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Riemann-Hilbert Problem and its Application to Analytic

Functions of Several Complex Variables

by Michitaka Kita

0. In 'this note, we shall give a brief sketch of the proof
of the local existence of holomorphic functions in an analytic
cover T: Y —> X by using a solution of Riemann-Hilbert problem.
The existence of such functions was earlier proved in 1958
by H. Grauert and R. Remmert [2] and in 1960 by R. Kawai [3]

‘by different methods, The complete proof of the note will be

found in [4].

1. Let us recall the definitions of analytic covers (rami-

fied Riemann domains) and holomorphic functions on them: let

Y be a locally compact, Hausdorff space and let X be a complex
manifold. An analYtic cover is a triple m : Y — X such that

1) m is a proper, continuous mapping of Y onto X with discrete
fibers. 2) There are a divisor D of X and a positive integer

q &€ N such that m™ is a g-sheeted topological covering map

from Y - 7 1(D) onto X - D. 3) Y - 7 1(D) is dense in Y.

4) For any point y € ﬂfl(D) and any connected open negihbour-

hood U of y, there exists an open neighbourhood U' € U such

that U' - ﬂ—l(D)(\ U' is connected.

D is called the critical locus of an analytic cover

mT: Y —>X and g 1is called the sheet number of it.

A continuous function f(y) on an open subset U of Y is,

by def., holomorphic on U if the restriction of f(y) to
1

U~-~UAT (D) is holomorphic in the usual sense. Roughly,
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speaking, analytic space in the sense of Behnke-Stein is

a C-local ringed space (X, &) such that locally it is
isomorphic to an analytic cover. H. Grauert and R. Remmer
[2] and R. Kawai [3] proved that (X, @) is a normal analytic

space in the sense of Cartan-Serre. Our aim is to prove this

theorem by using the Riemann-Hilbert problem.

Let m : Y — X be an analytic cover with critical locus
D whose sheet number is g. By the def. of analytic space in
the sense of Behnke-Stein, the problem is local, i.e., we

can assume X to be a polydisc in ¢" and it is sufficient to

show the existence of a holomorphic function f(y) on ¥

separating any two points in ﬂ_l(Xo), X € X - D.

2. Later on, we suppose that X isa polydisc in e, We
write Y* := Y - ﬂ_l(D) and X* := X - D. A holomorphic
function on Y* can be considered as a many-valued function on X¥*.
Using this fact, we obtain the relation between holomorphic
functions on Y* and linear representation of Wl(X*, X ), We

o
state this more detail: 1let ﬂ—l(x ) = {yl,°°-, yq} and fix

o
this numbering. Since Y* is a Stein manifold, there exists
a holomorphic funciton g(y) on ¥Y* such that g(yi) = i for
i=1,-++,9g. Choose a sufficiently small polydisc U X
centered at X and let gi(x) be the branch of g(y) on U such
that gi(xo) = i. It follows that gi(x) can be continued
analytically on X*, but in general, it is not single-valued.

Consider the vector-valued function a(x) = (gl(x), "',gq(x))

on U which can be continued analytically on X* and is many-
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valued on X*. We shall show that a(x)ggives a linear

representation of ﬂl(X*, xo); let y be a closed curve in X*

issuing from X - Since m : Y* — X* is a topological covering,
there are the paths Y; in Y* starting from Yy such that
n(yi) = y. Let us denote by-xY*(i) the end point of Yyt

1, ... , g

then ( ) is a permutation of g letters {1, °°°, ql.

Ye (L) seoory, (@)
It follows that the result of analytic continuation of gi(x)

-along y is the element g (x). Let Sq be the symmetric

Y (1) i-th place
group of g letters {1, .-+, g} and let e, = (0,++, 1,+-, 0)
(i=1, *++, q) be the standard basis of ¢?. we denote by J :Sq

— GL(g, €) the following standard faithful representation:
for o € Sq, j (o) (iuiei) = ?_uied(i)'
Let vy be a closed curve in X* issuing from X and we denote

by v« (g) = (gY (1)’ """ )) the result of analytic conti-
*

"Iy, (q
nuation of g = a(gl, ---,gq) along y. It follows that

(gY*(l),"‘,gY*(q)) = (gll"'lgq) ([vyD)

' ‘ . (l’ PR ? g "
if we write p([y]l) = j( Y, (1), ---,y*(q)))'

Lemma 1. Let p : Wl(X*, xo) —> GL(g, €) be as above.

Then p is a finite representation of ﬂl(X*, Xo)'

We call p the monodromy representation associated with the

analytic cover m : Y — X. Conversely, we consider a many-
valued holomorphic function h(x) = (hl(x),"', hq(x)) on X*¥
satisfying Y*K(x) = K(x)p([y]) for any closed curve y in X*

issuing from X . Then we obtain the following:
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Lemma 2. Let ﬁ(x) be as above and suppose that Y* is
connected. Write h(y) := hl(ﬂ(y)) in a small polydisc in Y*
centered at Yq- Then h(y) can be continued analytically along

any path in Y* Starting from y,i moreover it determines

a single-valued holomorphic function E(y) on Y* whose function

element at Yy coincides with hi(ﬂ(y)) for i =1, -+, g.

Suppose that E(y) is locally bounded at every point of
ﬂ_l(D-sing D). Then from well-known facts about function
theory on analytic covers, it follows thatlﬁ(y) cén be extended
to the unique holomorphic function on Y.

Summarizing, we obtain the following:

Proposition 1. Let m : ¥ — X be an analytic cover and

let p : ﬂl(X, xo) — GL(qg, C) be the monodromy representation
associated with the analytic cover Y. Suppose that there
exists a many-valued holomorphic function K(x) = (hl(X), ey,
hq(y)) on X* such that Y*(K) = Kp([y]) for any [Y] € Wl(X*, xo)
and that hl(xo) # hj(xo) for any i # j. Let‘h(y) be the
single-valued function on Y - ﬂ—l(D) defined in Lemma 2.

If E(y) is locally bounded at every point of ﬂ_l(D-—sing D),
then E(y) can be extended to the unique holomorphic function

o

on Y which is desired at the end of n~ 1.

3. Therefore we must construct the many~valued function
whose behaviour is the given one. For this purpose, we solve
Riemann-Hilbert problem. Let X be a connected complex
manifold and let D be a divisor of X. Let X* = X -~ D and

X, € X. We consider a completely integrable total differential

eq. on X¥
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Yy €17 g\ /Y1

(3.1) al - + cee . =0
y Q cee Yy
4 ql Y9q 9

\We choose g linearly independent solutions fl, ---,fq of
(3.1) at X and let y be any closed curve in X* issuing from
X, We denote by Y*tfl’ ---;fq] the result of analytic
continuation of the function element [fl, ---,fq] along the
curve y. Since [y*(fl),--o, Y*(fq)] are also g linearly

independent solutions of (3.1l), we have
Y*[flr ccty fq] = [fll ctcy fq]M(Y)

for some M(y) € GL(g, €¢). It is well known that the mapping

p: [yl€ m (X*, x) — M(y) € GL(q, €) is a homomorphism and

p is called the monodromy representation of (3.1) with respect

to [fl, cee, fq].

Conversely, giveh a linear representation p ﬂl(x*, Xg)
—>» GL(g, €). We shall attempt'to construct a completely
integrable total diff. eq. (3.1) on X* which satisfies the
following two conditions:

1) (3.1) is regualr singular along D, moreover there exists

a divisor A in X along which (3.1) may have apparent singularity.

2) the monodromy representation of (3.1) with respect to
certain independent solutions coincides with the given p.

We shall call the Riemann-Hilbert problem the problem

of constructing the eq. (3.1) which satisfies the above two
conditions.

In order to construct the many-valued function stated
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in Proposition 1, using the results of P. Deligne [1l], we
solve Riemann-Hilbert problem in the following situation: let
X be a Stein manifold and let D be a divisor of X (not

necessarily normal crossing). In solving the problem, we use

essentially the extension theorem of coherent analytic sheaves

of J.-P. Serre [7] and Y.-T. Siu [8].

Our main results is the following:

Theorem 1. Let X and D be as above. Suppose that a
linear representation p : ﬂl(X*, xo) —» GL(g, €) is given,
where X* = X - D. Then we can construct a total diff. eq.

(3.1) as follows:

1) there exists a divisor A of X such that A does not contain
any irreducible component of D.

2) the eq. (3.1) is completely integrable on X - A‘J D;
moreover A is the apparent singularity of (3.1).

3) the monodromy representation of (3.1) coincides with

the given p.

Using the Oka principle and results of F. Peterson [5] and
J.~P. Serre [7], we can study more detail the case of dim X=2
than that of dim X > 3.

Theorem 2. Let X be a connected Stein manifold of
dim X = 2., 1If H2(X, Z) = 0, then for any divisor D and
representation p : ﬂl(X-D, xo) —> GL(g, €), we can always

find a solution of the Riemann-Hilbert problem without apparent

singularity.

Remark. In the case of Theorem 2, let Q = (Qij) be the
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connection matrix of the eq. (3.1). From the construction of
the eq. (3.1), we see that each Qij is a meromorphic form

with generically logarithmic poles along D. This notion was

introduced by K. Saito, [6].

4. Let m : Y — X be an analytic cover where X is a polydisc

in €7, and let g be the sheet number of Y. We shall solve
o

the problem proposed at the end of n” 1. Since the problem

is local, we can suppose that the critical locus D of Y has

m

finite irreducible components: D = {J Divand that Y - 7 l(D)
i=1

is connected by 4) of the def. of analytic cover (See n° 1).

Let p be the monodromy representation associated with Y.
Since X is a Stein manifold, there exists, by Theofem l, total
diff. eq. (3.1) as follows: |

1) there exists a divisor A of X such that xo¢ A, Di¢ A
and (3.1) is regular singular along A‘\}D; moreover A is the
apparent singularity of (3.1).

2) If we choose g linearly independent solutions fl,ww-,‘f

q
of (3.1) at X properly, we have

Y*[fll ctcy fq] = [fll c*y fq]p([Y])

for any closed curve y in X - D issuing4from X, Put
= t e s 0 1 3
fi(x) = (fli(x), ,fqi(x)), and we define gj(x) (fjl(x),

e+, £. (x)); thus we have
39
Y*(gj) = gjp([Y]) for any [y] €m (X - D, x).

Since fl' '--,fq are linearly independent solutions of (3.1)

at x s there are constants c; &€ ¢ (i=1, -+, g) such that,
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q
putting h= 3 c;9;r we have ﬁ(xo) = (1, **-, q) and
i=1 :

Y*(K) = Ko ([Y]) for any [yl € ﬂl(X-D, xo). By lemma 2,

there exists a holomorphic function‘B(y) on Y* such that

E(yi) =i for i =1, *°°,g. Since the eq. (3.1) is regular
singular along AVYD and since m : Y - ﬂ_l(Sing D) — X - sing D

is ‘a finite holomorphic map between complex manifolds, E(y)

hagﬁgost pcle along [Y - n;l(sing D)],q n_l(AL/D). Since
the problem is local, by shrinking X slightly if necessary,

we can suppose that the number of irreducible components of

2
A is finite: A = | A.. Since the Cousin's second problem
j=1
has always a solution on X, we can write Aj and D, in the form
Aj = {aj(x) = 0} and Di = {di(x) = 0} for any i and j where

aj, di € T (X, @'x). Since ?1(y) has at most pole along

[y - ﬂfl(Sing D) ] f\ﬂ_l(A\/D), there are positive integers My
% M= m Va
and v. such that, putting c(x) = I a.(x) I T 4. (%) l,
i 1] A §
3=1 i=1
c(m(y))h(y) is holomorphic on Y - w_l(Sing D); hence by pro-

position 1 c(w(y))%(y) can be extended to the unique holomorphic
function H(y) on Y. Since c(xo) # 0, we have H(yi) # H(yj)
for any i # j. This is the function which we want to construct.

Summarizing, we obtain the following:

Theorem 3. Let 7 : Y — X be an analytic cover whose
critical locus is D, where X is a polydisc in ¢, Let
X, € X - D and suppose that p : ﬂl(X - D, xo) — GL(g, C) is
the monodromy representation associated with the analytic
cover Y. Then, using a solution of the Riemann-Hilbert problem
for the representation p, by shrinking X slightly if necessary,

we can construct a holomorphic function on Y which separates

-1
any two points in m (xg).
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