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Introduction
A practically usable algebraic-equation solver should desirably have
the following properties:
(1) to be self-correcting;
(ii) to be rapidly convergent —— at least locally;
(iii) to be globally convergent, i.e. to afford all the roots whatever
initial points we may start from;
(iv) to admit a sharp estimation of errors;
(v) to be computationally efficient.

Based upon the observation that, among the iterative algorithms which
improve approximate points to all the roots simultaneously [1], [41, [6],
[8] (see also the recent expositions [13] and [1L4]), there is one which can
be endowed with property (iii), we propose a theoretically robust and
practically powerful method for solving algebraic equations by incorporating
a number of minor but substantial techniques in it. Among all, special
‘attention has been paid to the way of calculating the value of a polynomial
at a given value of the variable so as to avoid the overflow as far as
possible and to get a rigorous estimate of rounding error. That enables us
to expel the "g " for convergence criterion which a user must ordinarily
specify almost arbitrarily. (We need only machine constants  such as the
base of the number system adopted, the length of the mantissa and the infor-
mation about the way of rounding.)

Properties (i) and (ii) are intrinsic to any algorithm of this kind,
and property (iv) can be realized by B. T. Smith's method [11]. Experi-
ments have shown that our method is not very slow in comparison with the
ordinary routines for algebraic equations found in many computing centres
(property (v)). '

A detailed analysis has been carried out on the asymptotic behaviour
of approximate solutions in the neighbourhood of a multiple root (or a
"cluster" of roots too close to one another to be discriminated under the
precision of computation), which revealed an interesting phenomenon to be
utilized to enhance the efficiency of the method. The solutions of a
series of equations of very high degrees (inciluding those of degrees up to

200) are illustrated.
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1. Problem. .
The problem we shall be concerned with is to find all the zeros

d1,'°*, dn of a given polynomial of degree N over the complex field:

P(z) 2N o+ AL U anq Z + ap (1.1)

i

(g-04)(Z2-0,) - - (2-am). (1.2)

Tt is assumed in the following that the polynomial is given in the form of
(1.1), but, the method we shall develop in this paper 1s applicable to the
case where the polynomial is defined by any algorithm of calculating the

value of the polynomial itself as well as that of its first derivative for

an arbitrarily given value of the independent variable Z.

2. Iteration Schemata to Be Used

The following iteration schemata which have been well known for a long

time (see, e.g., [4], [5], [8] etc.) will be investigated.
Setting '
N = {L 2,-:y n=1, N }, (2.1)

we define functions

(21,0, 2n) = - P(z;) Ve
t 1 ’n TT(zi'zj) ( IGN)
jeN-{i}
and
Piz;)
‘yl;(z“...’ Z,) = - /P'(Z) ,
- PE ol Lo .-zj

J EN-{i}

(YieN). (2.3
It is well known that, if the zeros of the polynomial are all simple

(2.2)

and if Zi® is sufficiently close to o for every i(€N), then the sequence

(z§°” Zgn, ... ) generated by the iteration scheme
Z(Dﬂ) = Z; AP ®; ( ( )’.“ Z(nl’)) (2.1)

converges quadratically to ®i (YieN), and the sequence generated by the

scheme

Z= 2 4 Y., 28) (2.5)
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converges cubically to &; (YieN). (See, e.g., [2]. We shall reconsider

those properties in the subsequent section from another viewpoint.)

3. Expressions of the Asymptotic Behaviour of Errors

Let us consider the case where
oi1=--=dm and s (Yje N-M) (3.1)
with N={1,---,n} ana M= {1,---, m} (s N).
Let us assume furthermore that &j= Zj-X; are small enough for all j&N, and

evaluate €= Zi-®; in terms of €;, Z;, oj, where

=Zit+ Pi(Zr,-++,Zn)  (VieM) (3.2)
Zi=Zit Wi(Z o5 Za)  (YieM). (3.3)
For the ¢P-scheme of (3.2), the straightforward calculation will give
r_ o P(z)
£| - EI TT(Z, zj )
JeN-{i}
= € - E " zi“dj!
JIJI-{{}E' il jun =i 2
. - i€y EX¢;
- E. Jl - 1 L Jy + i ©it _.”)
;l;l;(‘}c. &) JHIE 12 (0a-2j)?  (oq-z;,)
" £ €i
= & - - 1
TT( €| EJ) ﬂ-( Eo €J Z d - zjl
Jjeu-{i) JEN-(i} NN
gm" (Z Z Eis Eia ]
; c— (o-2 (0( EEREN
Jm}e &) J,GN‘H( J) Ik Jr.JEN- P
T DI DI et
J-!;L(l’s ' EJ -j‘fﬂ'ﬂ ((x] le i3 j1,32€N- (a,—z“) (a‘- zjz)
x( LI - ) ]
(-2, 0 (o Mon-2) (- 2}
+ - (3.4)
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+m=1, i.e. if X1 is a simple zero, then we have

1= & Z__1_¢_J_ + 0( €& ). (3.5)

J&N-h}
1+ should be noted here that the old € is multiplied by the other &j's to
yield the new €. Irmz22, i.e. if 044 is a multiple zero, then the old
€'s and the new S'i's with J€M are of the same order in magnitude.
However, it is noteworthy that the deviation of the centre of gravity of
Zi's (€M) from o, which is equal to ——Z g:, shows a faster conver-

LGM
gence similar to (3.5):

f = . m - sm Eix
| %En Zel Z TI'(E' EJ Z -[T(Et EJZ -y +

ieM i€EM
e €M i JGNH )

TR R

€M NN ieM <ia
fi2eN
‘-ZE Z E € en- (3.6

For the "'+"-scheme of (3.3), we have, in general,

€ =€ - P(Z.) __J_ !
i | /P( Zi) ;H Zj]

= £ - [ 1 _ 1 ]"1
! LJZ zi-aj JZ zi_zj

N eN-{i}
- e - -_1_ _ EJ -1
S8 T ]
I L )2 o)
- €; | 1
= € E:[1 ‘Zﬁ— - g &) J (3.7)
st Y jen (- g)zi-o)

Ifm=1 , we have

IZ + 0( E‘?'Ej(ﬂ)) ,‘ (3.8)

jeN- m(zl zJ)(zl (xJ

i.e. the new €4 is equal, in the order of magnitude, to the square of thre

—_—5 —
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old €1 multiplied by the other €j's. However, if m 22, the new €;'s are
of the same order as the old €i's, so that we cannot expect more than a

linear convergence in this case.

4, Differential Process Corresponding to the #f—Scheme and

an Algorithm with Global Convergence Property

As is easily noted, the differential process correspondig to the
finite difference scheme (3.3) has an integral which converges to zero,
and we shall take advantage of this fact to establish an algorithm which
yields a sequence of n -tuples of approximate points converging almost
surely to exact zeros whatever initial points we may start from.

Specifically, we consider the system of differential equations:

dZu -l/f(z;,"',Zn) (.Viel)y
(k1)

a0 €D,

where N=JUJ (Iﬂj=¢). For any solution of the system (4.1), the

TTP)
Vilz) = [

scalar function

TTtz- z,)Tl'(z -2;) 8
::JJEI JGJ
satisfies
d . S~ Ha _ g
ET“OQV](Z)) - ;( Pz) ﬁZI;,)Z' Zj Z Zi- Zj
=- .__]_._d.gl = - (L4.3)
{i—:' Viiz) dt 'Il

Vi =c-en(-Ilt ) (1.1)

Tt will be seen (and we shall discuss about it in detail elsewhere) that
the set of critical points of the vector field defined by the right-hand
side of (4.1) constitutes a subvariety of dimension at most n-1 in the
n-dimensional space with coordinates (Z1y--*s Zn), and the critical

points are not stable excepting those for which the zZ's with iEI are

—_— 6
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equal to O;'s with distinct j's. Therefore, starting from any "general”
initial points (2%, ", Z9), we shall have Vi&) tend to zero as t->0,
which means that at least one of Z;j's (i€l) will tend to a zero of P(z).

Choose "general" i, Znj

{' |
I
‘I |
I
| = g+ MW(Z) (Yiel); |
: z}=32; (vjeJ=N-1) }
| Y |
| le(z) 3 1114 ,
: IVi(z )L N2 1
e (e e e — -
A Error estimation by means of *2
the Gerschgorin circles
* e *
T:=T-{i[Pa)z0, ieI}y| *°
z; 1= Z) (ieN)

Fig. 1. Outline of the algorithm

*1,

*2,
*3.

In order to guarantee the convergence,‘ this loop is necessary.

But, in practice, we need seldom make/u smaller than 1.

See §6.

The meaning of P(DE0 will be defined in §5. Actually, we set
7= Z;' + P (Z) instead of Zj:= Zf when letting i out of T.
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This implies further that, if M is taken to be small enough, the sequence
of (ZMerry Zd) s (» =0,1,2,") generated by

200 2 pE) (iel),
Zj“"”': ij‘” (vj € J)

will find at least one of the zeros of P(Z).

(4.5)

We can combine this fact with the local convergence property of the
iteration scheme of (3.3) to get an algorithm for finding all the zeros of
P(Z), as is outlined in the flow-chart of Fig. 1.

5. Remarks on the Computation of the Value of a Polynomial

It is widely recognized that the way of computing the value of a poly-
nomial is the most crucial problem in solving an algebraic equation, and
that there are a number of issues which have been studied thereupon.

We took measures against the two most significant issues.

, 4
Pi=p+1; qQ:=9-1; |4
§:=5-2+@p T:=T/z+84
v v
q-p =1 p——>
es

P(2):=(5-2+T) 2™

Fig. 2. Computation of the value of a polynomial (nz2)

* | 8| is substituted for by max{JRSI,IING) iy order to. reduce

the computation time.



o1

First, we adopted the two-sided nesting [11]:
Pz) = [(~((z+a)2+az++2m )Z

st-flan/zsan)/zrana)/ 2+ And/ 2+ [T (5

in order to suppress the overflow that may take place during the compu-
tation and to keep the loss of significant digits to the minimum.
Actually, we followed the expedient means illustrated in the flow-chart
of Fig. 2 ( for N22).

Secondly, in order to strictly evaluate the rounding error occurring
in the computation, we resorted to a kind of "complex interval arithmetic".
Although there have already been a few proposals for the extension of the
interval arithmetic over the real field to the complex field [T7], [9],
[10], we used an easy one as follows. We shall represent a complex number
contaminated with some kind of error by a circular disk with centre Z and
radius P(20), which we shall denote as (Z,P). Moreover, we make use of
the quantity

u =M - (5.2)
to express the "precision" of computation, where M is the base of the
number ‘system used, L is the length of the mantissa of the normalized
floating-point expression of numbers, and 75-‘-‘-%: or 1 according as the result
of computation is rounded or chopped. Then, we define the operations of

addition/subtraction, multiplication and division on (Z,P)'s by the

formulae: AZpf) 2 (Z00) = (Z222,p)
where _ '
3= G+ O+ u-,/[;ax“khl,lReizl;IRe(zl*zl)l)]i* [max(llmlvl,)lmlzl, lIm(&*?z)l)]z,
. (5.3)
N (21'r1).(2216) = (21'22; P4)
P4= |Zl|’(’z+|22l'ﬁ4 Fg‘Pz*lZlHZ:"U N (5.4)
and '

(21,6 /(280 = (2% )
where |Z2|>P2 and '

- _ b Zil - P2 Iz1)
53 + . (5.5)
52 Bre * miEeE Y

These formulaé guarantee that the result of an operation performed on any

pair of complex numbers in the disks on the left-hand side certainly lies

in the disk on the right-hand side.
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When computing the value of a polynomial P(Z), we assume the variable
Z and the coefficients @j's as circular disks with radius 0, i.e. we set
them as (Z,0) and (a3,0)'s, and, by means of the above complex interval
arithmetic performed according to the algorithm of Fig. 2, we get the value
of the polynomial in the form of a disk ( P@ , AP®). We conclude that
P(2)5 0 whenever we have |P(Z)]<AP(2). In this way, we can dispense with
the threshold value which is ordinarily to be prescribed by the user on a
not very sound bases.r

It is‘ said that, in general, the interval arithmetic enormously over-
egtimates errors, but, for the evaluation of a polynomial in the above-
explained manner, it gives a sufficiently sharp bound for the error in the

computed polynomial value.

6. Estimation of Errors

For rigorous and considerably sharp estimation of the errors of
approximate values for the zeros of a polynomial P(Z) the method proposed
by B. T. Smith [11] seems to be most effective. Although Smith developed
his method in a falrly general setting by means of highly scphisticated
arguments, it is possible to derive his result in a much simpler manner.

In fact, for an arbitrarily given set of N distinct complex numbers

Z1,*" ',;Zn, let us consider the matrix A of the form

zi+glz) $z) - %)
A fz) zeRgl) 0 Bl)

L

= . . . . . (6.1)

dz)  Bz) =D

L

The characteristic polynomial $a(A)= M(AI'A) of A is seen, by direct

expansion of the determinant, to be equal to

=TTz + 3 (TRAZpE) , (6o

16N €N " JeN-g;)

and, since @Pa(A) of (6.2) coincides in value with P(A) at h+1 distinct
points A= Z1,°*%Zn and 0 , we have PA(A) = P(R).
Hence, the zeros of P(A) coincide with the eigenvalues of A, so that

we can apply the famous theorem of Gerschgorin to show that all the zeros

—— 10—
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of P(@) lie in the union

K=ig‘Ki (6.3)

of the N Gerschgorin circles:
Ki= {zliz- efz)lsin-1Igal} (ien),c6.)

and that each connected component of K; contains as many zeros of F%Z) as
the circles constituting the component.

It is important to be careful enough when we determine the circles Kj's,
i.e. we have to resort to the complex interval arithmetic to compute the
numerator of ¥;(2) ='P(*i)/‘i};{_ﬁ§*i'€i) and to adopt Z;+{,(z) as the centre of
the circle Kj and(n-1)(lP(z;)l#AP(ii))/le;’m(z;—-zj)]as its radius in (6.4).
(Otherwise, we might underestimate the radius of a circle due to the effect
of the rounding error which might be equal to AP(Z) in the order of

magnitude.)

7. Choice of the Initial Approximate Values

Since our algorithm produces a sequence of n-tuples converging to the
set of zeros of P(2) so long as we start from any initial n~tuple of
distinet complex numbers which are in "general" position, the choice of
starting values is not very substantial from the theoréticalvviewpoints.
However, the better choice would give the faster convergence, so that the
choice is of practical importance,

Experiments on a number of problems have shown that the starting
values recommended by O. Aberth [1] are good. Aberth defined the
polynomial: ) -
Siw)=W™[caW™™ - - - ~lcnmiW -lcal, (7.1)

where Ci's are determined from the given polynomial by the relation:

P2 = 2" +a1Z" "+ -+ anZ + an

n N2
(z+ L)+ fz+ 8L 0o (1.2)

Based on the fact that SM=0 has a unique positive root fo and that all
the zeros of P(z) lie in the circle with centre =-&h (which is equal to
~ the centre of gravity of the zeros)\énd radius Fp , he recommended to choose

Z% s (keN) as follows [1]:

z‘°;‘=--%1-+r;eq:>[l-‘ﬂ27ri;3—+—zﬁn—)] (VkeN), (7.3)

— 1] ——
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However, in order to choose the initial values as "general" as possible,

we would recommend to‘start from
w;__ a . - k"" 3
2%= - - *'ZE"PPT(Z'"-——n +—2?-)] (VkeN) . (7.0

(Note that "3" is used in (7.L) instead of "W" in (7.3) because Z“i's are
then arranged on the periphery of the circle "transcendentally" with respect
to the real and imaginary axes.) Furthermore, we do not need the exact
value of To but any value not less than it, so that we may set, for example,
werzmax {1(n-1CmI¥™ | m=2, -, n} and take wt =wi . [scwe)/ S/ (wee)] or

W = wen J[sewan) / g7(wey] for Po. (It is not difficult to see that w!%2lo

and that, for any w2hy, all the derivatives of SW) are nonnegative,)

8. Numerical Examples

8.1. Comparison with different methods. Our method is basically the

iteration of the Jacobi type (i.e. of the simultaneous-replacement type)
with the Yr-scheme, Fig. 3 shows the comparison of this method with other
related methods —— those with the P -scheme instead of the W-scheme
and/or the Gauss-Seidel type (i.e. the successive-replacement type) instead
of the Jacobi type ——- from the viewpoints of speed of convergence.

It is observed that the convergence of the Yr-iteration is about two
times as fast as that of the (P-iterations and that, although the Gauss-
Seidel-type iterations are somewhat faster than the Jacobi-type iterations,
the number of the steps necessary for attaining the approximation of the
same accuracy seems to differ from each other at most one or so. (This
observation does not contradict G. Alefeld and J. Herzberger's theoretical
énalysis [2].) Thus, the iteration of the Jacobi-type with the ¥r-scheme
upon which our method is based is nearly the best from the viewpoint of
convergence, not to mention the fact that it has the global convergence

property whereas the other methods do not.

8.2. Examples of the trajectories of approximate points from different

initial points. Fig. 4 shows two cases of computation for a polynomial of

degree 10 with four distinct zeros —— one simple, one double, one triple
and the fourth quadruple; in one case we start from "random" initial values,

and in the other from the points on the periphery of a very small circle

_— 12—
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(a) @—iteration

(Jacobi type)
-15

equation:

P(z)y=z5-10z4 + 4323

-10422+1502-100
=(z-2)(2-0-2L))

nd 0
*(2-(120)EF-6-V)
X(Z(3+1) =0

5
v
S
0/
(¢) Y=—iteration

(Jacobi type)
J

log,glerror]

U
-—

-15

=
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£
¥
]
B
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o
—
-10
(b) ¢ —iteration
(Gauss—-Seidel type)
-15¢4

Fig. 3. Comparison

and of the

1)
[%2]
3

logyglerror

L
o

> . 0
Q: Z=2 |
©: Z=21+2¢
A Z=1-21
©:2=3-i
XiE=3+1 ‘
(a) 'l-/f—-itera’!.tion
(Causs-Seidel type)
4
= 151

of the (P —iterations with the Yr-iterations
iterations of the Jacobi-type with those of

the Gauss-Seidel type
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near the centre of gravity of the zeros.

Fig. 5 shows the trajectory for the polynomial P15(zZ) (to be defined
in §8.4) with the starting values of (T.4).

equation:

P = 20+ (-3-1) 29 +(4+3{) 23+ (A4-41)=7
+(2443)26+(2-21) 25 + (-4-21) z‘f
+(4+40) 2+ ((3-4)Z+ (1431)2- 1

=(z-1)Hz-1)P(z+)V(z+1)=0

exact zeros

« . 2=~ (simple root)
®: Z =-1 (mutiplicity 2)
®: 2=+ (mltiplicity 3)
©: z=+1 (multiplicity b)

X: initial values

+: 5-th approximate values

A} 10-th approximate values

Fig. 4. Trajectories of the approximate points from different

initial points

— 1l
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X : initial values

@ . 5-th approximate values Arm
2.0
® : exact zeros
% b
\\ ’!
X \ / X
\ \ I /
\ \ | /
\\ \ 1.0 [ //
AN \ x 4 / ///
N * ! ! ¢ ’
h \ | I / e
\'\ \ ! I / [
X — _ \ 5 ® & (5 , x
i - ® & == Re
"///' 4 ;D }' C{ \ ‘\~\
-7 ’ // ! \\ \\\ \\\‘\
x /ﬂ / H} X \ «
/ $ b ] \
/ / 1 \ \\
/ / it \ \
/ / it -10 \ \
X / I[ \ %
/ [ \
! [ \\
% I %
X
--20

Fig. 5. Zeros of Pj5(Z) and the approximate points approaching them

Fig. 6 shows the trajectory for the polynomial Psgo(z) (also to be defined
in §8.1+), where we started from a supposedly good approximate set of values.
It is interesting to see the points move as if they were struggling for
seats. ‘

These numerical examples would evidence that our method is insensitive
to and robust against the choice of initial points and has a good convergence

property.

— 15 —
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8.3. Behaviour around a multiple zero (or a cluster of zeros mutually

very close). As was already noticed in §3, we can expect no
petter than linear convergence to a multiple zero (or a cluster of "nearly
multiple" zeros) . Moreover, it is our nowadays common _sense that, roughly
speaking, the number of significant digits of approximate values to an m~ple
gero decreases to about one m-th of that of approximate values to simple
zeros. These phenomena are clearly seen in the example of a seventh-degree
polynomial with a triple zero and two complex-conjugate pairs of simple
gzeros in Fig. T. . There, the errors of the approximate values to simple
seros diminish very rapidly (cubically) to the order of 10741075, 10810
and ldﬁo%ldazby single-precision, double-precision and quadruple-precision
computations, respectively, whereas the errors of the three approximate
values to the triple zero "2" diminish slowly (linearly) to the order of 10'1
Mf4and 1070 by computations of the respective precisicns.

What is the most remarkable in this example is the behaviour of the
centre of gravity of the points Z%% +SD;(Z“’>where Z‘”{-‘s are the V-th
approximate values to the triple zero. The deviation of the centre from the
true zero diminishes as rapidly as the errors of the approximate values to
simple roots at the earlier stages of iteration. Equation (3.6) can explain
this phenomenon well. The behaviour of the centre of gravity at the later
stages of iteration is quite curious; its deviation from the triple zero
takes the minimum at a certain stage, and, subsequently, grows gradually up
to the order of magnitude of the errors of the separate approximate values.
This phenomenon may be explained in terms of the rounding errors creeping
in the process of computation as follows. While the approximate values are
far from a multiple zero, they have almost as many significant digits as
those used in computation, so that the behaviour of the centre of gravity
is subject to equation (3.6) fairly well. However, as the approximate
values approach the multiple zero nearer and nearer, they become contami-
nated by rounding errors more and more, so that their centre of gravity
itself is diturbed by rounding errors to the same order of magnitude.

Fig. 8 illustrates é case with more than one mu;tiple zero, This case
is similar to that of Fig. 7, but it is seen that, although the centre of
gravity approaches the multiple zeros more rapidly than the approximate
values themselves, the convergence speed of the centre does not coincide

with that of the approximate values to simple zeros. This is also in accord

with (3.6).

_— 17 —
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equation: P(@)=(2-2)3(2-(1 +21))(z-(1-20)(z-(3+1)(z-(3-1) =0

Jhlogw\error\

iteration
3? 49 4?

4

-16 1 X2 =121
Atz = a2t
$:2=3-1
O Z =341
-20 |
lz=2
+ (multiplicity 3)
"X ! the centre of
i
-2k multiple roots
l : quadruple-precision
28 -——— ; double-precision
—-— gingle-precision
-32

Fig. 7. Behaviour of the errors when there is one multiple

zero

—_ 18 —
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equation: P(z)=(2+1)4(z—2)2(z—3)go

61

;;1ogm|errorl
i iteration
0. ' 116 L 214 i 312 L 4? i 4(8 1 A,
+ _X_A_e_ —_— — —
P N - - -
-k 4 M — b XA — —— —
/
] —/ - —_— _— —_— —
o X
N/ -
_8 1 /_ T— &P ——— = «.\,\_‘,5';‘ P
; / RS .ﬁ“ X
% .
1 /X
;/
\ 7/
=12 \ 7 A
,\\\ \
b — —\ ___x______________ ________________
» i‘ \ N
- \ N N 7 cxn A J
1 \ RGEX D T P ?g
% \
B ‘\\\
\
_20 ] \
'\ %: Z = 3 (simple root)
\ o) .
ol zp}:z = 2 (multiplicity 2)
4 X }
X g}:z = ~1 (multiplicity u4)
+
the centre of multiple roots
-28 1 Y :(multiplicity 2)
] i % *(multiplicity 1)
T« underflow o
-324 ‘I . o o g : quadruple-precision
-—————"_ double-precision
————— ! single-precision
Fig. 8. Behaviour of the errors when there are more than

one multiple zero

—_— 19 —
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-104

-154

~20

-254

\ logplerror|

equation: P(z) 5 (Z-00 )(Z-02}(z-03)*=0 =
( =R ; o= 2€/2.7 , ofy= -—Q/z_,,)

iteration
15 29

__Ped |
:rr ; (Z;'ZJ) .
JeN-{i

: quadruple-precision

values of ln

s e w3 dOUble~precision
- Z 5 04 (simple root)
~@— Z= 02 (neary double root)

—%—: 25 o3 (nearly quadruple root)

values of n—ﬁﬁ)—-

TT (ZivEj)]

_______________ et
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[ Fay e i a
st S
TR % X
\& quadruple~precision
Fig. 9. Comparison of the resolution powers of computation

of different precisions when there are clusters of

zeros located very close to one ‘another
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The example shown in Fig., 9 is more subtle. The polynomial of this
example was formed by first putting O=X, 0g=2£/2.7 and 3=-&/ 2.7,
expanding (Z-04)(Z-Kk2)%(2-%3)* into the sum of powers of Z to get a poly-
nomial of degree T by sufficiently high-precision computation, and then
truncating the coefficients of the powers of Z to the double-precision
pumbers. By double-precision computation, the simple zero near X1 was
obtained after 5 iterations with the error of about 10;5, the two zeros
near X2 were obtained after 15 iterations with the errors of about 10‘7,
and the four zeros near X3 were obtained after 20 iterations with the
errors of 1073, In the case of the two (resp. four) zeros near 0 (resp. %3),
their Gerschgorin circles do not separate from one another. The deviations
of the centre of gravity of 2% + ®Pj(2%) (where ZW's are the V-th approxi-
mate values for the two zeros near 3, and those for the four zeros near Ma)
from the centres of gravity of the corresponding zeros obtained by quadru-
ple-precision computation, first decrease and then grow up as shown in the
figure. Thus, by double-precision computation, the approximate values
behave themselves as if the polynomial had a simple zero o4, a double zero
o2 and a quadruple zero 3.

However, by quadruple-precision computation, seven zeros turned out to
be all simple, with their errors estimated to be 10201030 by means of the

Gerschgorin circles which do not intersect one another.

8.4. Numerical solution of a series of algebraic equations of very high

degrees.. For the porpose of numerically backing up some theoretical
conjecture we have tried to solve a series of algebraic equations of very
high degrees.

The polynomials to be considered are those whose zeros determine the

abscissae Xi's of the Chebyshev numerical integration formulae:

1 n
S jmdx ~ %Zf(Xi). | (8.1)
- i=1 ‘ ‘

It is known that the Xj's for the n-points Chebyshev formula are the zeros

of the polynomial

(Z- XaX2-Xa)* * (2= Xn)
Z"-r azzh'.‘l* a4zﬂ-4+ PE'S {

(2
an1 Z
an | (8.2)
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where &j's are determined by the recurrence relations:

a,=1, a,=-n/6,
y _

Qxy =~ 2nk Z1:ZJ11 az(k-j) (k=2,3,),
e

and that Pn(Z)'s have complex zeros except for n=1, 2, 3, 4, 5, 6, 7 and
9 [31. |
S. Moriguti et al. studied the locations of the zeros of the H\(Z) 's

(8.3)

for large n's theoretically and got to the conjecture that, asn-=00 , all
the zeros of Pn(z) (except possibly £=0 for n odd) would be arranged

densely on a closed curve which approaches the closed curve:

(2+1)/2

(z-1

<(F-1)/2
)(31 |

| {z+1) =2, (8.4)

We first computed the coefficients of the polynomials by very high-
precision computation and then rounded them according to the precision of
computation used for finding the zeros of the polynomials. As an example
we show in Fig. 10 the set of coefficients of Paoo(Z), which were computed
with 136 decimal digits and then rounded at the 4lst decimal digits.

We could have all the zeros with the errors less than 1073 for the

~polynomials of degrees not exceeding 60 by double-precision computation,
and for the polynomials of degrees not exceeding 200 by quadruple-precision
computations with the errors less than 1072, The zeros of Pa(zZ), Pso(Z),
Pioo®@ 8&nd Paoo(z) are illustrated in Fig. 11 together with the curve of
(8.4) 1In performing these computations, the initial values 2= 0+ FT Yy

were chosen carefully, using the following equations:

cos[(%-e)-%k-rel ’ G=(—£0—0+§75)7L

1
X Cos8

1M ho _ -1 1  _ n 1.
YK‘ 2 ["'2"0052 xk"cn Xk)tdn %my]v C-180"'3

The zeros of Pa.oo(x) were computed by the quadruple-precision floating-
point arithmetic with the 131~bit mantissa (% 39 decimal digits) in
binary expression. As for the other computations, see the. concluding

remarks in §10.
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9, A Device for Enhancing the Efficiency of Computation of Multiple or

Nearly Multiple Zeros

If a polynomial has multiple or nearly multiple zeros, the convergence
to those zeros is slowed down so much that the computational efficiency of
our method is affected seriously. In order to aveoid this difficulty, we
may make use of the property which we discovered in §8.3 as follows.

If some of the Gerschgorin circles for the approximate values Z% (j€M)
intersect one another after a certain prescribed number, say 3 or 4, of

iterations (see Fig. 1), we compute

Zy = ;‘Z'i*‘l’i(z'))/m (m=]M|) . (9.1)

If we have
P(in)'-'.O; P’(in)=0) AN Pmi%"):.o, (9.2)
then we put

zii=Zw (YieM) ana  1:=]-M; (9.3)

otherwise, we continue the iteration further.
In case of (9.3), we may make rough estimate of errors, to the effect
that

m zeros are located within the circle of centre EH and radius

m? (| P(En)] + APEW) |7
Imeinn . (9.k4)

Applying this device to the example of Fig. 9, we could stop compu-
tation by double-precision after 5 (resp. 6) iterations for the zeros near
o3 (resp. &2) and could obtain the approximate solutions with the estimated
errors of the same order in magnitude as those we obtained after 20
(resp. 18) iterations according to the more basic algorithm of Fig. 1.

If we resort to quadruple-precision computation, the conditions (9.2)
(specifically, the first one) were not satisfied so that we had to continue

until all the zeros were separated from one another.
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10. Concluding Remarks and Acknowledgements

The method for calculating the zeros of polynomials proposed in the
present paper has many advantages over other methods found ih the existing
literature. The authors tend to think it might be an ultimate one for
that purpose.

Many of the ideas incorporated in the method, especially that in §k,
arose during the discussions in the class on "Approximate Mathematics" of
the‘Graduaﬁe School of the University of Tokyo conducted by Professor
S. Moriguti, and the authors cordiglly thank him for his inspiring guidance
and valuable suggestions.

Most of the numerical computations were carried out on HITAC 8Y00/8800
under the operating system 0S/T of the Computer Céntre of the University of
Tokyo. The programmes were written in FORTRAN IV, Floating—point numbers
have the hexadecimal expression; the mantissa of singie-precision numbers
has 3 bytes or 6 hexadecimal digits (= 7 decimal digits), that of double-
precision T bytes or 14 hexadecimal digits (% 16 decimal digits) and that
of the quadruple-precision 1L bytes or 28 hexadecimal digits (5 33 decimal
digits). The arithmetic operations of addition, subtraction, multipli-

cation and division are followed by the operation of chopping.
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