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Families of Linear Systems on

Projective Manifolds
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(Tohoku University)

1. By a complex space, we mean a reduced Hausdorff complex
analytic space. Let X and S  be complex spaces and T: X ——p
S a surjective proper holomorphic map. The triple (X,%,S) is

called a family of compact complex manifolds if (1) every fiber

7["1(5) = V, is comnected and (2) there are an open covering
{ Xi} of X, open subsets Ui of Q:d, open subsets Si of
S and holomorphic isomorphisms ’Qi: Xi___">ILiX S; such that

the diagram |
———’Z'——>st
\;/proa

commutes. We write

’717Z£1(zk,s) = (g5 (2,58),8).

We write {vs}s cs instead of (¥,7,5). A family of holomorphic
Yector bundles is, by definition, a holomorphic vector bundle

A on X. Put P, = g:[VS and write {Fs, stés instead of
F. Let H»(VS,(Q(FS)) be the Y-th cohomology group of the
sheaf GHEE) over VS of germs of holomorphic sections of Fs.
We may assume that 4 is trivial on X . Let {fik(zk,s)} be
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the transition matrices of 3—7 + Then, for o0€S, we define a

bilinear map T: HO(V , O(F ))XT S— H'(V_, O(F,)) by
T(§,3/68),,(2,) = (éfik/as)(zk’o)gk(zk)
- (agi/azi)zi(agik/as)(Zk,o),

, 0
where § = {Si(zi)} € m(v,, S(Fo)), 9/0s €T S and gz, = 811 (2150)e
Put  Ty(3fas) = T(§,3/os).
Using Kuranishi's idea of the proof of the existence of

complete familieé of complex structures (Kuranishi[7]), we get

Theorem 1. Let {FS’VS}SES be a family of holomorphic
vector bundles. Then, for any point o0 €S, there are an open

neighborhood U of o in S and a vector bundle homomorphism‘
u i BV, (F )0 —> 8 (V , O(F )X T

such that the (disjoint) union \_jHO(Vs , O(Fg)) is identified
' seU ’
with the Ker u. Moreover, we have

o0 =T

Pathing up the local data, we have the following theorem

which is considered as a special case of Schuster[11].

Theorem 2. Let '{Fs’vs}ses be as above. Then the disjoint
union H = %HO(VS’ G(FS)) admits a complex space structure
s€ . .
so that ([H,}\,S), is a linear fiber space in the sense of

Grauert[1], where A: ﬂ—-] —>S 1is the canonical projection.
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For a complex vector space A and a non-negative integer
- r, we denote by GF(A) the Grassmann variety of all (r+1)-
dimentional linear subspaces of A, (If dim A € r, then G (A)

is empty.) |

Theorem 3. Let {FS,VS}Ses be as above.» Then the disjoint
union Gr' = UGI'(HO(VS, G(FS))) admits a complex space
seS ' .
structure so that the canonical projection /l,(: (G—r———}s is

a propef holomorphic map.

Sufficient conditions for the non-singularity of the spaces
[H' and Gr are given in the next theorem, which is easily

proved by using Theorem 1.

Theorem 4. Let {Fs’vs}ses be as above. Let o be a non-
singular point of kS. |
(1) Por §e HO(VO, G(FO)), assume that 'C,lg is surjective. Then
H is non-singular at. &  and

14 _ .0 :
aimeH = 222 )n" (% )+ain s,

where hv(f_'o) = dim Hv(Vo,‘O’(.FO)). v
(2) Let LeGr(HO(VO, G(F,))) and let f,§o,° * Sr} be a
basis of L. Assume that the linear map

/o8 €28 F—>( Ty (3/3s),* <+, Ty (3/3s))€H!(V,, O(F N
- op
is surjective. Then (G© is non-singular at L and

dimGF = (2+1) (08 )-n"(F )r-1) + aim .
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2. Next, we apply the theorems in §1 to the case of line
ive
pundles on a projective manifold. Let V be a project manifeld,

A
For a line bundle F on V, let

T : BV, 6(@)x B (v, &) —> " (v, 6(F))
be the bilinear map defined by
T(E ,h)ik(zi) = Si(zi)hik(zi),

mere 5= 1§l e ®20,0@) and n= {n,()} € 5, 6).
Put  Tg(n) = =(§,n). | |
For a cohomology class cGHZ(V,Z) of type (1,1), we put

Pic®(V) = {F l P is a line bundle on V with c¢(F) = c}‘ F

( ¢(F) is the Chern class of F). Then Pic®(V) is an abelian
variety of dimension q = dim 7! (v, ©), the irregularity of V,

and is called the c~th Picard variety of V.

For s €Pic®(V), we denote by F, the line bundle on V

séﬁcf(%; a family of line

bundles. For r=0, we denote by G—g(V) the complex space (]:—:—r

corresponding to s. Then {FS,V}

in Theorem 3 with respect to {FS,V} sePicC(V)* It is regarded
as the set of all linear systems gg on V with "degree" ¢
(i.e., c(I[D]) = ¢ for Dégz) and of dimension I‘; In pai‘ticular,
G-S(V). is the set of all effective divisors D on V such

that ¢([D]) =.c. This is canonically isomorphic to the space
introduced by Weil[13] and Kodaira[5]. The map AL: D EGS(V)
F—> [Dp] €Pic®(V) is called the Jacobi map. \
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Definition. A linear system gg on V is said to be

semi-regular if there are independent DO,- ., Dre gg such

that the linear map
ne B (V, 0)—>( T, (n),~* =, Ty (n))€r(y, OECDI))+
§O §r

is surjective, where Dég‘z and Dy = (&), the zero divisor

of §, € EO(v, &(In])), ogygr.

Theorem 5. Let gieGi(V) be semi-regular. Then it is

a non-singular point of G—g(V) and
. 0
aimgrGo(V) = (+1) @ (@)1 (D)-r-1) + g,
where D€gl and 1¥(D) = dim EY(V, O(ID])).

Remark, If we put r = O, then we get the usual semi-

regularity theorem of Kodaira-Spencer [6].

The following two theorems concerning the Jacobi map are

easy consequences of Theorem 1.

Theorem 6. Assume that there is D e(E‘—g(V) such that
2 (D)>n'(D). Then the Jacobi map M : q:-‘rg(v)—-——> Pic®(V) is
surjective and each fiber of A{ has dimension at least

no(D@)-n1(D)-1.

Theorem 7. For DGGS(V), assume that 110(1))§h1 (D).
Then there are an open neighborhood U of x = AM(D) in Pic®(V)
and a ho(D)XhJl (D)-matrix valued holomorphic function A(y), ye€U,
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on U such that /(/((Gg(V))[\U is the set of zeros of all
10 (D)X 1O (D)-minors of A(y).

Remark. If V is a compact Riemann surface, then Theorem 6
is the Jacobi inversion and Theorem 7 is known as Kempf's

theorem (see Mumford[9]).
Put

ﬂ::g(v) = {ggé(a—g(V) ‘ g:g "has a fixed component or a

base point} .

Then, we can easily show that ﬂ:i(V) is a closed complex

subspace of G‘_i(V),. Put

(E"%r(v) - \cjﬁi(v),, ‘Fr(v)‘ = \ﬂ:i‘(v), (d;sjoint unions).

A holomorphic map f ¢ V —> [Pr is said to be non-degenerate

if the image f(V) is not contained in any hyperplane. Let

HOlnon-—deg(V’ P V,be the set of all non-degenerate holomorphic

maps of V into 1Pr. Then, it is an open subspace of the

Douady space Hol(V, ‘[Pr). Note that Aut(ﬂ)r) acts freely on

i X + r
Theorem 8. The orbit space Hol = _ deg(V, P /aut (PT)

has a complex space structure such that (1) it is biholomorphic

to (E'r(v)’ - u:r(V) and (2) the projection

Hol (v, P¥) —> Hol (v, PY)/aut(PT)

non-deg non-deg

is a principal Aut([P)-bundle.
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Aut(PT) x Aut(V) acts on Hol (v, PY) by the composition

- “non-deg
of maps. By Holmann's theorem[2],

Cor'ollai'y. Assume that Aut(V) is compact. Then

(v, PT)/(aut(PT) x Aut(V))

ry o
(v, IP ) = H01non-deg

admits a complex space structure such that (1) it is biholomorphic
to (GF(V) - FF(V))/aut(V) and (2) if h is alaut(PT)X sut(V)-
invariant holomorphic function on an open subset W of
Hoj‘non—deg(v; PF), then there is a holomorphic function & on
(W) such that R = h, where X : Hol, n geg(Vs PT) —>
M(v, ]Pr) is the projection. '

Example. Let V = (E/(ZZ-H»Z) be a complex 1-torus. Let
0 Dbe the zero of the group V and nO = O+--+ +0 be the -
divisor on V. Let @ : V— ]Pn-1 be the meromorphic map
no|
associated with |nO}. It is in fact a holomorphic imbedding for
_ T
n23. Pat O = P o (V). Tet 8T (1grgn-2) be the open
subspace of the Grassmann variety of all (n~-2-r)-dimensional
linear subspaces of ﬂ)n_1 which do not intersect with C .
Let tx t yeVi—> x+ty eV be the translation of V by
x€V, Let G be the finite subgroup of Aut(V) generated by
t, with nx =0 (the summation in the group V) and by
(1) S_q ¢ yeV—> -yeV, if V is neither biholomorphic to
CAZ+ NTZ) nor w0 CAZ+SZ),(§= (14 43)/2),
(2) sy— : yeV—>4=Ty eV, it V= C (z+ =172),
(3) se : yeV—8yeV, if V= CAz+s2).
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Then every element of G can be extended to be a projective
transformation of EDn—1 mapping Cn onto itself. Thus G

acts on /gi
Now, M(V, [PY) is, in this case, divided into connected

compognents as follows:

M(V, IPI‘) = M (V, ]Pr)UI\'TI.+2(V’ PI‘)U. ¢ "

r+1
where

Mr+1(V,IPr) = one point,
Yy ~ r
M (V,PF) = & /6, for n zr+2.

Mn(V,ﬂ?r) is considered as the moduli space of non-degenerate

holomorphic maps f : V————;ﬂ?r such that
n = (ord £)(deg £(V)),

where ord f is the mapping order of f : V——=>1£(V).

3. Next, we consider the case of compact Riemann surfaces.
Let V be a compact Riemann surface of genus g. In this case,
{}%(V) is written as (}i(v), where n = \f;c. &}i(v) is the
set of all linear systems on V of degree =n and dimension r.
agg(V) is canonically isomorphic to .S™V, the n-th symmetric

product of V. For r>1, put as before

EZE(V) = {gie;&}i(V) ! gi has a fixed point}-,
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S ry . : T
qunon-deg(v’ P )n B {f GHOlnon—deg(v’ P ‘
n = {ozd f£)(deg f(V))}'.
In particular, we put

. 1
Rn(v) - HOlnon—deg(v’iP )n

{f l'f is a meromorphic function on V of order
By fheorem 8,

Hol, o qog (Vs Py /dut(P™) & GE(V) - FE(V).
In particular,

Rn(v)/AuthUg Gl - Flo.

It is a difficult problem to determine n with non-empty
HOlnon—-deg(v’ ]Pr)n and to determine the structure of it for
such n. Even for Rn(V), it seems difficult. Note that Rn(V)
is non-empty for nx>g+i. Rg(V) is non-empty unless V is
hyperelliptic and g is odd. If mnxg, then Rn(V) is non-

singular and of dimension 2n+1-g.

Example. Let V be a non-singular model (of the closure
in IPZ) of the curve y3 = x°-1., It has the genus 7. By some
‘calculations, we can show that (1) .RB(V) o Au‘t(F1), (2) R4(V)
and RS(V) are empty and (3) R.(V) is of dimension 6 and

singular at f = %2, In fact, the tangent cone to R6(V) at

f is given by {(z1,---,z7)é (]:71 Z1ZZ=O}°
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We give here a simple theorem.

Theorem 9. ILet V Dbe a compact Riemann surface of genus
g. Let m and n be positive integers such that (1) m and
n are relatively prime and (2) (m-1)(n-1) £ g-1. Then, at least

one of R (V) and Rn(V) is empty.

Corollary. ILet p be a prime number such that RP(V) is
non-empty. Let n be a positive integer such that (p-1)(n-1)<
g-1. Then

( ){: empty, if ngt O (mod p)

R (V .

n 1 . —

:v_Rn/p(IP ), if n=0 (mod p).

Now, using Serre duality, the semi-regularity condition is

expressed in this case as follows.

Theorem 10. A linear system gzerl(V) is semi-regular °
if and only if, for a basis {.§O, s, r} of fhe linear
subspace of HO(V, 6(rn1)), (Dégi), corresponding to gi and
for ’70, . “’,'QréHo(V, G(KV(@ C-0l1)), (Ky = the canonical
bundle of V), the equality

§O770 + o '.,+'§I'7ZI‘ = OGHO(V, G(Kv))
implies
f,'(O:...:’?Zr:O.

Corollary. (1) Every divisor DES™ isg semi-regular.
(2) g ¢ Gi(V) is semi-regular if and only if h'(2D-D,) = 0,



36
11

1

where Deg1 and Do is the fixed part of g .

n
(3) 1f n'(p) £ 1 for Degr, then g~ is semi-regular.
e EE n n _

"By Theorem 5, if gie@i(v) is semi-regular, then gi
“is a non-singular point of T(V) and
' n

dimgiﬁi(V) = (r+1)(n-r) ~ rg.

Remark. Severi[12] says that, for a general V linear

systems gfl on V depends ((r+1)(n-r) - rg)-parameters.

Next, let gz 2 and T, be the Teichmiiller space of
compact Riemann surfaces of genus g. For ’ceTg, we denote by
Vf the compact Riemann surface corresponding to t. For m >0,
let J (V.) be the Jacobi variety of degree =n, i.e., the set
of all line bundles on Vt of degree mn. It is well known that
(Jn,ic",Tg) = {Jn(vt)}te’f is a family of abelian varieties.

For s EJn, put VS = v?f(s)‘ Let Fs be the line bundle
of degree n on VS corresponding to s. Then {FS,Vs }seJn
is a family of line bundles.

, T r .

We denote by Gn the complex space G in Theorem 3
with respect to the family {FS,VS}SGJn. Then

(E\rg = U rrl(v’c) (disjoint unien).

tel
g

In fact, (E—fl(vt) is a fiber of

. r M 7z

We rewrite the condition of (2) of Theorem 4 in this case
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as follows.

Tema. For §= (s }ex’(v, 0(®) ana -

{qzli)(zi)}eﬂo(V, S(KV®F"1)), 0L V< r, assume that yg‘ob‘éu?[y

= 0, Then
{,é: O7Zi(d §§/dzi)} e 89(v, G(K%’z)),

where z; 1is a coordinate on Ui and {Ui} is an open

covering of V.

Definition. A linear systen gie(gﬁrl is said to be

weak semi~-regular if, for a basis {go, * . ,ﬁr} of the linear

‘ 0 r 0
subspace of H (V, @(Fo)), (Fo = D], D€g ), and for 1, -

nre HO(VO, Ok, ®F:1)), the equalities
(o]
L Yo 0
= 0€ v, ,
,)2;057 0€H(V,, Oy )
{5 Pasias)] - 0w, 668
= (o]
imply ’ﬂ(): ¢ o v == qzrzo.

Of course, semi-regularity implies weak semi-regularity.
By Theorem 4,
r

Theorem 11. If gie Gi is weak semi-regular, then g

is a non-singular point of (E'rrl and
. r o_
dlmggﬁn = (r+1)(n—rl) - rg + 3g - 3.

An interesting fact is

-

2



38

13

Theorem 12. Every element of (Er:l .is weak semi-regular.

Hence G»:l is non-singular and of ‘dimension 2n+2g-5.

Now, we consider the projection

- rﬂ\ :/f\
7c ¢ n ’Jn > T

g
It is a proper holomorphic map. Note that

P ry _ ; . . ' T

7r—((E'rn) = {téTg l there is a linear system g, on Vt}.
A famous known fact is

~ Theorem (Kleimann-Laksov[4], Kempf[3]). If (r+1){n-r) - g
> 0, then 7{(&?1) = T

g

Assertion., The theorem can be proved if one finds a compact
Riemann surface V and a semi-regular linear system gfl on

V, where n = g+r-[g/(r+1)].

In fact, if gFf is semi-regular, then -t 1(7c(gF)) = EE(V)
n o _ n’’. n

r
and GII; are non-singu1ar/\a%1{ld
codinigi'lt-1('7t:(gi)) = {(r+1)(n-—r) - rg + 38 - 3} |

- {(r+1)(n—r) - rg}
3g - 3.

Hence, by the proper mapping theorem, 7r: ﬁ—i———)’l‘g is

is surjective, then 7T ¢ (a_r

surjective. (If 7r: Glrl——aT -

‘ g
-—-———->Tg is also surjective for m>n.)

This is actually what Meis[8]} did for r = 1. In fact, he
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found such V and g; as follows @

Case 1.t g is even. In this case, n = (g+2)/2. Ve may

assume that g = 4. Let V be a non-singular model (of the

closure in 332) of the curve :
7 = (x=1) (x-2) (x=3) (x=4)2" 1 (x-5)2"T(x-6)2"1,

Then V has the genus g. The pencil g1 determined by the

n
meromorphic function x satisfies n!(2Dw(x)) = O. Hence, by

1
1t

Case 2 : g is odd. In this case, n = (g+3)/2. Let V be
in P2
a non-singular model (of the closurg% of the curve :

(2) of Corollary to Theorem 10, g  is semi-regular.

3 n 2n-2
y’ = ]T;(x—i)/ T (x-i).
i=

i=n+1
Then V has the genus g. The pencil gl determined by the
meromorphic function y satisfies h1(2Dd(y)) = 0, so that it

is semi-regular.

Theorem 13. Assume that 2n > g+2. Then 7r: (Ef; Tg

is of maximal rank at glesd}; if and only if g; is semi-regular.
Finally, put

Tg(n) = {'teﬂf , V. has a meromorphic function of order n}.

g

Applying Corollary to Theorem 9, we get

Theorem 14. Let g>=2 and let p be a prime number such

that (p-1)2< g-1. Then,
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(1) Tg(p) is an open subspace of a closed complex subspace of
Tg and is of dimension 2p+2g-5. : _ 2
(2) Tg(p) is singular at t if and only if h?}ew(f)):>'3,

where f 1is a meromorphic function of order 'p on Vt'

Corollary.
(1) (Rauch[101) If g > 2, then Tg(z), the hyperelliptic locus,

is a non-singular closed complex subspace of Tg of dimension
2g-1.,

(2) If g>5, then Tg(3), the locus of trigonal compact
Riemann surfaces, is n6n~singular and of dimension 2g+1.

(3) If p>5 be a prime number such that (p-1)(2p-3)< g-1,

then Tg(p) is non-singular.
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