goooboooogn
0 3390 19780 9-12

OVF (Over Flow) Free Computing

*% % k%
by Tetsuo Ida and Eiichi Goto ’

* Department of Information Science,

The University of Tokyo, Hongo, Tokyo 113 Japan

*% The Institute of Physical and Chemical Research

Hirosawa, Wako-shi, Saitama 351 Japan

September 12, 1977



10

1. Motivation

Overflows can be quite troublesome to numerical programming because
most contemporary computer systems do not provide adequate means for
handling overflow. The computing centre of a Japanese university
received a great number of overflow complaints upon the replacement of
machine by one with fewer exponent bits. Transporting FORTRAN programs
from a larger machine to a smaller machine is often troublesome because
of the difference in the word length of integers. Even the language
specifications are compatible, these troubles are‘caused by the incompatibility
in numerical data specifications.,

We encountered an overflow troubie when we were running a performance
evaluation program for a hasﬁing hardware to be used with parallel
memory banks, J in number [1]. The FORTRAN program produced;beautiful
results up to J = 16 but started to print "EXPONENT OVER FLOW ..."

for J > 16.

2, Software Aids

We resolved our trouble by recompiling the program with the aid of
a nonstandard FORTRAN feature called "TYPE" statement [2], which declares
some varlables to be regarded as arrays similarly to a DIMENSION statement.
Arithmetic and logical opérations on "TYPE"d variables are compiled into
calls on subroutines, which are to be written by the user. The only
things we had to do were to add TYPE statements and to write some subroutines
for extended exponent arithmetic. Actually a full word integer exponent
of 36 bits was used instead of 9 bits,

The “SUPER PRECISION" FORIRAN pre-compiler package of Wyatt [3]
would also provide software aids for overflow, if "super exponént"

feature were added.



11

The "BIG FLOAT" package developed by Fateman [4] for the formula
manipulation system MACSYMA can handle arbitrarily long integers and
floating point numbers with arbitrarily long exponents and mantissas,

A portable overflow free FORTRAN compiler with numerical data
specification simflar to the "BIG FLOAT" is now being written by our

group.

3. A New Architecture for Efficiency

In all pure software means for eliminating overflows disclosed
in 2, arithmetic operations would be slowed down by a large factor S,
at least 10, in comparison with a standard FORTRAN code, because of
large software overheads in run-time data type checks.

The situation would be greatly improved in tag machines., Arithmetic
operations on "untagged" small number (s) are to be made with standard
hardware at high speed while those on "tagged" big numbers are to be
trapped and handled by software or microprogramming. Untagged small
numbers are likely to appear with high probability P in most programs.
Hence, the élow down factor would be improved as S' =P + (1 - P)S < S,

Bit-loss, a common objection against tag-bit(s), can be remedied by
using a specific exponent value as a "trapping tag".

In case of 7-bit exponent -63 < p < 64, p = 64 may be used as thek"tag",
with the mantissa part being a pointer to a data structure representing
a "big" number. Bit or entropy loss in this scheme is oﬁly

log2 (127/128) = -0.01 bits,

4, Concluding Remarks
Besides causing incompatibility of numerical programs, overflows
have often hampered the design and implementation of some’important

classes of algorithms [6, 7]. The importance of variable precision

-2 -



12

algorithms in multiprecision arithmetic has been pointed out by Brent [8],
The "trapping tag" would be also useful for implementing such algorithms
efficiently.
| We are urging some local venders to consider "trapping tag" architectures,
so far without success.
In a microprogrammed machine called FLATS being build by ourselves,
"trapping tag" will be incorporated besides some other new features such

as hardware hashing [1].

References

[1] T. Ida and E. Goto: "Performance of a Parallel Hash Hardware with
Ke& Deletion", Proc. IFIP Congress 77, North-Holland (1977)..

[2] "FACOM-230/60 FORTRAN Manual"

SP-061~4~5, Fujitsu Ltd (June, 1968) in Japanese.

[3] W. T. Wyatt, P. W. Lozier and P. J. Orser: "A Portable Extended
Precision Arithmetic Package and Library With Fortran Precompiler",
ACM Trans. Math. Software, Vol. 2 (1976) pp.209-231,

[4] R. J. Fateman: "The MACSYMA 'Big-Floating-Point' Arithmetic System"
in Proceeding of ACM-SYMSAC '76, Yorktown Heights NY, Aug. 1976.

{5] E. Goto and T. Ida: "Trap-NUM a Method for Handling Big Numbers"
Progranming Symposium of the Information Proc. Soc. of Japan
(Jan., 1977 in Japanese).

[6] H. Takahasi and M. Mori: "Double Exponential Formulas for Numerical
Integration', Pub. Research Institute for Math. Science,

Kyoto University 9 721 (1974).

[7] A. A. Grau: "Algorithm 256, Modified Graeffe Method",

Collected Algorithms from CACM.

[8] R. P. Brent: “"Fast Multiple-Precision Evaluation of Elementary Functions',

JACM Vol. 23 (1976) pp.242-251,

-3 -



