Families of Linear Systems on Projective Manifolds

Makoto Namba (Tohoku University)

1. By a complex space, we mean a reduced Hausdorff complex analytic space. Let X and S be complex spaces and $\pi: X \longrightarrow S$ a surjective proper holomorphic map. The triple (X, \mathcal{H}, S) is called a <u>family of compact complex manifolds</u> if (1) every fiber $\pi^{-1}(s) = V_s$ is connected and (2) there are an open covering $\{X_i\}$ of X, open subsets U_i of \mathbb{C}^d , open subsets S_i of S and holomorphic isomorphisms $\mathcal{H}_i: X_i \longrightarrow U_i \times S_i$ such that the diagram

$$X_{i} \xrightarrow{\eta_{i}} U_{i} \times S_{i}$$

$$proj$$

commutes. We write

$$\mathcal{N}_{i} \mathcal{N}_{k}^{-1}(z_{k}, s) = (g_{ik}(z_{k}, s), s).$$

We write $\{V_s\}_{s\in S}$ instead of (X,\mathcal{R},S) . A <u>family of holomorphic</u> <u>vector bundles</u> is, by definition, a holomorphic vector bundle \mathcal{F} on X. Put $F_s = \mathcal{F}|_{V_s}$ and write $\{F_s,V_s\}_{s\in S}$ instead of \mathcal{F} . Let $\mathcal{F}'(V_s,\mathcal{O}(F_s))$ be the \mathcal{V} -th cohomology group of the sheaf $\mathcal{O}(F_s)$ over V_s of germs of holomorphic sections of F_s . We may assume that \mathcal{F} is trivial on X_i . Let $\{f_{ik}(z_k,s)\}$ be

the transition matrices of \mathcal{F} . Then, for $o \in S$, we define a bilinear map $\tau \colon \operatorname{H}^0(V_o, \mathcal{O}(F_o)) \times T_oS \longrightarrow \operatorname{H}^1(V_o, \mathcal{O}(F_o))$ by

$$\begin{split} \tau(\xi,\partial/\partial s)_{ik}(z_i) &= (\partial f_{ik}/\partial s)_{(z_k,o)} \xi_k(z_k) \\ &- (\partial \xi_i/\partial z_i)_{z_i} (\partial g_{ik}/\partial s)_{(z_k,o)}, \end{split}$$

where $\xi = \{\xi_i(z_i)\} \in H^0(V_o, O(F_o)), \partial/\partial s \in T_o S$ and $z_k = g_{ki}(z_i, o)$. Put $T_{\xi}(\partial/\partial s) = T(\xi, \partial/\partial s)$.

Using Kuranishi's idea of the proof of the existence of complete families of complex structures (Kuranishi[7]), we get

Theorem 1. Let $\{F_s, V_s\}_{s \in S}$ be a family of holomorphic vector bundles. Then, for any point $o \in S$, there are an open neighborhood U of o in S and a vector bundle homomorphism

$$u : H^{0}(V_{o}, \mathcal{O}(F_{o})) \times U \longrightarrow H^{1}(V_{o}, \mathcal{O}(F_{o})) \times U$$

such that the (disjoint) union $\bigcup_{s \in U} H^0(V_s, \mathcal{O}(F_s))$ is identified with the Ker u. Moreover, we have

$$(du)_{(\xi,0)} = \begin{pmatrix} 0 & \tau_{\xi} \\ 0 & 1 \end{pmatrix}, \text{ for } \xi \in H^{0}(V_{0}, \mathcal{O}(F_{0})).$$

Pathing up the local data, we have the following theorem which is considered as a special case of Schuster[11].

Theorem 2. Let $\{F_s, V_s\}_{s \in S}$ be as above. Then the disjoint union $[H] = \bigcup_{s \in S} H^0(V_s, \mathcal{O}(F_s))$ admits a complex space structure so that $([H,\lambda,S))$ is a linear fiber space in the sense of Grauert [1], where $\lambda: [H] \longrightarrow S$ is the canonical projection.

For a complex vector space A and a non-negative integer r, we denote by $G^{r}(A)$ the Grassmann variety of all (r+1)-dimentional linear subspaces of A. (If dim $A \leq r$, then $G^{r}(A)$ is empty.)

Theorem 3. Let $\{F_s, V_s\}_{s \in S}$ be as above. Then the disjoint union $G^r = \bigcup_{s \in S} G^r(H^0(V_s, O(F_s)))$ admits a complex space structure so that the canonical projection $\mu: G^r \longrightarrow S$ is a proper holomorphic map.

Sufficient conditions for the non-singularity of the spaces $[\ \]$ and $[\ \]$ are given in the next theorem, which is easily proved by using Theorem 1.

Theorem 4. Let $\{F_s, V_s\}_{s \in S}$ be as above. Let o be a nonsingular point of S.

(1) For $\xi \in H^0(V_0, \mathcal{O}(F_0))$, assume that T_{ξ} is surjective. Then [H] is non-singular at ξ and

$$\dim_{\dot{S}} H = h^{0}(F_{o}) - h^{1}(F_{o}) + \dim_{o} S,$$

where $h^{\nu}(F_{o}) = \dim H^{\nu}(V_{o}, \mathcal{O}(F_{o}))$.

(2) Let $L \in G^r(H^0(V_0, \Theta(F_0)))$ and let $\{\xi_0, \dots, \xi_r\}$ be a basis of L. Assume that the linear map

is surjective. Then Gr is non-singular at L and

$$\dim_{\mathbf{L}}(\mathbf{T}^{r} = (r+1)(h^{0}(\mathbf{F}_{0})-h^{1}(\mathbf{F}_{0})-r-1) + \dim_{0} \mathbf{S}.$$

2. Next, we apply the theorems in §1 to the case of line ive bundles on a projective manifold. Let V be a project manifold. For a line bundle F on V, let

$$\tau : H^{0}(V, \mathcal{O}(F)) \times H^{1}(V, \mathcal{O}) \longrightarrow H^{1}(V, \mathcal{O}(F))$$

be the bilinear map defined by

$$\tau(\xi,h)_{ik}(z_i) = \xi_i(z_i)h_{ik}(z_i),$$

where $\xi = \{\xi_i(z_i)\} \in H^0(V, \mathcal{O}(F))$ and $h = \{h_{ik}(z_i)\} \in H^1(V, \mathcal{O})$. Put $T_{\xi}(h) = T(\xi, h)$.

For a cohomology class $c \in H^2(V, \mathbb{Z})$ of type (1,1), we put

$$Pic^{c}(V) = \{F \mid F \text{ is a line bundle on } V \text{ with } c(F) = c \}$$
.

(c(F) is the Chern class of F). Then $Pic^{C}(V)$ is an abelian variety of dimension $q = \dim H^{1}(V, \mathcal{O})$, the irregularity of V, and is called the c-th <u>Picard variety of</u> V.

For $s \in \operatorname{Pic}^{\mathbf{c}}(V)$, we denote by F_s the line bundle on V corresponding to s. Then $\left\{F_s,V\right\}_{s \in \operatorname{Pic}(V)}$ is a family of line bundles. For $r \geq 0$, we denote by $\left(\frac{r}{\operatorname{Tc}}(V) \right)$ the complex space $\left(\frac{r}{\operatorname{Tc}}(V) \right)$ in Theorem 3 with respect to $\left\{F_s,V\right\}_{s \in \operatorname{Pic}^{\mathbf{c}}(V)}$. It is regarded as the set of all linear systems g_c^r on V with "degree" c (i.e., c([D]) = c for $D \in g_c^r$) and of dimension r. In particular, $\left(\frac{r}{\operatorname{Tc}}(V) \right)$ is the set of all effective divisors P on V such that c([D]) = c. This is canonically isomorphic to the space introduced by Weil [13] and Kodaira[5]. The map $\mathcal{M}: D \in \mathcal{C}_{c}^{0}(V)$ $\longrightarrow [D] \in \operatorname{Pic}^{\mathbf{c}}(V)$ is called the Jacobi map.

<u>Definition</u>. A linear system g_c^r on V is said to be <u>semi-regular</u> if there are independent $D_0, \cdots, D_r \in g_c^r$ such that the linear map

is surjective, where $\mathbb{D} \in g_{\mathbf{c}}^{\mathbf{r}}$ and $\mathbb{D}_{\nu} = (\xi_{\nu})$, the zero divisor of $\xi_{\nu} \in \mathbb{H}^{0}(V, \mathcal{O}([\mathbb{D}])), 0 \leq \nu \leq \mathbf{r}$.

Theorem 5. Let $g_c^r \in G_c^r(V)$ be semi-regular. Then it is a non-singular point of $G_c^r(V)$ and

$$\dim_{\mathbf{g}_{\mathbf{c}}^{\mathbf{r}}} (\mathbf{V}) = (\mathbf{r}+1)(\mathbf{h}^{\mathbf{0}}(\mathbf{D})-\mathbf{h}^{\mathbf{1}}(\mathbf{D})-\mathbf{r}-1) + \mathbf{q},$$

where $D \in g_c^r$ and $h^{\nu}(D) = \dim H^{\nu}(V, \mathcal{O}([D]))$.

Remark. If we put r = 0, then we get the usual semi-regularity theorem of Kodaira-Spencer[6].

The following two theorems concerning the Jacobi map are easy consequences of Theorem 1.

Theorem 6. Assume that there is $D \in G_c^0(V)$ such that $h^0(D) > h^1(D)$. Then the Jacobi map $\mathcal{M} : G_c^0(V) \longrightarrow \operatorname{Pic}^c(V)$ is surjective and each fiber of \mathcal{M} has dimension at least $h^0(D) - h^1(D) - 1$.

Theorem 7. For $D \in C_{C}^{0}(V)$, assume that $h^{0}(D) \leq h^{1}(D)$. Then there are an open neighborhood U of $x = \mathcal{M}(D)$ in $Pic^{c}(V)$ and a $h^{0}(D) \times h^{1}(D)$ -matrix valued holomorphic function A(y), $y \in U$, on U such that $\mathcal{M}(\mathcal{C}_{T_{\mathbf{C}}}^{0}(V)) \cap U$ is the set of zeros of all $h^{0}(D) \times h^{0}(D)$ -minors of A(y).

Remark. If V is a compact Riemann surface, then Theorem 6 is the Jacobi inversion and Theorem 7 is known as Kempf's theorem (see Mumford[9]).

Put

$$\mathbb{F}_{c}^{r}(V) = \left\{ g_{c}^{r} \in \mathbb{G}_{c}^{r}(V) \mid g_{c}^{r} \text{ has a fixed component or a base point} \right\}.$$

Then, we can easily show that $\Gamma_c^r(V)$ is a closed complex subspace of $\Gamma_c^r(V)$. Put

$$\mathbb{C}^{r}(V) = \bigvee_{c} \mathbb{C}^{r}(V), \quad \mathbb{F}^{r}(V) = \bigvee_{c} \mathbb{F}^{r}_{c}(V), \quad \text{(disjoint unions)}.$$

A holomorphic map $f: V \longrightarrow \mathbb{P}^r$ is said to be <u>non-degenerate</u> if the image f(V) is not contained in any hyperplane. Let $\operatorname{Hol}_{\operatorname{non-deg}}(V, \mathbb{P}^r)$ be the set of all non-degenerate holomorphic maps of V into \mathbb{P}^r . Then, it is an open subspace of the Douady space $\operatorname{Hol}(V, \mathbb{P}^r)$. Note that $\operatorname{Aut}(\mathbb{P}^r)$ acts freely on $\operatorname{Hol}_{\operatorname{non-deg}}(V, \mathbb{P}^r)$ by the composition of maps.

Theorem 8. The orbit space $\operatorname{Hol}_{\operatorname{non-deg}}(V, \mathbb{P}^r)/\operatorname{Aut}(\mathbb{P}^r)$ has a complex space structure such that (1) it is biholomorphic to $\mathbb{C}^r(V) - \mathbb{F}^r(V)$ and (2) the projection

$$\text{Hol}_{\text{non-deg}}(V, \mathbb{P}^r) \longrightarrow \text{Hol}_{\text{non-deg}}(V, \mathbb{P}^r)/\text{Aut}(\mathbb{P}^r)$$

is a principal Aut(Pr)-bundle.

Aut(\mathbb{P}^r) × Aut(\mathbb{V}) acts on Holmon-deg(\mathbb{V} , \mathbb{P}^r) by the composition of maps. By Holmann's theorem[2],

Corollary. Assume that Aut(V) is compact. Then

$$M(V, \mathbb{P}^r) = Hol_{non-deg}(V, \mathbb{P}^r)/(Aut(\mathbb{P}^r) \times Aut(V))$$

admits a complex space structure such that (1) it is biholomorphic to $(G^r(V) - F^r(V))/Aut(V)$ and (2) if h is a $(Aut(P^r) \times Aut(V))$ -invariant holomorphic function on an open subset W of $Hol_{non-deg}(V, P^r)$, then there is a holomorphic function \hat{h} on $\alpha(W)$ such that $\hat{h}\alpha = h$, where $\alpha: Hol_{non-deg}(V, P^r) \longrightarrow M(V, P^r)$ is the projection.

Example. Let $V = \mathbb{C}/(\mathbb{Z} + \omega \mathbb{Z})$ be a complex 1-torus. Let 0 be the zero of the group V and $n0 = 0 + \cdots + 0$ be the divisor on V. Let $\Phi_{[n0]}: V \longrightarrow \mathbb{P}^{n-1}$ be the meromorphic map associated with [n0]. It is in fact a holomorphic imbedding for $n \geq 3$. Put $C_n = \Phi_{[n0]}(V)$. Let S_n^r $(1 \leq r \leq n-2)$ be the open subspace of the Grassmann variety of all (n-2-r)-dimensional linear subspaces of \mathbb{P}^{n-1} which do not intersect with C_n .

Let $t_x: y \in V \longrightarrow x+y \in V$ be the translation of V by $x \in V$. Let G be the finite subgroup of Aut(V) generated by t_x with nx = 0 (the summation in the group V) and by

- (1) $s_{-1}: y \in V \longrightarrow -y \in V$, if V is neither biholomorphic to $\mathbb{C}/(\mathbb{Z} + \sqrt{-1}\mathbb{Z})$ nor to $\mathbb{C}/(\mathbb{Z} + \mathbb{Z}\mathbb{Z})$, $(\S = (1 + \sqrt{-3})/2)$,
- (2) $s_{\sqrt{-1}}: y \in V \longrightarrow \sqrt{-1}y \in V$, if $V = \mathbb{C}/(\mathbb{Z} + \sqrt{-1}\mathbb{Z})$,
- (3) s₈: $y \in V \longrightarrow gy \in V$, if $V = \mathbb{C}/(\mathbb{Z} + g\mathbb{Z})$.

Then every element of G can be extended to be a projective transformation of \mathbb{P}^{n-1} mapping C_n onto itself. Thus G acts on \mathcal{N}_n^r .

Now, $M(V, \mathbb{P}^r)$ is, in this case, divided into connected compo#nents as follows:

$$M(V, \mathbb{P}^r) = M_{r+1}(V, \mathbb{P}^r) \bigcup_{M_{r+2}(V, \mathbb{P}^r)} \bigcup_{\cdot \cdot \cdot}$$

where

$$M_{r+1}(V, \mathbb{P}^r) = \text{one point},$$
 $M_n(V, \mathbb{P}^r) \cong \mathcal{S}_n^r/G, \text{ for } n \geq r+2.$

 $\mathbb{M}_n(V,\mathbb{P}^r)$ is considered as the moduli space of non-degenerate holomorphic maps $f:V\longrightarrow\mathbb{P}^r$ such that

$$n = (ord f)(deg f(V)),$$

where ord f is the mapping order of $f: V \longrightarrow f(V)$.

3. Next, we consider the case of compact Riemann surfaces. Let V be a compact Riemann surface of genus g. In this case, $\mathbb{C}^r_{\mathsf{Tc}}(V)$ is written as $\mathbb{C}^r_{\mathsf{Tn}}(V)$, where $n = \int_V c \cdot \mathbb{C}^r_{\mathsf{Tn}}(V)$ is the set of all linear systems on V of degree n and dimension r. $\mathbb{C}^0_{\mathsf{Tn}}(V)$ is canonically isomorphic to S^nV , the n-th symmetric product of V. For $r \geq 1$, put as before

$$\mathbb{F}_n^r(V) = \left\{ g_n^r \in \mathbb{G}_n^r(V) \mid g_n^r \text{ has a fixed point} \right\},$$

$$Hol_{non-deg}(V, \mathbb{P}^{r})_{n} = \left\{ f \in Hol_{non-deg}(V, \mathbb{P}^{r}) \right\}$$

$$n = (ord f)(deg f(V)).$$

In particular, we put

$$R_n(V) = \text{Hol}_{non-deg}(V, \mathbb{P}^1)_n$$

= $\{f \mid f \text{ is a meromorphic function on } V \text{ of order } n\}$

By Theorem 8,

$$\operatorname{Hol}_{\operatorname{non-deg}}(\mathbf{V},\mathbf{P}^{\mathbf{r}})_{\mathbf{n}}/\operatorname{Aut}(\mathbf{P}^{\mathbf{r}}) \cong \mathbf{G}_{\mathbf{n}}^{\mathbf{r}}(\mathbf{V}) - \mathbf{F}_{\mathbf{n}}^{\mathbf{r}}(\mathbf{V}).$$

In particular,

$$R_n(V)/Aut(\mathbb{P}^1) \cong G_n^1(V) - \mathbb{F}_n^1(V).$$

It is a difficult problem to determine n with non-empty $\operatorname{Hol}_{\operatorname{non-deg}}(V,\mathbb{P}^r)_n$ and to determine the structure of it for such n. Even for $R_n(V)$, it seems difficult. Note that $R_n(V)$ is non-empty for $n \geq g+1$. $R_g(V)$ is non-empty unless V is hyperelliptic and g is odd. If $n \geq g$, then $R_n(V)$ is non-singular and of dimension 2n+1-g.

Example. Let V be a non-singular model (of the closure in \mathbb{P}^2) of the curve $y^3=x^8-1$. It has the genus 7. By some calculations, we can show that (1) $R_3(V)\cong \operatorname{Aut}(\mathbb{P}^1)$, (2) $R_4(V)$ and $R_5(V)$ are empty and (3) $R_6(V)$ is of dimension 6 and singular at $f=x^2$. In fact, the tangent cone to $R_6(V)$ at f is given by $\left\{(z_1,\cdots,z_7)\in\mathbb{C}^7\mid z_1z_2=0\right\}$.

We give here a simple theorem.

Theorem 9. Let V be a compact Riemann surface of genus g. Let m and n be positive integers such that (1) m and n are relatively prime and (2) $(m-1)(n-1) \leq g-1$. Then, at least one of $R_m(V)$ and $R_n(V)$ is empty.

Corollary. Let p be a prime number such that $R_p(V)$ is non-empty. Let n be a positive integer such that $(p-1)(n-1) \le g-1$. Then

$$R_{n}(V) \begin{cases} = \text{empty, if } n \not\equiv 0 \pmod{p} \\ \cong R_{n/p}(\mathbb{P}^{1}), \text{ if } n \equiv 0 \pmod{p}. \end{cases}$$

Now, using Serre duality, the semi-regularity condition is expressed in this case as follows.

Theorem 10. A linear system $g_n^r \in G_n^r(V)$ is semi-regular if and only if, for a basis $\{\xi^0, \cdots, \xi^r\}$ of the linear subspace of $H^0(V, \mathcal{O}([D]))$, $(D \in g_n^r)$, corresponding to g_n^r and for $\mathcal{T}^0, \cdots, \mathcal{T}^r \in H^0(V, \mathcal{O}(K_V \otimes [-D]))$, $(K_V = \text{the canonical})$ bundle of V, the equality

$$\xi^0 \eta^0 + \cdots + \xi^r \eta^r = 0 \in H^0(V, \Theta(K_V))$$

implies

$$\eta^0 = \cdots = \eta^r = 0.$$

Corollary. (1) Every divisor $D \in S^n V$ is semi-regular. (2) $g_n^1 \in G_n^1(V)$ is semi-regular if and only if $h^1(2D-D_{\bar{0}}) = 0$,

where $D \in g_n^1$ and D_o is the fixed part of g_n^1 . (3) If $h^1(D) \le 1$ for $D \in g_n^r$, then g_n^r is semi-regular.

By Theorem 5, if $g_n^r \in G_n^r(V)$ is semi-regular, then g_n^r is a non-singular point of $G_n^r(V)$ and

$$\dim_{g_n^r}(G_n^r(V) = (r+1)(n-r) - rg.$$

Remark. Severi[12] says that, for a general V linear systems g_n^r on V depends ((r+1)(n-r) - rg)-parameters.

Next, let $g \ge 2$ and T_g be the Teichmüller space of compact Riemann surfaces of genus g. For $t \in T_g$, we denote by V_t the compact Riemann surface corresponding to t. For n>0, let $J_n(V_t)$ be the Jacobi variety of degree n, i.e., the set of all line bundles on V_t of degree n. It is well known that $(J_n, \widehat{\pi}, T_g) = \{J_n(V_t)\}_{t \in T_g}$ is a family of abelian varieties.

 $(J_n,\widetilde{\pi},T_g) = \left\{J_n(V_t)\right\}_{t\in T_g} \text{ is a family of abelian varieties.}$ For $s\in J_n$, put $V_s=V_{\widetilde{\pi}(s)}.$ Let F_s be the line bundle of degree n on V_s corresponding to s. Then $\left\{F_s,V_s\right\}_{s\in J_n}$ is a family of line bundles.

We denote by G_n^r the complex space G_r^r in Theorem 3 with respect to the family $\{F_s,V_s\}_{s\in J_n}$. Then

$$G_n^r = \bigcup_{t \in T_g} G_n^r(V_t)$$
 (disjoint union).

In fact, $(T_n^r(V_t))$ is a fiber of

$$\pi: \mathbb{G}_n^r \xrightarrow{\mathcal{U}} J_n \xrightarrow{\widetilde{\pi}} T_g.$$

We rewrite the condition of (2) of Theorem 4 in this case

as follows.

Lemma. For $\S^{\nu} = \{ \xi_{i}^{\nu}(z_{i}) \} \in H^{0}(V, \mathcal{O}(F))$ and $\gamma^{\nu} = \{ \gamma_{i}^{\nu}(z_{i}) \} \in H^{0}(V, \mathcal{O}(K_{V} \otimes F^{-1})), 0 \leq \nu \leq r, \text{ assume that } \sum_{\nu=0}^{r} \S^{\nu} \gamma^{\nu} = 0. \text{ Then}$

$$\left\{\sum_{\nu=0}^{r} \gamma_{i} (d \xi_{i}^{\nu}/dz_{i})\right\} \in H^{0}(V, \mathcal{O}(K_{V}^{\otimes 2})),$$

where z_i is a coordinate on U_i and $\left\{U_i\right\}$ is an open covering of V_{\bullet}

<u>Definition</u>. A linear system $g_n^r \in \mathbb{G}_n^r$ is said to be <u>weak semi-regular</u> if, for a basis $\{\xi^0, \cdots, \xi^r\}$ of the linear subspace of $H^0(V_o, \mathcal{O}(F_o))$, $(F_o = [D], D \in g_n^r)$, and for η^0, \cdots , $\eta^r \in H^0(V_o, \mathcal{O}(K_V \otimes F_o^{-1}))$, the equalities

$$\begin{cases} \sum_{\nu=0}^{r} \xi^{\nu} \eta^{\nu} = 0 \in H^{0}(V_{o}, \mathcal{O}(K_{V_{o}})), \\ \left\{ \sum_{\nu=0}^{r} \eta^{\nu}_{i} (d \xi_{i}^{\nu}/dz_{i}) \right\} = 0 \in H^{0}(V_{o}, \mathcal{O}(K_{V_{o}}^{\otimes 2})) \\ \text{imply} \quad \eta^{0} = \cdots = \eta^{r} = 0. \end{cases}$$

Of course, semi-regularity implies weak semi-regularity. By Theorem 4,

Theorem 11. If $g_n^r \in \mathbb{G}_n^r$ is weak semi-regular, then g_n^r is a non-singular point of \mathbb{G}_n^r and

$$\dim_{g_{n}} \mathbf{G}_{n}^{r} = (r+1)(n-r) - rg + 3g - 3.$$

An interesting fact is

Theorem 12. Every element of $\binom{1}{n}$ is weak semi-regular. Hence $\binom{1}{n}$ is non-singular and of dimension 2n+2g-5.

Now, we consider the projection

$$\pi: \mathbb{G}_n^r \xrightarrow{\mathcal{M}} J_n \xrightarrow{\widetilde{\pi}} T_g.$$

It is a proper holomorphic map. Note that

$$\pi(G_n^r) = \{t \in T_g \mid \text{there is a linear system } g_n^r \text{ on } V_t \}.$$

A famous known fact is

Theorem (Kleimann-Laksov[4], Kempf[3]). If $(r+1)(n-r) - rg \ge 0$, then $\pi(\mathbb{T}_n^r) = \mathbb{T}_g$.

Assertion. The theorem can be proved if one finds a compact Riemann surface V and a semi-regular linear system g_n^r on V, where n = g+r-[g/(r+1)].

In fact, if g_n^r is semi-regular, then $\pi^{-1}(\pi(g_n^r)) = G_n^r(V)$ and G_n^r are non-singular, and

$$\operatorname{codim}_{g_{\mathbf{n}}} \pi^{-1}(\pi(g_{\mathbf{n}}^{\mathbf{r}})) = \{(r+1)(n-r) - rg + 3g - 3\}$$
$$- \{(r+1)(n-r) - rg\}$$
$$= 3g - 3.$$

Hence, by the proper mapping theorem, $\pi: \mathbb{G}_n^r \longrightarrow \mathbb{T}_g$ is surjective. (If $\pi: \mathbb{G}_n^r \longrightarrow \mathbb{T}_g$ is surjective, then $\pi: \mathbb{G}_m^r \longrightarrow \mathbb{T}_g$ is also surjective for m > n.)

This is actually what Meis[8] did for r = 1. In fact, he

found such V and g_n^1 as follows :

Case 1: g is even. In this case, n = (g+2)/2. We may assume that $g \ge 4$. Let V be a non-singular model (of the closure in \mathbb{P}^2) of the curve:

$$y^n = (x-1)(x-2)(x-3)(x-4)^{n-1}(x-5)^{n-1}(x-6)^{n-1}$$
.

Then V has the genus g. The pencil g_n^1 determined by the meromorphic function x satisfies $h^1(2D_\infty(x)) = 0$. Hence, by (2) of Corollary to Theorem 10, g_n^1 is semi-regular.

Case 2: g is odd. In this case, n = (g+3)/2. Let V be in \mathbb{P}^2 a non-singular model (of the closure) of the curve:

$$y^3 = \prod_{i=1}^{n} (x-i) / \prod_{i=n+1}^{2n-2} (x-i).$$

Then V has the genus g. The pencil g_n^1 determined by the meromorphic function y satisfies $h^1(2D_\infty(y)) = 0$, so that it is semi-regular.

Theorem 13. Assume that $2n \ge g+2$. Then $\pi: (f_n^1 \longrightarrow f_g)$ is of maximal rank at $g_n^1 \in (f_n^1)$ if and only if g_n^1 is semi-regular.

Finally, put

 $T_g(n) = \{ t \in T_g \mid V_t \text{ has a meromorphic function of order } n \}.$ Applying Corollary to Theorem 9, we get

Theorem 14. Let $g \ge 2$ and let p be a prime number such that $(p-1)^2 \le g-1$. Then,

- (1) $T_g(p)$ is an open subspace of a closed complex subspace of T_g and is of dimension 2p+2g-5.
- (2) $T_g(p)$ is singular at t if and only if $h^0(D_\infty(f)) > 3$, where f is a meromorphic function of order p on V_t .

Corollary.

- (1) (Rauch[10]) If $g \ge 2$, then $T_g(2)$, the hyperelliptic locus, is a non-singular closed complex subspace of T_g of dimension 2g-1.
- (2) If $g \ge 5$, then $T_g(3)$, the locus of trigonal compact Riemann surfaces, is non-singular and of dimension 2g+1.
- (3) If $p \ge 5$ be a prime number such that $(p-1)(2p-3) \le g-1$, then $T_g(p)$ is non-singular.

References

- [1] Grauert, H.: Über Modifikationen und exeptionelle analytische Mengen, Math. Ann., 146(1962), 331-368.
- [2] Holmann, H.: Komplexe Räume mit komplexen Transformationsgruppen, Math. Ann., 150(1963), 327-360.
- [3] Kempf, G.: Schbert methods with an application to algebraic curves, Publ. Math. Centrum, Amsterdam, 1971.
- [4] Kleimann, S. and Laksov, D.: On the existence of special divisors, Amer. J. Math., 94(1972), 431-436.
- [5] Kodaira, K.: Characteristic linear systems of complete

- continuous systems, Amer. J. Math., 78(1956), 716-744.
- [6] Kodaira, K. and Spencer, D.C.: A theorem of completeness of characteristic systems of complete continuous systems, Amer. J. Math., 81(1959), 477-500.
- [7] Kuranishi, M.: New proof for the existence of locally complete families of complex structures, Proc. Conf. on Complex Analysis, Minneapolis, 1964.
- [8] Meis, T.: Die minimale Blätterzahl der Konkretisierung einer kompakten Riemannischen Fläche, Schr. Math. Inst. Univ. Münster, 1960.
- [9] Mumford, D.: Curves and their Jacobians, The University of Michigan Press, 1975.
- [10] Rauch, H.E.: Weierstrass points, branch points and the moduli of Riemann surfaces, Comm. Pure Appl. Math., 12(1959), 543-560.
- [11] Schuster, H.: Zur Theorie der Deformationen kompakter komplexer Räume, Inv. Math., 9(1970), 284-294.
- [12] Severi, F.: Vorlesungen über Algebraische Geometrie, tr. by E. Löffler, Leipzig, Teubner, 1921.
- [13] Weil, A.: On Picard varieties, Amer. J. Math., 74(1952), 865-894.