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Abstract

Tabulation vs. re;omputation of mathematical function is a
typical space vs. time trade off problem in computing. Two
principles, (Pl) on~demand tabulation and (P2) reclaimable tabulation
are proposed to widen the range of applicability of tabulation. For
some cases these principles are shown to be similar in effect to
recursion elimination. The results of software implementation of
these principles are given. Another MTAC - Mathematical Tabulative
Architecture for Computers' relating to hardware hashing and to a

modified buffer (cache) register is also discussed.

Key Words and Phrases : tabulation, recursion elimi-=ztiom, hashing

hardware hashing, buffer (cache) register.
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1. Introduction

The choice between tabulation and recomputation of mzthematical

functions is an old and typical time vs. space trade oif pr§blem and
it is an imﬁortant subject for speeding up computing.
In the old days of hand computing, mathematical tables, either in
published forms or written on sheets of paper for the later use by the
human computer, were of great value. Since the advent of electronic
computers giving a phenomenal increase in ”éomputing power, such
mathematical tables have been greatly devaluated, as symbolized in
the changing of the name of a mathematical journal from MTAC
(Mathematical Tables and other Aids to Computation) into MC
(Mathematics of Computation) in 1960.

"Data base" may be regarded as functions which can be defined
only in terms of very large tables, of great value. In this paper, we
shall focus our attention around functions which can be definéd in
terms of concise mathematical algorithms and will not touch upon data
bases.

Recomputation of functions was specially fashionable in the early
days of electronic computers, because of severe limitations on the
capacity iof .high speed memories. The continuing trends of increase
in the cost effectiveness of high speed memories, however, have
demanded and will continue to demand for revaluastions of tsbulative
computing methods. For example, contemporary FFT programs would
initially tabulate the valugs of trigonometric functions to be used
repeatedly in the FFT algérithm, which might had to be programmed
differently in the early day machines with very small memories.

The main theme of this paper consists in two tabulation
principles, "on-demand" and "reclaimable" tabulation, and the aims and

scopes of this paper may be summarized into two paraphrased MTAC's.

-1 -
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2. On-Demand and Reclaimable Tabulation .

The method as use in FFT may be call "explicit pre-tabulation",
since the tabulation is made iﬁ advance by explicit programming.

This simple and straightforward method, however, may not te applicable
in the following cases:

(Cl) The values of the arguments of functions for which the functions
are (likely) to be used are difficult to foresee.

(c2) The total amount of spéce needed for tabulating functions
exceeds the memory capacity available.

In case of FFT, one would tabulate sin(2wn/N) and cos(2m/N) for
O<n<N (N is a constant). In this case, the space needed would not be
large because the table is one dimensional. Moreover all the values
of n (0<n<N) are known to be used repeatedly.

In case of a two dimensional table, such as in the case of the

binomial.. coefficients C , the space needed would be larger (because
nm '

it 1is two dimensional, case (Cl)); and it would be often difficult to
foresee the maximum range of n and m. The situvation would be rather

serious for the 6 dimensional Racah coefficients R(j ,3 >3 »J >3 -3 )
1 2 3 4 5 6

also called the 6-J symbol. The situation would be even worse for the

9-J symbol X(j ,3 , <. j ). (These symbols are used in quantumn
1 2 9 :

méchanical calculations. cf. [10] for their definitio=zs.)
In such cases, (€1) and (C2), the followxZinz tzbulation
principles, (P1l) and (P2) would be helpful.
(P1) On-Demand Tabulation
When the. evaluatién of a function, f(n,m) say,.is invoksd, the table

entry corresponding to the function f and the values of arguments n

and m is checked for its existence first.
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If "not-existing" (the entry maybe tagged "non-existing"), then the
program for computing f(n,m) is called and a new teble entry is
created (and maybe detagged) for later retrieﬁal, else the value is
retrieved from the table without recomputing f(n,m). Xote that
wasteful computations of table entries  which are never used, the
trouble of case (Cl), are clearly avoided by applying principle (P1).
(P2) Reclaimable Tabulation
While (P1) is applicable independently by itself, (P2) is always to be
applied together with (Pl). The basic idéa of (P2) is to reclaim (an)
table entry(ies) when the tabulation runs out of space, there by
changing the reclaimed entry(ies) into "non-existing'.

The probability of needs for recomputation and thence the overall
efficiency of the tabulation scheme would largely depend upon the
reclaiming strategy as to be discussed in section 4. Nevertheless,

note that the computation would broceed correctly by virtue of (P1)

independently of the reclaiming strategy.

3. Speeding Up Recursioﬁ by On~Demand Tabulation

To iterate is human, to recurse is divine. - L. P. Deutsch.

Recursivg programs are often regarded as being better structured
than iterative programs. Especially, for  functions which satisfy‘
‘recurrence reiations, the correctnéss of recursive programs are often
demonstratively obvious as in the followiné examples, in which n and m
are integers.

Gamma function, T(1)=1, TI'(n)=(n-1)T(n-1) for n>2:
T(n) < (if n=1 then 1 else (n-1)T(n-1) £i).

Fibonacci number, b(1)=b(2)=1, b(n) = b(n-1)+b(n-2) for n33:

b(n) <= (if n<2? then 1 else b(n-1)+b(n-2) fi).
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=
0

Binomial coefficient, c(n,m) = C
nm

cC = C =1, cC = c + C for O<m<n:
nO nn nm n-1m n-1ml

c(n,m) <= (if m=0Vm=n then 1 else c(n-1,m) + c(n-1,m-1) fi).
The function nth to extract the n-th element from a linked list

(as in LISP) r = (X , T 5, eee T ):
0 1 n

nth(n,r) <= (if n=0 then car(r) else nth(n-1,cdr(r)) fi).

However recursive programs are known to have a serious problem.
Namely, the speed may be extremely slow due to the repeated
recompﬁtations of the same fuﬁction for the same value(s) of
argument(s). In order to elucidate this point, we make use of a graph
to be called the "Reference directed graph" or "R-graph" for short, of
the computational procedure. Each call of (or_ reference to) a
function 1is represented as an arrow (directed edge) in the the
R-graph. Fig. 1. shows the R-graphs for the computations of TI(4),

b(5), c(4,2) and nth(3,r).
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I'(4) — T(3) — r(2) — £ (1)

b(5) b(3)—= b(1)
¥ v
b(4)— b(2)  b(2)
b(3)— b(1)
y
b(2)

c(4,2)
c(3,1)  c(3,2)
(2 0)/ (?-L 1) (2,1)
C\<, clz, c s
_——"‘—/

c(1,0) c(i{l) c(l{O) c(1,1)

nth(3,r) = nth(2,cdr(r)) - nth(l,cddr(r)) - nth(0,cdddr(r))
= cadddr(x))

Fig. 1. R-graphs (R-trees) for T(4), b(5), c(4,2) and
nth(3,r). Leaves of trees are underscored.

It should be noted that the termination proof of an algorithm
(i.e., a computational procedure which terminates) is.equivalent to
showing that the R-graph 1is a tree of finite order. Hence, the
R-graph of an algorithm.is necessarily a tree, to be called the R-tree
hereinafter. 7

In usual recursive programming systemsf, a traverse of the enéire
R—-tree . would be practiced during the computation. Therefore, in the
respective computations of b(5) and c(4,2), b(3) and ¢(2,1) would be
computed twice as to be seen from R-trees in Fig. 1. In the
recursive computation of b(n) for large n; the number of vertices in
the R-tree would explode exponentially, thereby mzking the computation

impracticable.

Foot note. LISP and ALGOL are examples of "usual" systems.
The situation may be different in "unusual" systems such as
the lazy evaluator [19]. :
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It would be reasonable to use the total number of arrows (i.e.,
references) in the R-tree as the time cost function of the
computation. The respective costs of TI'(n), b(n), c(z,n) a2nd nth(n,r)

: n S n
are n=0(n), 2b(n+l)-1 = 0(1.618 ), 2c(n,m)-1 < 2¢(m,=/2i-1 = 0(2 /{m)

and n=0(n), in which b and c blow up exponentially.

By applying the on-demand tabulation principle‘(Pl) to these
recursive computations, all wasteful recomputations would be replaced
by table look-ups.

Let the contracted R-graph be the graph obtained by contracting
the vertices of the R-graph for the same function for the same
value(s) of argument(s) intb a single vertex. Specially, let the
contracted R-graph of an algorithm be call the R-dag ('dag" stands for
"difected acyclic graph". It can be easily provéd that the
contraction of an R-tree results into-a dag). For simplicity for the
time Dbeing, let us assume that the tabulation‘spaée is'big enough so
that there 1is no need to invoke the reclaimable tabulation principle
(P2). A recursive program with on-demand ‘“tabulation would make a
traverse through the R-~dag instead of through the R-tree. Fig. 2
shows examples of R-dags. For later use, the superfixed ordinals in
Fig. 2 show a TS (Topological Sorted)—éequence for each R-dag. We
define TS-sequen;e of an R-dag as a &upiication frees sequence of all

vertices (v , VvV, ... v ) such that whenever v ~> v , 1>} tolds. Such
1 2 n i 3

a sequence exists for any dag and the algorithm for finding it is
called topologicai >sorting [15, pp.259—265]. For T(a) an& b(n), the
TS-sequence is wunique. For c¢(4,2), thefe‘ are two TIS-sequences
(c(2,1),c(3,2),c(3,1),c(4,2)) and‘(C(zgl);C(3,l),c(3,2),c(4,2)). Only

the former is shown in Fig. 2.
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R (2 a
T(4) —T1(3) —T(2) —T()

o(2 a
b4y —b(3) — b(1)
N T
b(2)
(4
c(4,2)
(€] \ 2
C(3,l) C(B’Z)
ONUA O\
c(2,0) c(2,1) c(2,2)
c(1,0 _ c(1,1)
(4 3 (2 ¢!
nth(3,r) —= nth(2,cdr(r)) — nth(l,cddr(r))— nth(0,cdddr(x))

= cadddr(r)
. Fig. 2. R-dags for T(4), b(4), c(4,2) and nth(3,r)

Leaves are underscored. Superscript ordinals show a
Topological Sorted sequence of vertices.

A recursive procedure may be cyclic, i.e., the procedure defining
"a function makes use of the value of the same function for the same
value(s) of argument(s) din the definition itself. The contracted
R-graph of such procedure would contain a cyclevand the procedure.
would never terminate. Fig. 3 shows an example. |
b£;;§—~—>b*§;:2)——...->b*(3)—-» b*(2)
Fig. 3. Vicious Cycles in the Contracted R-grahp of the

procedure:
b*(n) <= (if n<2 then 1 else b*(n)+b*(n-1) fi).
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A run time ‘"ecyclicity test feature" can be eazsily added to the
on—demand tabulation scheme. Namely, besides the two attributes
"existence" and "non-existence” of each table entrv, "gray" is to be
added as the third. "Gray" is to mean that the entry hes been entered
but the value has not been tabulated yet. Entering a ''gray" entry
clearly implies a "vicious cycle", or more algorithmically:

f(n) < (begin (if tﬁe entry is 'gray" then
print error message for VICIOUS CYCLE fi);
(if the entry is "non-existing" then |
make a "gray" entryigi);‘
compute and tabulate f(n) making the entry "existiﬁg"
end). |

It would be reasonable to use the number of vertices and leaves
of the R-dag as the space cost function for the on-demand tabulative
computation.

Under the assumption of O(1) time (complexity) for table
retrieval (implementations are discussed 1in section 4) it would be
- reasonable to use the number of arrows in the R-dag as the time cost
function for the initial on~demand tabulative computation. Time costs
of T(n), b(n), c(m,n) and nth(n,r) now become n=0(n), 2n-1=0(n), about

-

2 2 .
n /2=0(n ) for m=n/2 and n=0(n). The time costs for Trepeated

computations are all O0(l) by virture of tabrlz:izn. The respective

2
space costs for these!four functions are n=0(n), n=0(z)}, zbout n /4 =

2. _
O(n ) and n=0(n). These cost are summarized in the following table

where "#4" and "#." respectively means the number of arrows and the

number of vertices including leaves.
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Time Cost Time Cost - Time cost Space Cost
Pure On-Demand On-Demand for
Recursion Tabulation Tabulation Tabulation
Function Initial Repeated
f(x) O(#4(R~tree)) O({f+(R-dag)) o) 0 (#.(R-dag))
r'(n) 0(n) o(n) 0@) o)
n
b(n) 0(1.618 ) 0(n) 0(1) 0(n)
- n 2 2
c(n,m) 0(2 /ym) o(n ) 0(1) 0(n )
nth(n,r) 0(n) O(n) 0(1) 0(n)
n 3 2
m(lgn’r) 0(4 /rﬁ) ’ 0(1’1 ) o) o(n )
Table 1. Time and Space Costs

As ~another example, take the minimum number of multiplications

needed to multiply n matricesM , M, ... M whereM has r rows
1 2 n i i-1

and r columns. It is assumed that pqr multiplications are needed to
; . v

multiply a p X q matrix by a q X r matrix [1j. Let m(i,j,r) be the

minimum number of multiplications for multiplying matrices M , M .

i i+l
eee M . m(i,j,r) can be computed recursively as:
k|

m(i,j,r) < (if i>j then 0 else

MIN (m(i,k,x).+r r r + m(k+l,j,r)) £i)

i<k<j i-1k j
where r is a listr=(r , r, r , ... ¥ ) and ¥, O<<n, is to be

0 1 2 n i

computed by the function nth.

Fig. 4. shows the R-dag for m(1,4,r).
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(6

m(l,4,r)

m(l,3,r)

1

m(l,2,r)

T
m(1,1,r) m(2,2,r) m(3,3,r) m(4,4,7)

(1
m(2,3,r)

Fig. 4. R-dag for m(1,4,r)

The costs for m(i,j,r) is also given in Table 1, wherein the
subfunction nth is élso to be subjected to tabulation for speed up.

Recursion elimination, or transformation of recursion(s) into
iteration(s) to be more specific, is a practice used for sPeediné up
recursion. In a recursion elimination method, called dynamic
programming by some authors {1, pp.67-69}, a TS-sequence 1is
generated and traversed by iterative loop(s). Hence, the present
authors would use the term "TS-method”". For example, the TS-sequence,
rEd), i=2,3, ... n, of T'(n) can be generated by a "for loop" as in:

T(n) < (begin m<1l; for i<2 step 1 until i=n

(do m <= m*(i-1) od); return m as the result end).

The similar can be done for b(n);_c(n,m) and m(i,j,r). Specially
m(i,j,r) is treated in [1] as an‘example of dynamic programming
rather than of a recursion elimination.

the TS-sequence frem the value(s) of argument(s) giwsn at the root of
the R-~dag. For example, take the recursive progrzm for tzking the
n~th element nth(n,r). Tke ﬁnique first vertex of the TS—-sequence in
this case is nth(0,cd...dr(r)).  But this means thszt the shortend
list, which is almost the result itself, is needed to identify thé
first vertex. Hence, ' the TS-method obviously fzils in this case.
Nevertheless, ﬁhe recursive nth can be easily tr;hsformed into an
iterative form as:

- 10
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nth(n,r) <= (while n>0 (do n<=n-1; r<=cdr(r) od);

return car(r) as the result elihw),

by noticing the fact that recursive call on nth is of 2 special type
which actﬁally does not need the control to be returnéd to the calliné
site. The lack of general methods applicable to a1l cases seems>to be
the fundamental problem of recﬁrsion elimiﬁation schemes [3,4].

Even when recursion elimination is possibie, the resultant
iterative program would still have to make. references to all arrows of
the R-dag and the cost would also be O(#+(R~dag)), which is the same
in order of magnitude (time complexity) as that of the initial
computation of recursion with on-demand tabulationT. The actual
timing figures would naturally depend upon the software and hardware
in use. Neverfheless, it would be worth noting that a tabulative
recursive program in some cases can be actually faster than its
recursion eliminated iterative versionm.

Let us assume that T(1), T(2), ... T(N) are used repeatedly with
on~-demand - tabulation in a part Qf computation. Both recursive and
iterative programs would work equally well for thisrfart. But when
another part is entered requiring I'(N+l), the recursive program would
compute T(M1) in time 0(l) by making use of the tsbulated value of
T(N). The iterative version however, would tzke time O(N) because it
would compute T(N+l) from scratch. Hence, the recursive version would

run faster beyond same value of N,

Foot note. An”algorithm may be improved by skipping references
to some vertices. For example, computation of Fibonacci number
b(n) can be made Taster Oy Using the relatio® ~

2
b(2n) = b(n) + 2b(n)b(n-1),

n

b(2n~1) = (b(n)+2b(n~1))b(n-1) - (-1) . It would be
natural to regard algorithms, which makes use of such other
special relations, as those based on a different principle.

- 11 ~
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4, Software Implementations and Reclaiming Strategies
On-demand tabulation of a function £(n), say may be programmed
explicitly. Let f(n) be an array to be used for tebulating £(n), and
let f*(n) be an algorithm for computing f(n) without using t(m) (it
may make use of other entries t(n') n+n'). The progrzm may be like:
f(n) <= (begin (if not exist(t(n)) then t(n) <= £*(n) fi);

return f(n) as the result end)

More  specifically for b(n), 1let t(n) be initialized as
t(1)=t(2)=1 and t(n)=0 for n>3 which is to be used as a tag (reserved
value) for "non-existence". We may write:

b(n) < (begin r<=t(n); (if r=0 Eﬁgﬂ_t(n) <= (r <« f(o-1)+£(n~-2) £fi);

return r as the result end).

Such "explicit on-demand tabulation" may be uéed when the memory
space 1is plentiful and there 1is no need to invoke reclaimable
tabulation (P2) and when a simply indexed dense array can be used for
the table.

However, when reclaimable tabulation (P2) is needed some storage
allocation algorithm has to be implemented and when the tabulation
needs some other programming techniques such as the handling of very
sparse arrays etc., it would be difficult for the general users to
explicitly write such highly specialized programs. Tor such cases the
best would be to provide the users with az "Zzzlicit" tabulation
package written by specialists.

As an user interface for implicit tabulzticn, switch statement
such as "ON TAB I, b, &" and "OFF TAB T, b, c" seex ro be simple but
yet powerful enough to handle situations like selective tabulation.
Suppose a function exp, say is used at different places in a program

as "... exp(float(n)) ... exp(x) ..." and suppose exp is likely to be

- 12 -
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used repeatedly for the same integer values of n, but unlike1§.for the

same real values of x. It would be natural to selectively tabulate
 only the former. This can be done either by suitably switching on and

off "TAB", or by replacing the former by a new functicn, tebexp(n) =
" exp (float(n)) énd specifying "ON TAB tabexp".

We now discuss the implementation of implicit tebdulation which is
and should be kept to a large extent transparent to the users. It
would be reasonable to use a content addressed table in whiph the
ordered set {tuple) of the function idéntifier and the value(s) of
argument(s) is to be used as the key (content addressing) part (field)
of each table entry. Since IC chips for content addressed associative
memory are still rather expensive, we may have to use their software
version - hash tables - for the time being. Since hashing has been
discussed elsewhere [e.g., 16], we only give a summary: while the IC
chips just mentioned can retrieve an entry in strict 0(l) time
independently of the size of the table, software hashing does the
similar in statistically expected O0(1) time. It may be worth
mentioning that a. method for handiing variable (long) length keys
different from those disclosed in Gries [9, pp.227-228] and Knuth [16,
p.549] is given in [7,8].

Reclaimable tabulation and "on-demand paging virtual memory" are
similar in many aspects. The only difference consists in that while
reclaimed ehtries are simply eliminated and’subje::ei to :ecomputation
upon later use in the vformer, they are swapped out from the main
memory - to the secondary memory and swapped in upon later use in the
latter. For simpligi;yiwthg.possiblequ@binanéﬁnsqgi,Virtual memory.
with reciaimable tabulation will not be discussed.

"LRU {(Least Recently Used) reclaiming", which is practiced in

- 13 -
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virtual memories seems to be a better strategv than 'random
reclaiming"”. Let P be the probability of an entry for f(n,m), say is
remaining in the table. Then the expected cost for computing f(n,m)

is C = P + C (1-P) where C and C (1-P) are thé~recomputing and
R R R '

expected recomputing time costs, respectively. Iz crder to keep the

latter below a constant K of the order on unity, i.e., C (1-P) K =
R

0(1), P must satisfy P > 1 - K/C . Since tabulation is expected to be
R .

most effective when C is large, this implies P must be kept close to
R

unity. While this is difficulﬁ in "random reclaiming", P=1 will be
maintained for non-obsolete more or less (not the least) recently used
entries in "LRU reclaiming"”. "Reclaim all when (the table becomes)
full", a very simple strategy would be more practical than "LRU",
since the software overheads, in both space and time for sfrict LRU
could be rather high. ("LRU" can be implemented in O(1) time by using
doubly linked list [15, p.451]. The situation will change if hardware
LRU units be used.) This would work in the same way és the "LRU"
strategy until the table gets full. The tabulation must be initiated
from scratch when the reclaiming does take place. Nevertheless, this
strategy has yielded satisfactory results in mznv practical céses.

On-demand tabulation was implemented in a svstexm czllied HLISP as an

additional feature to LISP [6,8,13,22]. Co=nz=:l statements of the
forms '"ASSOCCOMP ' (<list of function names>)" and "TRASSOCCOMP (<list

of function names>)" are ysed instead of "ON TAB" zné "OFF TAR",

Foot note. This stands for “associative computation".
A more specific term "tabulative computing'' mav be better.

- 14 -
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As an example, the recursive evaluation of FiEonacc1 number b(21) =
10946, 5ecomes about 1000 times faster upon the initial application of
tabulation and about 30000 times faster when it is used frequently.

The "cyclicity test feature" was also implemented iz ELISP and it
has been proved to be a useful debugging tool.

Katsura et al, used this feature of HLISP fcr speeding up the
handling of recurrence relations in a quantum mechanical calculation
[14]. Sasaki implemented an assembly coded package for switching
FORTRAN function subprogams into "ON TAB" mode and applied it to
speeding up the computation of 6~J symbols [10,20}. His package uses
the same data structure as HLISP fpr tabulation and it modifies the
software interface of the specified FORTRAN subprograms transparently

to users.

5. Needs for Block-Tabulation
Let case(x) be a function such that its respective values for

specific cases x=X ,'x=X s +o.x=X areQ, Q, ... Q but case(x) =
1 2 n 1 2 n

Q for other general or '"exceptional" cases of x. This may be
0

programmed as

case(x) <= (begin r<=Q ; (if x=X then r<=Q fi); ... ;
0 1 1

return r as the result end)

which makes an O(n) time linear search. Speed up would be effected by
specifying "ON TAB case". However, the tabulation would not be
effective when "exceptional” cases for x take place for diversified
values of x more frequently than the specific cases. A great
overhead, both in time and space, wquld result for tabulating
"exceptional" entries. In such a situation, a principlg to be called

- 15 -
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"plock-tabulation" would help. Namely, all the specizl cases are to

pe tabulated in "block", or more algorithmicallv:

(begin (if the block table does not exist then make it

r <=Q;
0

(if the entry x=X dis in the block table then r<=Q

1 I

return r as the result end)

2
There 1s another benefit: while O(n ) cost is needed to build up the

table for all Specific cases in the "TAB ON case'" scheme (0(n) time
linear 'search is to be made for each of thevn enfries independenfly),
this reduces to O0O(n) time din the "block—tabulation" scheme. If
reclaimable tabulation is to be applied, the entire block table must
be reclaimed, never by parts.

In the new version of ﬁLISP, the following functions are executed
by making use of "block—tab;lation".

tabqq(x, (Q (X ,Q) ... (X ,Q )))
0O 1 1 : N N

is the same as case(x) except in that the tabulation data is given
explicitly as an argument.

tabgg(x, (6 (X ,6 ) ... (X ,G6))),
0 1 1 N N

~

to be called "tab go go" is similar to tabqq except iz thzt G, ... G

are "go to'" labels.

tabmem(x, (X ,X , ... X))
1 2 N

. . .
= tabgq(x, (F X ,'T"), ... (X,'T")))
1 N

is a special - instance of tabqq and it checks whether or not x is a

member of (X , ... X ),
1 N

- 16 -
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These programming primitives may be somewhat wider in scope than
"switch", "case" and "computed go to" compositions in ALGOL 60, PASCAL
and FORTRAN. However, they can be regarded as a specific syntactical

realization of "decision tables" [11,18].

6. "Unrewritable'" Data for Consistent Tabulation

For the consistent use of tabulation the following restriction
(R1) and . (R2) imposed on the program of the function to be tabulated
would be obvious.

(R1) The function is not called for side effects. (R2) The function
does not have hidden parameters such as those passed through via
global variables.

There is still another restriction (R3) which must be taken in
account in case the argument refers to (is a pointer to) a data
structure. For the sake of speed and space saving, it would be
advantageous to use the pointer to the data structure as the entry of
the table. For example, take m(i,j,r). If the N+3 numbers (short

integers) i, j, r , r , ... r were used to identify an entry, O0(n)
0 1 ‘ n

time and space would be needed for handling each entry. One would
rather use 1,  j and the pointer r instead. In such cases, however,

-

the data structure (r, r , ... T ) pointed at by r should not be
0 1 N

rewritten for consistency of tabulation {23). Kote  that Sugh a
problem does not exist for self-contained and non-referential data
such as short integers i\ j each being represented as & tit pattern in
a single machine word. Also note that even though the programrof

m(i,j,r) does not rewrite the data -structure, precgrams outside of

m(i,j,r) may rewrite it thereby making tabulation inconsistent.

- 17 -
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Therefore, 1in writing tabulative programé in conventional langpuages,
the programmer must be extremely cautious not to violate these
restrictions.

It would be highly desirable to implement some zutcmatic means
for avoiding inconsistencies upon tabulation. “f::ewritable" data
structure, i.e., a data type never to be rewritten zfter having been
created, would provide a partial solution. ™"Rewrite protection" may
be implemented either statically at compile (and linkage edit)’time or
dynamically at run time. In HLISP, the latter method is used.
Namely, the heap for storing data structures (linked lists) are
divided ingo two areas H and L, and the H~type data in the H-area are
protected against rewriting at run time. Violation would be regarded
as a run time error. It should be noted that in McCarthy's pure LISP
[17] i.e., LISP without data structure rewriting primitives "RPLACA"
and "RPLACD", all data structures are "unrewritable". Thus, H-type
data may be regarded as pure LISP data structures. The function
hcopy(L) of HLISP makes an H-type éOpy'of L-type data L. When an
H-type datum H, including self-contained non-referential datum such as
a short integer, is given to hcopy thé result is the argumént itself:
H = hcopy(H).

Whén a function m(i,j,r), say is SUbjectgé to tabulative
computing, all the arguments are H-copied Zirsc:. In this way,
violation of (R3) 'is checked off autbmaticaliy. E:iqué fepresentation
of list structures (e.g., only one copy of hcopv(1ist(i,2,3)) is made
in the H-area even if‘hcopy(list(l,Z,B)) is invoked repeztedly.) is
the other characteristic feature of H-type data, znd there are many

applications of the unique representation feature [8,21]. However,

for the consistency of tabulation in respect to (R3) the
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"unrewritable" feature only is essential.

Rewrite protection in HLISP is rather slow because rewrite
violations are  checked purely by software at run time. It would be
worth noting that contemporary computers are allvequipped with memory
protection hardware to protect the OS (Operating System) against the
illegal memory accesses from the user's programs. Therefore, it
should be possible to efficiéntly implement rewrite protection schemes
withéut modifying the hardware by establishing a suitable protpcal
between the OS and the user's programs. Besides tébulation, thére
will be a number of applications of rewrite protection in checking the
‘consistency of programs dynamically at run time. For example, for
partial parameterization as implemented in POP-2 [5], the value of
"frozen" parameters should be implemented as "unrewritable” data for
consistency. Upos defining g(x) to Be f(x,y) y 1is the frozen

parameter of partial parameterization. Let y be the value of y when
: 0

the definition of g(x) was madé. Thereafter g(x) means f(x,y ).
0

7. Mathematical Tabulative Architecture for Computers

- Another paraphrase for MTAC -

The implementatipns of the tabulation principles (P1l) and (f2) by
pure software means deécribed in thevprevious sections are rather
slow. Software hashing, for example, would tzks 10 memorv cycles at
the least. The speed can be improved considerzbly by using hardware
hashing like the one\ disélosed in [7,12]. By making use of
parallelism in multi—baﬁked main memory,. hashing ¢an be performed -as
fast as an single iﬁdirect addressing through the main memory [7,12].

Further speed up may be possible by using a modified cache

—lgf
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(buffer) memory organization to be called "functionzl cache". Note
‘that usual cache memories may be régarded as a specific implementation
of the tabulation principles (Pl) and (P2)’with th;’?ey being the
address of the main memory. The key is to be chang=< Into function
invokation in the functional cache. The functioznzl cache may be
further backed up with a larger hash table in the main memory to
reduce recomputations of functions. Such an organization may be
called— "buffered hash table" as well. The experiences in sof tware
.implementations show that rather small téble space (e.g., 16K bytes)
are adequate in many cases. Thus the cost effectiveness of functional
cache may be rather good.

The cache concept has remarkably imprqved the speed of

computations in the past decade. Other tabulative schemes might

result in similar improvements as well.

8. Concluding Remarks

—~ There is nothing new under the sun. -

"On-demand tabulation" must have been practiced since human being
ever started to calculate. "Reclaimable and block tabulation" is
practiced = dayly - in making calculations on a black board.
Nevertheless, systematizing and restating these old principles are yet
believed to be worthwhile. Restated .as a "computer programming
principles", they were immediately applied Ey "we thyvsists for
speeding up their programs [14,20]. Especially, Szszki clearly
demonstrated the general Wpplicability of the principles to different
programming'laﬁguage systems.

The idea of using on-demand tabulation for speeding up recursion

is not new. It appears in Barron's text book [2] and the idea is
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credited to McCarthy. It is given as an example of sPeeding up the
recursion for the pa;tition number q(n,m), i.e., the number of way to
express an integér n (n>1) és a sum of integers no greater than m
(mzl). The recursion reads:
q(n,m) <= (if n=1Vm=1 then 1 else

(if m_>_h then q(n,n-1) else

q(n-m,m) + q(n,m-1) fi) fi).

The tabulation Vis made explicitly by making use of a linked list
instead of an array or hash table. Hence, the timé complexity of
table retrieval in O(N) rather than 0(1l), where N is the number of
tabulated items.

In the program library of POP-2 there is facility called MEMOFNS
(memo—-functions) which can specify functions to be tabulated. LRU
replacement 1is made by a linear search through a rote,‘resdlting into
O(N) retrieval time instead of O(l) time characteristic to‘hashing.

As described in section 3, DP (dynamic programming) can be
regarded as a specific recursion elimination method which makes use of
tabulation in a TS (Topologically Sorted) sequence. A unified view on
recursion elimination and DP by making use of R-trees and R-dags would
serve to elucidate the underlying programming principles.

Owing to the rapid increase in the cost effectiveness of high
speed memories, being realized by advanced LSI éechnology, tabulative
methods are 1likely to be used increasingly Iz the future. As
exemplified inr this paper, more sophisficated coxmputer architecture
and programming metholoky will be needed for the full development of

MTAC.
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