq_l)

..U -~ (1 +NU ) .
UJ+1 q ] q-1

Since p { U, U , one knows that p +AUd by Eq. (13). Further,

i+l s+i’ Uds+i+l

by Lemma 1 and Eq. (16), one has
ordp Uq =t+wFutw= ordp (1 +N Uq-l) .
Therefore, since w < t-e , we have by Eq. (24) with j = ds + i that

ord (U

pUqsdsti ~ Uds+i).=‘min (ﬁ+w, utw) < 2t-e < 2K-e ,

. . 1. 2K-e
Uq+ds+i and UdS+i cannot both be congruent to ¢ modulo p s

and so by Theorem 1 the integer ¢ can occur at most once in the subsequence -

In particular,
{an+ds+i} . This proves the first assertion.

For the second assertion, recall that with i = d-1 , the integer s was

chosen so that U c=+1 (mod pt) . By Eq. €18) with n = s+l , it follows

ds+d-1 =
that Nd(s+1)_2 = U§s+d—1 =1 (mod pt). Using Eq. (17), one has
(-x Ud_1)2(d(s+1)-2)= (_N)Z(d(s+1)—2)(ud 0+ wd-2yd(s+1)-2

(Nd(s+1)-2)d =1 (mod pt)b,

=
=

and so r|2(d(s+l1)-2) . By Theorem 1 applied with q = rd, the subsequence

|10
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{an+d(s+1)-1} can contain more than one occurence of ¢ only if

, _ - 2t-e
Ua(ss1)-1 = Ugea(ss)-1 ¢ =21 (mod p"m)
By Eq. (15), this means
i s s+l _ r+s r+s+l _ 2t~e
(25) (-M° v = (-N) U =c=+1 (mod P ) s
d-1 d-1 -
T 2t-e . .
and so (-NU; ;)" =1 (mod p ) . Since 1r|2(d(s+1)-2) , it follows that
(-N Ud_l)Zd(s-*-l)“4 =1 (mod p2t—e) .
Combining with Eq. (25) gives (-N)2d~4 = Ug_l (mod p2t—e) , and so by Eq. (17),
A 2d-4 _ d-2.2 2d-4
0 =10,  #~ (-N) Uy Uy, + N - N
_ d-2 2t~e
=270, 0, , N (mod p )
; . t-2e
Since p + N by Lemma 1, it follows that p lUd-z and so
©2 0y =l | - lel = |M| 1if d 1is even
P 1(Ug: 04, 1Va,a-2) ol =1 if d is odd
which proves the second assertion.
For the third assertion, we need a formula for wdn = udn/Ud . Let {Vn}

be the Lucas sequence of the second kind satisfying Eq. (4). By solving Egs. (8,

9) with n =d , one obtains

v
o, o= D a sy, Vv

and so
\ u.\Va \ + U\ .
dn dn _ , dyn d'"yn _ . dn & ny — d'7j
SR S S S
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Therefore by Eq. (7)
dn _ Bdn l 2
- -1 2 _ (4dyn-1 2 n r j
(26) Wan = Vg% =~ (2) = (2j+1)(——-2 )
B]_ - 82 j=0 Vr

By Eq. (8,9), one has

d d e+l
vd=UdV’A+2825232 (mod p ')
and p } N=28 B by Lemma 1 ; hence Vd/2 is a p-adic unit. Let vy = (Vd/Z)S—l

where s is the multiplicative order of Vd/2 (mod pe+1) . For k fixed in the

interval 0 < k < s , one has by Eq. (26)

2
\/ AU

- n  rk-1 €  sntk d,j

Wientd = L+ Y 59 z (2j+1)(-—§—)
j=0 Vd

v
- ({)k‘l (sn+k) + h(n)

where, as it is easy to see, h(n) 1is a power series in 'n convergent at all
p-adic integers and having coefficients all divisible by pe+1 . By Strassman's

Lemma [11,107, the quantity c/Ud can occur at most once in each subsequence

{wdsn+kd} » 0<k<s .

By Eq. (11), V,/2 = -N Ui (mod pt—e) and so s =v if pt # 4 . This

proves assertion (iii) in the case where p >3 . If p=s =2 , then by Lemma

t+1
1, + ‘Udn precisely when n 1is even. In particular, >C/Ud occurs at most

once in {w, } U {stn+d} . Since s =1 when p=2 and s # 2 , we have in

the p = 2 case that c occurs at most once in {Udn} . This completes the

proof of Theorem 2.

For future reference, we restate Theorems 1 and 2 of [4] .

(R
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Theorem 3.- Let {an} be a non—aegenerate second order linear recurrence satisfying
Eq. (3) with M2 - 4N <0 s {Un} (resp. {Vn}) be the Lucas sequence of first
(resp. second) kind satisfying the same linear recurrence relation, and By » By
be the roots of the Chafacteristié‘polynomial X? - M{+ N=0 . Suppose that

c €Z, p is a rational prime not dividing N , and 1 1is a prime element of

the completion of the ring of integers of Q(Bi) at a prime ideal P 1lying over

P-
(i) Suppose p =2 and let q be the least positive integer with

q

B = B,

Bo

" = [—&_
1 (mod ™) , nu [p-1] +1

where e 1is the absolute ramification index of § . Then for i fixed,

the equation = ¢ has at most two solutions with n >0 . Further,

a .
qn+i
if the equation has two solutions when 1i = il’i2 where

0<i; <1

5 <q , then q = 2(i, - 11) :

(ii) Suppose p >3 , plUr s r2>1 , and s is the multiplicative order of

Vr/2 (mod p) . Set

1 if p =3 and BES - 1%#0 (mod 3m) for i =1or2

0 otherwise

If p + ¢ , then with the possible exception of one value of i in the in-

terval 0<i<r , the equation> At = ¢ has at most one solution ; for

the exceptional value of i , it has at most 2 4 ¢ solutions.
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3.- The real case,.

If M2 - 4N > 0, then the situation is very simple as we see in the next

proposition,

Proposition 1.- Let {Un} be a non-degenerate Lucas sequence of the first kind
satisfying Eq. (1) with A = Mg - 4N >0 . For all integers c , one has
m(c) + m(-c) <1 except when ¢ =+ 1 and M=+ 1 . In the exceptional case,

m(1) + m(-1) = 2 ,

Proof.- By Eq. (19), it is clear that replacing M with -M leaves U, ..

fixed and changes only the sign of U a " Therefore to prove the result, it suffices

2
to show in the case where M > 0 that Un for n >1 is a strictly increasing

function of =n . Since {U } is non-degenerate, one has MQL-4N) # 0

If N>0 , then 8 , B, = (M% VA)/2 are positive real numbers with
B, >1 . The function f(x) = VA—l(BT - B?) has derivative
-1, x X . . . . .
£'(x) = \a (81 log g - B, log 32) >0 and so is strictly increasing. Since

U = f(n) by Eq. (7) , the assertion is proved in this case.

If N < 0, then by Eq. (19) one has
n-1
B
n-i-1 -1-2i i
=3 ("7TH o -0t

n . i
i=0

ans so it suffices to observe that the (n—;-l)

for 1 >0 and is[%l-] are

strictly increasing functions of n .
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Throughout the rest of this paper, it is implicitely assumed that

A=M - 4N <O

The next result is a corollary of a theorem of Chowla, Dunton and Lewis [3] ;

see [4, Lemma 17].

Lemma 2,- Let {Vn} be a non-degenerate Lucas sequence of the second kind satis-

fying Eq. (4) with M2 - 4N < 0 . Then Vi =1 has at most one solution n >0

except in the case M=+ 1, N=2 |, In the exceptional case, the only solutions

are n=1 and 4 .

3

Lemma 3.- Let c¢ € N and {U}, {U;} be Lucas sequences of the first kind
satisfying .
= - NU.
Un+2' M Un+1 n
' = _ ' _ '
n+2 M Un+1 N Un

where M2 - 4N <O and either M#+1 or N#2 .

(i) If c¢#1 or M# + 1, then at least one of the subsequences {UZn} s

{U2n+1} contains no number of absolute value ¢ .

(ii) Suppose that both ¢ and -c occur at most once each in {Un] LIE M # -1
or c¢#1, then both ¢ and -c occur at most once each in {U'} . If
M=-1=-c, then Uj =U) =1 are the only occurrences of 1 in {U;}

and -1 does not occur in {U'} .

Proof.- If M # + 1 , then assertion (i) is clear since M = Uzl U, precisely when

is even by Lemma 1(ii—iii3.8#ppose M=+ 1 and !U2n| = |U2m+1| =c¢ . letting

k = (2n, 2m + 1) , one has by Lemma 1 that
|S
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e = Wy Upn) = (U] lUZk

c = U2k = Uk Vk and hence Vk =+ 1 . By Lemma 2 ,

I+

and Uzkl 'Uan = ¢ , So

k=1 and c¢ = |Uk| =1 .

For the second assertion, note that by Eq. (19) one has

n-1 U

(27) u' = (-1)
n n

and U, =-U! for n>0 . If M#+1

u 2n 2n

= 17!
for n >0 . Thus U2n+1 2041

or ¢ #1 , then the second assertion is therefore a consequence of the first.

If M=1 , then U1 = U2 = 1 and so the hypothesis of assertion (ii) does not‘
hold when ¢ =1 ., Finally, if M= ~1 and c¢ =1 , then by hypothesis,

Uy =-U, =1 are the only occurrences of +1 in {U } . Therefore, by Eq. (27),

= 1 are the only occurences of +l7in {Uﬁ} .

Proposition 2.- Let {Un} be a non-degenerate Lucas sequénce of the first kind
satisfying Eq. (1) with A = W - 4N<O0 . Let d € N and p be a prime

e+1|U -1 where e = 62p is the Kronecker

with pt|lUd R u‘lNd-l , pvllM , and p a1

5§ and 2e <w = min(u,t4v) < 2t ,

(i) If u# t+ v , then the subsequences {U g4q} @nd {U 4 ;1 Doth have

multiplicity one.

(ii) Let h = max(0,u +1 -w - k + e - f) where pkl!d , and f is 1 if
P=2,u=+t+v and O otherwise. Then for every c¢ € n(* , at least one

of ¢ and -c does not occur in the union {U lu {u 1
np d-1 np d+1

Proof.- By Eq. (17), one has for every positive integer g that

2 -y v +88 0P
g~-1

= g-2
Ug+1 g+2 g Ug u + N ?

g-2

It
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and so by the recurrence relation (1) ,
2 2 2 g
(28) (N +1) (NU__.-1) =N U -1=N"U U _ +N° -1
g-1 o oe-l g-1 g 8-2
- 2 18
~-NU +NU _, MU + (N® - 1)
(29) (v_ .-U.) (ﬁ 1) =12 -1=1v U+ Ng-i
g+l 1 g+l g+1 g+2 g
= - g_
NU, + U, ; MU, + (N°-1)
Further, by Eq. (12) ,
(30) U -U =v> - (NU_ 4D U
2g-1 g-1 g g-1 g-1
. . , e+l
Suppose g is a multiple of d ., Since p iUd+1—1 , one has
= = = e+l
1+ NU; , =Ug, +NUy ; =MU; =0 (mod p~77)

and so by Eq. (16) , 1 + N Ug_1 =0 (mod pe+l) and pe‘IN Ug_l—l . Finally,

U ,,-1 and pel‘U 1

v g+l

1 imply p

Eq. (14) and pe+l‘

e+l ‘

d+1” g+1™

For assertion (i), let g = d . By Eqs (28, 29, 30) and the assumption that

u# t+v , one has

U U

PN Uy

1o UatU s Uoai17l%an

Further, the assumption that 2e <w < 2t implies
w~-e<2min (w - e,t) -e ,

and so assertion (i) follows from Theorem 1 applied with q =d and K > min(w-e,t).

h+uI|Ng-1 U by

and p "

For assertion (ii), let g = phd s so that p t+h||

Lemma 1. By Eqs. (28, 29), one has
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NU .+l ,U0 -1 ,

w+h+f-e ‘
P g-1 g+l

and so by Eqs, (14, 15) and the fact that w+h+f-e < 2(t+h)

Ung+1 = U2+i =1 (mod ;w+h+f_e)

Ung-l = t;N Ué_i)n-l Ug_1 é dg—l (mod pw+h+f_e)
for all n ., If Ug;l £ -1 (mod Pw+h+f—e) R then assertidh (ii) follows from these
congruences, If Ug-l = -1 (mod pw+h+f-e) , then

1-N=1+40U_, N=0 (md prihtizey
and so pw+h+f-é+k Nd—l . It follows by the definition of wu that

w+ h + f-e + k <u which is contrary to the definition of h . This proves the

proposition,

Parts (ii) and (iii) of the last theorem stated in the introduction are very
special cases of the next result.

Corollary 1.- Let {Un} be a Lucas sequence of the first kind satisfying Eq. (1)

with M - 4N <0 . Suppose 2°||M and 27||N - ¢ where e=+1 ,r>2 ,

and s > 1

(i) The subsequence {UZn} is of multiplicity one., If r + 1 # 2s , then the

subsequences {U and {U are also of multiplicity one,

4n+l} 4n+3}

(1i) If r < 28, then for all n >0 one has

=1 (mod 2r+1) and U = -¢ + 27 (mod 2r+1)

U4n+1 4n+3

In particular, {f ¢ + 1 <28 , then m(c) + m(-c) <1 for odd integers c.

(g
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(iii) If either ¢ =1 and r +1 # 25 or else ¢g=-1 and r + 1 < 2s , then

the sequence {Un} is of multiplicity one.
Proof.~ Apply PropositiOn 2with p=2 and d =4 . Since
2, = uaf -2, 272 p* -1, ana 2P|,
the parameters are t = s + 1 ,u=r+2 , and v =38 ., Further,

U5 = M4 - 3M2N + N2 =1 (mod 4)

and 2e <w =min (r +1 , 2 s) + 1 <2t ., Proposition 2 (i) shows that

and {U are of multiplicity one whenever r + 1 # 2s .,

{U4n11 43}

Theorem 2 (iii) applied with d = 4 , v = 1 shows that the subsequence

{U4n} is of multiplicity one, By Lemma 1, 25+1|U if and only if n 1is even ;

2n

hence the subsequences {U4n+2} and {U4n} have no elements in common. To com-.
plete the proof of the first assertion, it therefore suffices to show that

{U4n+2} is of multiplicity one. By Eq. (22), the sequence of a = U2n/U2 is a

Lucas sequence of the first kind satisfying the recurrence relation

r+l1 2
I

where V_ = M2 - 2N'= 2 (mod 4) and 2 N - 1 . By the last paragraph, it

2
follows that {a

and {a are each of multiplicity one. Since the se-

4n+1} 4n+3}

quence {an} reduced modulo 4 consists of repetitions of the segment O, 1, 2, 3

(mod 4) , the two subsequences 1} and {a4n+3} have no elements in common.

{a4n+

Thus the union } has multiplicity one. Since one has

{agn1d U {34043
(Upnia? = {Ugpypd U {Ug 61 = {0y 0, U U, 2, 51 s

the subsequence {U4n+2} is also of multiplicity one, and the first assertion is

proved, fﬁ
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If r <2s , then U3 = M2 - N=-¢ + 2F (mod 2r+1)
1) . By Egs. (15,14) and the inequality r + 1 < 2s , one has

, and so -N U3 =1

(mod 2°F

r+1)

11

- n-1 - r
Upnop = (-N U3 Uy =U; =-¢+ 2 (mod 2

2" 2 82" 2 1 (mod 25D

m

n o_ 4
U4n+1 US—(M -—3MZN+N

Since by Lemma 1, U is odd precisely when n is odd, assertion (ii) follows
from these congruences and the first assertion. Assertion (iii) follows friom the
first two assertions and the observation that when ¢ = 1 , the sequence {Un}
reduced modulo 4 consists of repetitions of the segment O,,l, M, -1 (mod 4)

This completes the proof.

Proposition 3.- Let {Un} be a non-degenerate Lucas sequence of the first kind

satisfying Eq. (1) with A = M2 - 4N < 0 . Suppose that ptl‘U3 s pu!‘M3 +1,
and w = min(u,t) where p is a prime and e = 62p is the Kromecker § . If

2 , then the recurrence {U } has

u# t, t+¢ and either w > 2e or w =u

multiplicity one.

Proof.- Since U3 = M2 - N , one has

1+NU,=1+NM=(+M)-MU 0 (mod p") .

2 3

By Theorem 2 (iii) applied with d =3 , v =1 , the sequence {UBn} has mul-
tiplicity one., Further, the parameter K of Thoerem 1 with q = 3 satisfies

K>w>e . Since

U, -U =M3-2MN—1=2MUB—(1+M3; s

4 1
4 ,
UfU=M‘3}42N+N2—M=U2-M(1+M3)+M2U R
5 2 3 73
the p-adic order of U, -0 and Ug - U, are min (t+e,u) and w respectively,

’

10
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It follows by Theorem 1, that the multiplicities of the subsequences {U3n+1}

+1

and {U are both one. Since the sequence {Un} reduced modulo pe con-

3n+2}

sists of repetitions of the segment 0, 1, -1 (mod pe+1)

» a given integer can
occur in at most one of the subsequences {U3h} s {U3n+1} , {U3n+2} . This proves

the proposition.

Corollégz 2.~ Let {Un} be a non-degenerate Lucas sequence of the first kind
satisfying Eq. (1) with M - 4N <0 . Suppose that pt||U3 , pu‘|M3 -1,

and w = min (uft) where p 1is a prime and e = 62p is the Kronecker § .
Assume that u#t , t+e , and either w>2e or w=u=2 ,If M#1 |,
then the sequence {Un} has multiplicity one. If M =1 , then U1 = U2 =1
are the only occurrences of 1 , the integer -1 does not occur in {Un} , and

m(c) <1 for all c #1 .
Proof.- This is a consequence of Proposition 3 and Lemma 3.
The next result is the third theorem of the introduction.

Corollary 3.- Let {Un} be a non-degenerate Lucas sequence of the first kind sa-
tisfying Eq. (1) with A = M2 -4N<0 ,M=+1 , and N#2, 30r5 ., If

M= -1 , then the sequence {U } has multiplicity one., If M = 1, then ql=U2=1
— T 199 T T T T T — o .

are the only occurences of 1, the integer -1 does not occur in {Un}, and

m(c) <1 for all ¢ # 1 ‘
Proof.~ This follows from Proposition 3 and Corollary 2 by taking for p the

1argeét prime divisor of U3 = M? - N=1-~N ., The hypotheses are satisfied

except when 1 - N = -1, -2, or -4 .

Remark,.~ The exceptional where M=+ 1 and N =2, 3, 5 have been treated., By
Lemma 3, it suffices to treat the case M =1 ., In the case M=1 , N = 2,

Skolem, Chowla and Lewis [107] showed that

2 |
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U1 =.U2 = -U3 = -U5 = -U13 =1
are theionly solutioné of Ui =1 ; Townes [12] completed the result by
showing that U, = U, = -3 are the only occurrences of -3 and that noaiﬁtgger

4 8

# + 1, -3 occurs more than once in f{bh§ . In Alter and Kubota [1] , it was shown

that in the case M=1, N=3 , Ehe only occurrences of 1 are U1 = U2 = U5 s
that -1 'does not‘occur in {U} ', and that m(c) <1 for ail ¢ #.1° . Finally,
Alter (unpublished) has shown that in the case M =1, N'=5 , the only occur-
rences of 1 are U, = U2 = U7 , that =1 does nét occuf in {Un} s and‘that

m(c) <1 for all c %1

The next result contains part (i) of the last theorem stated in the intro-

. duction,

Corollary 4.- Let {Un} be a non-degenerate Lucas sequence of the first kind
satisfying Eq. (1) with ¥ - WN<O . Suppose ZSllM -€ ZrilN - 1 where
e=+1,s8>2, \r >3 , and s # r;,'r +1 , If M#1 , then the sequence
[Un} is of multiplicity one. If M=1 , then U, =U, =1 are the only occur-
rences of 1, m(-1) =0 , and m(c) <1 forall c¢#1 . If r+1<s , then

for every odd positive integer c¢ , one has m(c) + m(-c) <1 except that

m(1) + m(-1) = 2 in case M=+1 .,

Proof.- Apply Proposition 3 and Corollary 2 with p =2 and u=s ., Since

1 r (

2oy = @ - 1) - -1 =25 - 2T (mod pmin(r,s+1)+1y

?

one has t > min(s+l,r) >3 , and so w>2 or w=g3s =2 . Also, u # t,t+l
since s # r,r+l respectively. The above mentionned results therefore show the

first two assertions.

22
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If r+l < s , then the first two assertions imply that the subsequence

{u n } for m>0 1is of multiplicity one. By Eq. (22), the subsequence
2'n .
{u K } for k >0 satisfies
2™n
U =V U - N U
Zk(n+2) 2 Zk(n+1) 2

where {Vn} is the Lucas sequence of the second kind satisfying the same recur-
rence relation as does {Un} . If one defines r(k) , s(k) , and (k) by
()28 s (k)
2 [n* -1, 2 [V, - e , and €(0) =¢, e(k) = -1 for k>0 ,
. 2
then evidently r(k) = r+k and further r(k) < s(k) . In fact, the assertion

is clear for k = 0. , for k =1 , one has

v2‘+ 1 = (Mz.; 1) -2(N-1) =0 (mod 2r+1) s

and by induction using Eq. (8) ,

- 2N2 = (v2

k-1 k-1 ek
K )
2

(31) v, =V -1) - 2(8% -1) -1 = -1 (mod 2
! -1

2

.

Proposition 2 (ii) applied to {U x } with the parameters p =2,d =3 ,
, 2 n
u=r+k, v=0, t = min(s(k)+l, r(k)) =r +k ,w=r +k , and e = f =1
shows that the union {U3.2k+1n_2k} U {U3.2k+1n+2k} cannot contain both an integer
and its additive inverse. Further by Lemma 3, if V #+1 (resp. V M 1) ,

2 2
then the intersection

{|u 1n{lu 3
l 2k+1n| | 2k+1n+2k|

for all n >0 by Lemma 1.

is empty (resp. contains only {U k|) . Finally, 2]U3n
2

If ¢ is an odd positive integer with m(c) + m(-c) # 0 , let k be the
least non-negative integer for which there is an n with ’2k!|n and IUh] =c

If v, $+1 or c# |U k‘ , then by Lemma 1 and the last paragraph, all occur-
2 2 '
rencer of ¢ and -¢ lie in

2%
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{U2k+1n+2k} N (U313 U {U5,,,D

= {y }u {u 1,

21 3n40F 2 3n-o*

and so mc) + m(-c) =1 ., If V k= * 1 and c¢ = ]U kl , then by Egs. (7,8),
2 2
one has |U2k+ll = [Uzk V2k =¢ , and so m(c) + m(-¢) = 2 . By Eq. (31) ,
V ok #1 for k>0 , and by Lemma 2 V k= x 1 can happen for at most one
2 2

value of k >0 . Therefore, if vy =M=3+1 , then m(1) + m(-1) =2 and

m(c) + m(-c) <1 for all odd ¢ >1 . The proof would be complete if we could

show that Vv, # -1 for k>0 .

One has Vk # -1 for k>0 . In fact, if V2 = M?-»Zn = -1 , then

N = (M2 -1)/2 +1 = (mod 2°) and so s < r contrary to hypothesis. If

V4 = -1 , then by Eq. {(11), one has
= = vt 2 _ _ 4 2
-l=v, =M, - 2NU, M+ 208 - N) -U, +2 Uy
- - . ) , . . 4 2 _
Thus x = U2 s ¥y = U3 is a solution of the diophantine equation x - 2y =1 .
By Ljunggren [8], it follows that U, or U, is zero. Thus {Un} has an infi-

nite number of zeros by Lemma 1 ; this is contrary to the non-degeneracy of

{Un}, [4] . Finaiig, if V2k =-l, with k >3 , then Eq.(31) shows that
x =V k-1°Y = N2 are a solution of the diophantine equation x2 - ?.y4 = -1
A weli known theorem of Ljunggren [7] and Eq. (31) imply that (V k_I,Nzk-3)

is either (-1,1) ‘or (239,13). The first possibility implies thit {u k-1 1
and hence {Un} is degenerate. The second possibilify implies that k i 3 ?

N =13 , and

Vg = V4 + 2N2 = 239 + 2.132 = 577

which is absurd since 577 is non-square. This completes the proof.

2t
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The next three lemmas are applications of Theorem 3 preliminary to the proof

of the first theorem of the introduction,

Lemma 4.- Let {Un} be a non-degenerate Lucas sequence of the first kind satis-
fying Eq. (1) with A = M2 - 4N <0 and 2 +‘MN . Then

=1 (mod 4) and U = =N (mod 4)

Usn+1 6n+5

for all n > 0 ; further, each subsequence {U6n+1} , {Uﬁn—l} contains at most
two occurrences of 1 and -1 . If M # + 1 , then all occurrences of +1 and -1
lie in these two subsequences. In particular, if M# + 1 , then m(-1) =0

when N =3 (mod 4) and m(1) , m(-1) <2 when N =1 (mod 4)°,

Proof.- Uy is even, U, =M and U, are odd ; therefore by Eq. (12)

= ~N (mod 4)

]
[e]

- NU

_ _ 2
U -_U - NU = 1 (mod 4) , and Us 3 2

By Eqs. (13, 14), it follows that U =1 (mod 4) and U ~N (mod 4) .

6n+5E

Further, using Eq, (10) to check the multiplicative order mod 4 of the roots of

6n+l

the companion polynomial, one can apply Theorem 3 with p = 2 and

q=61¢(=3 if M= -N=3 (mod 4)) to show that {U and {U6n—1} have

6n+1}
mul tiplicity at most two, Finally, by Lemma 1, 2|U3n and M = U2|U2n for all

n >0 ; therefore, if M # + 1 , then all occurrences of + 1 must lie in

{Ugn13 U {Ugnyy}

Lemma 5.- Let {Un} be a non-degenerate Lucas sequence of the first kind satis-

fying Eq. (1) with A = M2 ~-4N<O0 , If 9|M , then m(1) , m(-1) <2

Proof.- 1If Bi for 1 = 1,2 are the roots of the companion polynomial, then
by Eq. (10) , one has ai B =N (mod 9) and Bf = N2 (mod 9) . Thus B? w1 (mod 9)

where k = 4,6,12,6,12,2 1in case N = 1,2,4,5,7,8 (mod 9) respectively. The
25
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sequence {Un} reduced modulo 9 consists of repetitions of the following segments

0,1,0,8 : , ‘ if N=1 (mod 9)
.0,1,0,7,0,4. ; - ' : - if N = 2 (mod 9)
0,1,0,5,0,7,0,8,0,4,0,2 if N=4 (mod 9)
0,1,0,4,0,7 / if N=5 (mod 9)
0,1,0,2,0,4,0,8,0,7,0,5 | if N =7 (mod 9)
0,1 » - if N =8 (mod 9)

Thus each of the integers 1 and -1 can lie in at most ome subsequence

{Ukn+i} » 0<i<k . Applying Theorem 3 with p =3, r =k , and s =1

gives the result,

Lemma 6.~ If {Un} is a non-degenerate Lucas sequence of the first kind satis-

fying Eq. (1) with A = W - 4N <0 and M=+3, then m(1) , m(-1) €2 .

Proof.- Since A< O , N> 2 and so there is a largest prime divisor p of N .
Suppose pt]!N and let  d be the multiplicative order of M(mod pt) . By Eq.
(20), one knows that U, canbel only if n=1 (mod d) and U~ can be -1

only if d is even and n =d/2 + 1 (mod d)

If d =1, then by the definition of pt and d , we have pt =2or 4

and hence N =2 or 4 , Since N> 2 , we have N=4 , If M=+4+3 and N=4 ,
then the sequence {Un} reduced modulo 3 (resp. 5) consists of repetitions of the

segment 0,1,0,2 (mod 3) (resp. 0,1, + 3, 0, + 3,4,0,4, + 2,0, + 2,1 (mod 5)).

1 (mod 12) and it can be -~1 only if

]

Therefore, Un can be 1 only if n
n=7 (mod 12). Applying Theorem 3 with p =5, r =3, and s = 4 gives m(l),

m(-1) < 2 ., In particular, we may assume d >1

26
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Since Theorem 3 gives the result in the contrary case, one can also assume
that no prime larger than 3 divides Ud . By Lemma 1, we know Un is a multiple
of 3 (resp. is even) precisely when n is even (resp. is a multiple of 3). Sup-

pose 2u!‘d and define

ord3d if N 1is odd
v= and £ = d27937V

0 otherwise

Since Uf Ud by Lemma ‘1 and 2,3 + Uf , one has Uf =4+ 1 | If Uf‘= 1 , then
by the first paragraph of the proof, d2 "3' = f =1 (mod d) and so dl2u3v .

1+ d/2 (mod d) and so again

m

If Uf = -1, then d is even and a2V = ¢

al2¥sv . Since 2"3V14a , one has in all cases that d = 2u3v

Suppose u > 2 . Since U4lUd by Lemma 1, we know that U4 is divisible
by no prime larger than 5 . But U, = MOe - 2N) = + 3(9 - 2N) is clearly odd

and exactly divisible by 3 . Thus 9 - 2N = ¢ where ¢ =+ 1 , and hence

N=2(9~-¢)/2=4or5 . Now N=24 is impossible since pt =4 and d =2 in

this case. Thus N =5, M=+ 3 , and we have m(1), m(-1) < 2 by Lemma & .

m

9

Suppose d = 2 ., Since M2 1 (mod pt) , we have pt|8 ‘and so

N=4or 8 as N>2 . The case N =4 having already been treated, we may

assume N =8 and M= + 3 . The sequence .{Un} reduced modulo 4 consists of
0 followed by repetitions of the segment 1 , + 3 (mod 4) . Since 3|U2n for
all n>0 by Lemma 1 , it follows that m(-1) =0 . By Eq. (22) with r = 2

and V2 = M2 - 2N = -7 , one has

I

_ -l L oyn-l 2
Uppyg =Yy Upp g = oo =V, Uy = (<17 (mod NY)

for n >0 . Since -7 has multiplicative order 8 modulo N2 =64 , it follows

that Upnqp C81 be 1 only if n=0 or n=1 (mod 8) . In particular, in
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order to prove m(l) < 2 it suffices to show that the subsequence {08n+3} is

of multiplicity one. Using Eq. (12), one obtains

'M(M2 -2N) =% 21 =0 (mod 7) , U, = M? -N=1 |,

U, = 3
= 12 2 _ 2
U, = U, - NU3 = -N (mod 77) ,
2 - 2
1+NU, 21 -N =-63=57#0 (mod 77) ,
, ) | ,
Uy - Uy = (U4U8 - NU3U7) - U, = —U3(1 + NU7) #0 (mod-77)

8, i=3, and K =1 , one sees that

H]

Applying Theorem 1 with p = 7, ¢

{U8n+3} is indeed of multiplicity one,

The above cases exhaust that in which d = 2u3v is a power of 2 . By the
definition of v , we may assume N is odd and 3]d . If 6{d , then by the
first paragraph of the proof, both 1 and -1 can each occur in at most one

subsequence {U , 0<1i<6 . By Lemma 4, it follows that m(1) |,

6n+i}
m(-1) <2 . If 9|d , then Ug|U; by Lemma 1 , and so U, is divisible by no

prime larger than 3 . By Egs. (7,8), one has

3

- 6 3.3 6y _ 2
Uy = Us(B, + B B, +B) = U3(V3 - N7)

Also V. = MO - 3N) = +3 (9 - 3N) =0 (mod 6) implies that v§ - N is neither
even nor divisible by 3. Therefore V§ - N3 = ¢ where ¢ =+1 . This is a
special case of the Catalan equation ; by theorems of Lebesgue [5] and Chao

K o [2] , the only solutions are

Since N 1is odd, it follows that V3 =0 and N =+ 1 contrary to the assumption

that A = Mz - 4N <O

23
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The remaining case is d =3 , Since N is odd, + 27 = MQ,E 1 (mod pt)
and so N=p =13 if M=3, and N=p =7 if M=-3 , If M=3 and
N =13 then m(1) , m(-1) <2 by Lemma 4., If M= -3 and N =7 , then

Lemma 4 shows that m(-1) = 0 and {u contains at most two occurrences of

6n+1}
1 . By the first paragraph of the proof and the assumption that "d = 3 , -1 does
not occur in {U } and 1 does not occur in {U6n—1} . Thus m(1) < 2 and the

proof of the lemma is complete.
The next result contains the first two theorems stated in the introduction.

Theorem 4.- Let {Un} be a Lucas sequence of the first kind satisfying Eq. (1)

with A v - 4N < 0 . The multiplicity of {Un} is at most two except when
M=1,N=3,5 or M=+1, N=2 . More precisely, if ¢ >1 is a positive
integer, then m(ec) + m(-¢) <2 , and the same inequality holds with c¢ =1

except possibly in the following cases.
(a) M=+1 and N=2,3, 0r5.

() M#+1 , N

2 (mod 48) , and for every odd prime divisor p, of N
(resp. P, of M), the multiplicative order d1 of M (mod pl) (resp. d2
of -N (mod pz)) satisfies 23||d1 (resp. 22]|d2) . In this case, U; =1

_is the only occurrence of 1 , every occurrencé of -1 1lies in the sub-

sequence {U , and every odd prime divisor Py of N <(resp. P, of

8n+5}
M) satisfies p =1 (mod 8) (resp. P, = 1 (mod 4)).

Proof.- Let {Vn} be the Lucas sequence of the second kind which satisfies the
same recurrence relation as does {Un} . One cannot have U =0 for any m >0

since this would imply by Lemma 1 that {Un} has an infinity of zeros contrary to
the non-degeneracy of {U }, [4] . Let c be any non-zero integer occurring in

{Un} , and f be the least positive integer with c|U . By Lemma 1 , Uf =+c

£
29
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and all occurrences of ¢ and ~-c 1lie in the subsequence {Ufn} . In particular,
m(Uf) (resp. m (-Uf) is equal to the number of times 1 (resp. -1) occurs in
the sequence b = U /U . By Eq. (22) , {bn} is a Lucas sequence of the first

kind satisfying the recurrence relation

=Vfb -Nb ,b =0 , b =1

bn+2 n+l n 0

Further, if ¢ # + 1 , then f >1 and hence Nf # 2,3,5 and Nf # 2 (mod 4)
Therefore, we are reduced to showing that m(1) , m(-1) < 2 except in case {(a)
above, that m(1) + m(-1) < 2 except in cases (a) and (b) , and that the asser-

tions of case (b) hold.

To show that m(1), m(-1) < 2 except when M=+1 , N=2,3,5 it suffices
in the case where M is a multiple of a prime greater than 3 (resp. 9‘M ,
M=+3, M=+ 1) to apply Theorem 3 (resp. Lemma 5, Lemma 6, Corollary 3). In
case M=+1 , N# 2,3, 5, one obtains the stronger assertion m(1) + m(-1) <2
This leaves the case where M is e#en ; here Theorem 3 applied with p =2 and

q = 4 shows the multiplicity of the subsequence {U is at most 2 , and

4n+1}
therefore m(1) + m(-1) < 2 by Corollary 1 (i,ii). In particular, {Un} has

multiplicity at most 2 unless M=4+1, N = 2,3,5 .

Suppose that both M and N are odd and M # + 1 , By Lemma 4, all occui-
rences of 1 and -1 1lie in the subsequences {U6n-l} and {U6n+1} . Further,

one has by Eqs. (19,12) that

MOZ-N) (F - 3N) = M(1-N) (14+N) = 0 (mod 8)

U =
8|N6-1 2ju, , 34U and
3 3 3 4 3
2 2 _
U, = U, - NU3 =1 (mod 4) .
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Therefore, Proposition 2 (i,ii) applied with p =2 , d = 6 shows that either

m(1) , m(-1) <1 or else m(-1) = 0 ; and so m(1) + m(-1) <2

If 4|N and M#+1 , then 1 and -1 cannot occur in [Uzn} by Lemma

1 and U =1 (mod 4) by Eq. (20). Hence m(-1) = 0 and so m(1l) + m(-1) <2 |

2n+1

Having treated the above cases, we may assume that M# + 1, N =2 (mod 4)
and hence that 1 and -1 do mot occur in {U, } . By Eq. (22) with r =2

and s =1 , one has

- S T S n;l _ =
U2n+l = v2U2n—1 =T Vx; U3 (MZ - 2N) (1"12 N) =3 (mod 4)

, =1 is the only occurrence of 1 in [Un} . With

P and di as in the statement, Eq. (21) shows that Un can be —17 only

for n>1 . Thereforeb U

when d, and d, are even, n=1+4d,/2 (mod d;) , and n=1+4d, (mod 2 d2).

ill

since 2||N and M dis odd , V, =M - 2N =5 (mod 8). Therefore V, is

divisible by an odd prime p , and we have p # U4 = U2 V2 and p + M. By Theo-

rem 2.(ii) applied with d = 4 , it follows that -1 occurs at most once in the
.. . = _ . P d

4n+3} . Similarly, if U3 M2 N 1is divisible by an odd prime

p , then the same result applied with d =3 and p shows that -1 occurs at

subsequence {U

most once in the subsequence {U3n—1}

Suppose that 3‘M . With Py = 3 and d2 =1 or 2 depending on whether or
not N =2 (mod 3) , we see that m(-1) =0 if N =2 (mod 3) , and that -1
occurs only in the subsequence {U4n+3} if N=1 (mod 3) . Therefore m(-1) <1

and m(1) + m(-1) € 2

Suppose that 3|N . With P = 3 and d1 = 1 or 2 depending on whether or

not M=1 (mod 3) , we see that m(-1) = 0 since -1 doesnot occur in {Uzn}

Suppose that 3+ M and 3|N—1 . Then 3|U3 and so -1 occurs at most once
34
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in {U3n_1} . By Egs. (12,14) ,

2 2\n
(U4 - NU3)

::Un=

2\n _
U6n+l =, (UA) =1 (mod 3) .

i

By Lemma 4, it follows that m(-1).<1 , and so m(1) + m(-1) < 2

The remaining case is 3 + M and N =2 (mod 3) . Let P; and di be as
in the statement. By the criterion of the fifth paragraph of the proof, all oc-

currences of -1 in {U } 1lie in the following subsequences.

none if d; or d, is odd
{u,n1 if 2|4,

(U003 if 4||d; or 2||d,
{Ugnis ) if 8||d; or 4]|4,
{Ug413 if 16{d; or 8[d, .

In the first three case, m(-1) <1 and so m(1l) + m(-1) <2 . In the fifth
case, m(-1) = 0 and hence m(1)+m(-1) =1 since by Eqs. (14,12) and the fact

that 3!U4_ , one has

(Ug )t =1 =21 (mod 3)

n=
U 4 5

Ugnt1 = Ug

Finally, in the fourth case, P = 1 (mod 8) and P, = 1 (mod 4) since
dllp1 -1 and d2|p2 - 1 . In particular, since N 1is positive, ZIlN s and

2 (mod 48) . This completes the proof of the Theorem,

i

B!N—Z , we have N
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6.- Open questions.

In view of Theorem 4, it is natural to make the following conjecture.

Conjecture 1.- If {Un} is a non-degenerate Lucas sequence of the first kind

satisfying Eq. (1) with either M # +1 or N + 2,3,5, then m(1) + m(-1) <2 .

Using Theorem 2 (ii) and Theorem 4, it is straightforward to check by con-
sidering the various possibilities of M(mod 5) and M (mod 7) that the follo-

wing is true.

Proposition 4 .~ If {Un} is a non-degenerate Lucas sequence of the first kind

satisfying Eq. (1) with M # + 1 and either N=+1 (mod 5) or N =6 (mod 7) ,

then -1 occurs at most once in {U_ }

Applying this result and Theorem 4 to check the various values of N = 2

{mod 48), one obtains

Corollary 5.~ The above conjecture is true for all N < 1200 with the possible

exception of N = 578 .

Conjecture 2,- 1If {Un} is a non-~degenerate Lucas sequence of the first kind,

then with the possible exception of finitely many integers c¢ , one has

m(c) + m(-c) <1

F. Beukers has announced to the author progress on both of

the above conjectures.

3>
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