Riemann-Hilbert Problem and its Application to Analytic
Functions of Several Complex Variables

by Michitaka Kita

- In this note, we shall give a brief sketch of the proof of the local existence of holomorphic functions in an analytic cover π: Y → X by using a solution of Riemann-Hilbert problem. The existence of such functions was earlier proved in 1958 by H. Grauert and R. Remmert [2] and in 1960 by R. Kawai [3] by different methods. The complete proof of the note will be found in [4].
- 1. Let us recall the definitions of <u>analytic covers (ramified Riemann domains)</u> and holomorphic functions on them: let Y be a locally compact, Hausdorff space and let X be a complex manifold. An analytic cover is a triple $\pi: Y \longrightarrow X$ such that 1) π is a proper, continuous mapping of Y <u>onto</u> X with discrete fibers. 2) There are a divisor D of X and a positive integer $q \in N$ such that π is a q-sheeted topological covering map from $Y \pi^{-1}(D)$ onto X D. 3) $Y \pi^{-1}(D)$ is dense in Y.

 4) For any point $y \in \pi^{-1}(D)$ and any connected open negihbourhood U of y, there exists an open neighbourhood U' \subset U such that U' $-\pi^{-1}(D) \cap U'$ is connected.

D is called the <u>critical locus</u> of an analytic cover $\pi: Y \longrightarrow X$ and q is called the <u>sheet number</u> of it. A continuous function f(y) on an open subset U of Y is, by def., <u>holomorphic</u> on U if the restriction of f(y) to $U - U \cap \pi^{-1}(D)$ is holomorphic in the usual sense. Roughly,

speaking, analytic space in the sense of Behnke-Stein is a C-local ringed space (X, O) such that locally it is isomorphic to an analytic cover. H. Grauert and R. Remmer [2] and R. Kawai [3] proved that (X, O) is a normal analytic space in the sense of Cartan-Serre. Our aim is to prove this theorem by using the Riemann-Hilbert problem.

Let $\pi: Y \longrightarrow X$ be an analytic cover with critical locus D whose sheet number is q. By the def. of analytic space in the sense of Behnke-Stein, the problem is <u>local</u>, i.e., we can assume X to be a polydisc in \mathfrak{C}^n and <u>it is sufficient to show the existence of a holomorphic function f(y) on Y</u> separating any two points in $\pi^{-1}(x_0)$, $x_0 \in X - D$.

2. Later on, we suppose that X is a polydisc in ${\bf c}^n$. We write Y* := Y - π^{-1} (D) and X* := X - D. A holomorphic function on Y* can be considered as a many-valued function on X*. Using this fact, we obtain the relation between holomorphic functions on Y* and linear representation of π_1 (X*, x_0). We state this more detail: let $\pi^{-1}(x_0) = \{y_1, \cdots, y_q\}$ and fix this numbering. Since Y* is a Stein manifold, there exists a holomorphic funciton g(y) on Y* such that g(y_i) = i for i = 1, \cdots, q. Choose a sufficiently small polydisc U \(\mathbb{Z} \) centered at x_0 and let $g_i(x)$ be the branch of g(y) on U such that $g_i(x_0) = i$. It follows that $g_i(x)$ can be continued analytically on X*, but in general, it is not single-valued. Consider the vector-valued function $\vec{g}(x) = (g_1(x), \cdots, g_q(x))$ on U which can be continued analytically on X* and is many-

valued on X*. We shall show that g(x) gives a linear representation of $\pi_1(X^*, x_0)$; let γ be a closed curve in X* issuing from x_0 . Since $\pi: Y^* \longrightarrow X^*$ is a topological covering, there are the paths γ_i in Y* starting from y_i such that $\pi(\gamma_i) = \gamma$. Let us denote by $x_{\gamma_*(i)}$ the end point of γ_i ; then $\binom{1}{\gamma_*(1), \cdots, \gamma_*(q)}$ is a permutation of q letters $\{1, \cdots, q\}$.

It follows that the result of analytic continuation of $g_i(x)$ along γ is the element $g_{\gamma_*(i)}(x)$. Let S_q be the symmetric group of q letters $\{1,\cdots,q\}$ and let $e_i=(0,\cdots,1,\cdots,0)$ $(i=1,\cdots,q)$ be the standard basis of \mathfrak{C}^q . We denote by $J:S_q \longrightarrow \operatorname{GL}(q,\mathfrak{C})$ the following standard faithful representation: for $\sigma \in S_q$, $j(\sigma)(\Sigma u_i e_i) = \Sigma u_i e_{\sigma(i)}$.

Let γ be a closed curve in X* issuing from x_0 , and we denote by $\gamma_*(g) = (g_{\gamma_*(1)}, \cdots, g_{\gamma_*(q)})$ the result of analytic continuation of $g = \overrightarrow{g}(g_1, \cdots, g_q)$ along γ . It follows that

$$(g_{\gamma_{\star}(1)}, \cdots, g_{\gamma_{\star}(q)}) = (g_{1}, \cdots, g_{q}) ([\gamma])$$
 if we write $\rho([\gamma]) = j(\begin{pmatrix} 1, \cdots, q \\ \gamma_{\star}(1), \cdots, \gamma_{\star}(q) \end{pmatrix}).$

Lemma 1. Let ρ : $\pi_1(X^\star,\ x_o) \longrightarrow GL(q,\ \mathfrak C)$ be as above. Then ρ is a finite representation of $\pi_1(X^\star,\ x_o)$.

We call ρ the monodromy representation associated with the analytic cover $\pi: Y \longrightarrow X$. Conversely, we consider a many-valued holomorphic function $\vec{h}(x) = (h_1(x), \dots, h_q(x))$ on X^* satisfying $\gamma_* \vec{h}(x) = \vec{h}(x) \rho([\gamma])$ for any closed curve γ in X^* issuing from x_0 . Then we obtain the following:

Lemma 2. Let $\vec{h}(x)$ be as above and suppose that Y* is connected. Write $h(y) := h_1(\pi(y))$ in a small polydisc in Y* centered at y_1 . Then h(y) can be continued analytically along any path in Y* starting from y_1 ; moreover it determines a single-valued holomorphic function $\vec{h}(y)$ on Y* whose function element at y_i coincides with $h_i(\pi(y))$ for $i = 1, \dots, q$.

Suppose that $\widetilde{h}(y)$ is locally bounded at every point of $\pi^{-1}(D-\text{sing }D)$. Then from well-known facts about function theory on analytic covers, it follows that $\widetilde{h}(y)$ can be extended to the unique holomorphic function on Y.

Summarizing, we obtain the following:

Proposition 1. Let $\pi: Y \to X$ be an analytic cover and let $\rho: \pi_1(X, x_0) \to GL(q, \mathbb{C})$ be the monodromy representation associated with the analytic cover Y. Suppose that there exists a many-valued holomorphic function $\vec{h}(x) = (h_1(x), \cdots, h_q(y))$ on X* such that $\gamma_*(\vec{h}) = \vec{h}_\rho([\gamma])$ for any $[\gamma] \in \pi_1(X^*, x_0)$ and that $h_1(x_0) \neq h_j(x_0)$ for any $i \neq j$. Let $\tilde{h}(y)$ be the single-valued function on $Y - \pi^{-1}(D)$ defined in Lemma 2. If $\tilde{h}(y)$ is locally bounded at every point of $\pi^{-1}(D - \sin g D)$, then $\tilde{h}(y)$ can be extended to the unique holomorphic function on Y which is desired at the end of n^0 1.

3. Therefore we must construct the many-valued function whose behaviour is the given one. For this purpose, we solve Riemann-Hilbert problem. Let X be a connected complex manifold and let D be a divisor of X. Let $X^* = X - D$ and $x_0 \in X$. We consider a completely integrable total differential eq. on X^*

(3.1)
$$d\begin{pmatrix} y_1 \\ \vdots \\ y_q \end{pmatrix} + \begin{pmatrix} \Omega_{11} & \cdots & \Omega_{1q} \\ & \cdots & \\ & \Omega_{q1} & \cdots & \Omega_{qq} \end{pmatrix} \begin{pmatrix} y_1 \\ \vdots \\ y_q \end{pmatrix} = 0$$

We choose q linearly independent solutions f_1, \dots, f_q of (3.1) at x_0 , and let γ be any closed curve in X* issuing from x_0 . We denote by $\gamma_*[f_1, \dots, f_q]$ the result of analytic continuation of the function element $[f_1, \dots, f_q]$ along the curve γ . Since $[\gamma_*(f_1), \dots, \gamma_*(f_q)]$ are also q linearly independent solutions of (3.1), we have

$$\gamma_*[f_1, \dots, f_q] = [f_1, \dots, f_q]M(\gamma)$$

for some $M(\gamma) \in GL(q, \mathbb{C})$. It is well known that the mapping $\rho : [\gamma] \in \pi_1(X^*, x_0) \to M(\gamma) \in GL(q, \mathbb{C}) \text{ is a } \underline{\text{homomorphism}} \text{ and}$ $\rho \text{ is called the } \underline{\text{monodromy representation}} \text{ of } (3.1) \text{ with respect}$ to $[f_1, \cdots, f_q]$.

Conversely, given a linear representation $\rho: \pi_1(X^*, x_0) \to GL(q, \mathbb{C})$. We shall attempt to construct a completely integrable total diff. eq. (3.1) on X^* which satisfies the following two conditions:

- 1) (3.1) is <u>regualr singular</u> along D, moreover there exists a divisor A in X along which (3.1) may have apparent singularity.
- 2) the monodromy representation of (3.1) with respect to certain independent solutions coincides with the given ρ .

We shall call the <u>Riemann-Hilbert problem</u> the problem of constructing the eq. (3.1) which satisfies the above two conditions.

In order to construct the many-valued function stated

in Proposition 1, using the results of P. Deligne [1], we solve Riemann-Hilbert problem in the following situation: let X be a Stein manifold and let D be a divisor of X (not necessarily normal crossing). In solving the problem, we use essentially the extension theorem of coherent analytic sheaves of J.-P. Serre [7] and Y.-T. Siu [8].

Our main results is the following:

Theorem 1. Let X and D be as above. Suppose that a linear representation $\rho:\pi_1(X^*, x_0) \longrightarrow GL(q, \mathbb{C})$ is given, where $X^*=X$ - D. Then we can construct a total diff. eq. (3.1) as follows:

- 1) there exists a divisor A of X such that A does not contain any irreducible component of D.
- 2) the eq. (3.1) is completely integrable on $X A \stackrel{\checkmark}{\smile} D$; moreover A is the apparent singularity of (3.1).
- 3) the monodromy representation of (3.1) coincides with the given ρ .

Using the Oka principle and results of F. Peterson [5] and J.-P. Serre [7], we can study more detail the case of dim X=2 than that of dim $X \ge 3$.

Theorem 2. Let X be a connected Stein manifold of dim X = 2. If $H^2(X, Z) = 0$, then for any divisor D and representation $\rho: \pi_1(X-D, x_0) \longrightarrow GL(q, \mathbb{C})$, we can always find a solution of the Riemann-Hilbert problem without apparent singularity.

Remark. In the case of Theorem 2, let $\Omega = (\Omega_{ij})$ be the

connection matrix of the eq. (3.1). From the construction of the eq. (3.1), we see that each Ω_{ij} is a meromorphic form with generically logarithmic poles along D. This notion was introduced by K. Saito, [6].

- 4. Let $\pi: Y \to X$ be an analytic cover where X is a polydisc in \mathbb{C}^n , and let q be the sheet number of Y. We shall solve the problem proposed at the end of n^O 1. Since the problem is local, we can suppose that the critical locus D of Y has $\frac{\text{finite irreducible components:}}{\text{inite irreducible components:}} D = \bigcup_{i=1}^{m} D_i \text{ and that } Y \pi^{-1}(D)$ is connected by 4) of the def. of analytic cover (See n^O 1). Let ρ be the monodromy representation associated with Y. Since X is a Stein manifold, there exists, by Theorem 1, total diff. eq. (3.1) as follows:
- 1) there exists a divisor A of X such that $x_0 \notin A$, $D_i \notin A$ and (3.1) is regular singular along A \cup D; moreover A is the apparent singularity of (3.1).
- 2) If we choose q linearly independent solutions f_1, \cdots, f_q of (3.1) at x_0 properly, we have

$$\gamma_*[f_1, \dots, f_q] = [f_1, \dots, f_q] \rho([\gamma])$$

for any closed curve γ in X - D issuing from x_0 . Put $f_i(x) = {}^t(f_{1i}(x), \cdots, f_{qi}(x))$, and we define $g_j(x) = (f_{j1}(x), \cdots, f_{iq}(x))$; thus we have

$$\gamma_*(g_j) = g_j \rho([\gamma])$$
 for any $[\gamma] \in \pi_1(X - D, x_0)$.

Since f_1, \dots, f_q are linearly independent solutions of (3.1) at x_0 , there are constants $c_i \in \mathbb{C}$ (i = 1, ..., q) such that,

putting $\vec{h} = \sum_{i=1}^{q} c_i g_i$, we have $\vec{h}(x_0) = (1, \dots, q)$ and $\gamma_*(\vec{h}) = \vec{h}\rho([\Upsilon])$ for any $[\Upsilon] \in \pi_1(X-D, x_0)$. By lemma 2, there exists a holomorphic function h(y) on Y* such that $h(y_i) = i$ for $i = 1, \dots, q$. Since the eq. (3.1) is regular singular along A \vee D and since π : Y - π^{-1} (Sing D) \longrightarrow X - sing D is a finite holomorphic map between complex manifolds, $\tilde{h}(y)$ has most pole along [Y - π^{-1} (Sing D)] $\cap \pi^{-1}$ (A $^{\smile}$ D). Since the problem is local, by shrinking X slightly if necessary, we can suppose that the number of irreducible components of A is finite: $A = \bigcup_{j=1}^{x} A_{j}$. Since the Cousin's second problem has always a solution on X, we can write A_{j} and D_{i} in the form $A_{i} = \{a_{i}(x) = 0\}$ and $D_{i} = \{d_{i}(x) = 0\}$ for any i and j where $a_i, d_i \in \Gamma(X, \mathcal{O}_X)$. Since $\widetilde{h}(y)$ has at most pole along [Y - π^{-1} (Sing D)] $\cap \pi^{-1}$ (A $^{\vee}$ D), there are positive integers μ_{j} and v_{i} such that, putting $c(x) = \int_{j=1}^{\ell} a_{j}(x)^{\mu j} \int_{i=1}^{m} d_{i}(x)^{\nu i}$, $c(\pi(y))\hat{h}(y)$ is holomorphic on Y - π^{-1} (Sing D); hence by proposition $l c(\pi(y))\hat{h}(y)$ can be extended to the unique holomorphic function H(y) on Y. Since $c(x_0) \neq 0$, we have $H(y_i) \neq H(y_i)$ for any $i \neq j$. This is the function which we want to construct. Summarizing, we obtain the following:

Theorem 3. Let $\pi: Y \longrightarrow X$ be an analytic cover whose critical locus is D, where X is a polydisc in \mathbb{C}^n . Let $x_0 \in X - D$ and suppose that $\rho: \pi_1(X - D, x_0) \longrightarrow GL(q, \mathbb{C})$ is the monodromy representation associated with the analytic cover Y. Then, using a solution of the Riemann-Hilbert problem for the representation ρ , by shrinking X slightly if necessary, we can construct a holomorphic function on Y which separates any two points in $\pi^{-1}(x_0)$.

References

- [1] P. Deligne, Equations différentielles à points singuliers réguliers, Lecture Notes in Math. 163, Springer-Verlag.
- [2] H. Grauert und R. Remmert, Komplexe Räume, Math. Ann., 136(1958), 393-443.
- [3] R. Kawai, On the construction of a holomorphic function in the neighbourhood of a critical point of a ramified domain, Contributions to Function Theory, Tata Institute, 1960, Bombay.
- [4] M. Kita, Riemann-Hilbert Problem and its Application to Analytic Functions of Several Complex Variables, to appear in Tokyo Journal of Math.
- [5] F. Peterson, Some Remarks on Chern classes, Ann. of Math. 69(1959), 414-420.
- [6] K. Saito, On the uniformization of complements of discriminant loci, (preprint).
- [7] J.-P. Serre, Prolongement de faisceaux analytiques cohérents, Ann. Inst. Fourier, 16(1966), 363-374.
- [8] Y.-T. Siu, Techniques of extension of analytic objects, Lecture Notes in Pure and Applied Math., 8, Dekker, New York 1974.

Department of Mathematics
Faculty of Science and Technology
Sophia University
7 Kioicho, Chiyoda-ku, Tokyo,
Japan