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( The Discrete Kirchhoff Assumption for Large Deflection Analysis
of Plates)
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1. Introduction

The discrete Kirchhoff assumption is a brilliant idea avai-
lable for finite element analysis of thin piates and shell, see
Gallagher [1]. We will present a theoretical analysis of the
method applied to 1ar§e deflection problems of thin elastic

plates.

2., Preliminaries

Let Q be a bounded domain in Rz occupied by the middle sur-
face of a clamped plate. If necessary, its boundary 3Q is assumed to
be smooth enough. We will use the following notations: X =
(xl,xz) = Cartesian coordinates of a point in £; u = (ul,uz,‘v)
= displacement of the plate; E = Young's modulus; v = Poisson's
ratio; t = thickness of the plate. The quantities E, v, and t
are assumed to be constant, for simplicity, and F and D are de-
fined by F = Et/(1 —vz) and D = th/lz, respectively.

As real function spaces related to the domain Q, we will
use the Sobolev spaces Hn(Q) and HE(Q) for n = 0,1,2, both being
equipped with the same norm || Hn' In particular, We will use
( , ) and || || as the inner product and the norm of LZ(Q)=H0(Q),

respectively. We will also make implicit use of the space Lp(Q}
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3. Continuous Problem

Let us consider the space X = Hé(ﬂ) X Hé(ﬂ) X HS(Q) equipped
with the structure of the Hilbert space in the usual way. This
is a natural Hilbert space for the problems of clamped plates.

Define the following forms for u = (ul,uz,wj e X and u =

(ul,uz,wj € X :

2
FLI (3u; + 203, 7,0,0, + o,wd,w) + vi(d

B, (u,u) = u
1 5 11
T $ O Wed W) 4+ (DU, + (o w)?
z 9,U5 2" %2 2%2 T 72492
31u1+slw 3 w)+ (azul +31u2 + alw 3 A Bzul + aluz
+ alw-azw + Bzw-alw)] , (1)
B,(w,w) = D[ § 32w 5%w) + vi(3%w,3%m) + (0%w,3%))
200w = DL (35w, 05w 192 2V %
B(u,u) = Bl(u,ﬁ) + Bz(w,&) , (3)

2 ,
2 .
Nl(ul’u2) = [F{:‘LZ]_Halui H + Zvcalul’azuz)

1/2
+ LY jlau, + o, |12 : (4)

_ 2 _
where ai = a/axi and ai = aiai
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Our problem is to find u & X such that

2
B(u,u) = iZl(fi,ui) + (f4,W) for all u = (u;,u,,w) < X.
(5)

In the above, f = (fl’fZ’fB) is the distributéd force applied to

-1 1 1

the plate, and is taken from H ~ x H =~ x H ~, where H'' is the

dual space of Hé(ﬂ). (We can of course take f from nlox gl o«

H—2 for the continuous problem itself. However, this choice is
esseﬁtial for the description of our discretized problem.)

The existence of the solutions to (5) can be proved by the
use of the fixed point theorem, cf. [3], but the uniqueness can-
not be expected in general. The readers can also imagine the

process of the existence proof from the analysis of the corres-

ponding discrete problem to be presented later.

4., Finite Element Method

Let Xh = X? X X? X Xg be an appropriate (finite dimensional)

subspace of Hé(ﬂ) . The label h (> 0) denotes the discretiza-

tion parameter, and the case when h tends to zero will be consi-
dered. (Therefore, we will actually consider a series or a fami-
ly of finite element spaces.)

Introduce the following two operators:

h 1 ) ' '
3y ¢ Xy - Hy(R) i=1,2. (6)

In the discrete Kirchhoff approach, we will use 3 instead of

hi"h

h . . .
Biwh for W, € XZ' It is to be noted that aiwh 1s not differen-

o
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tiable for the present type of non-conforming approximation

(notice that Xg

is differentiable as may be seen from (6).

is merely included into Hé(ﬂ) ), but that ahiwh

. . _ h
Define the following forms for‘uh = (uhl,uhz,wh) < X and
h

U, = (uhl,uhz,wh) e X

2

. —3 1 2 > . 0 .
By (upotp) = FLL (guy; *7Cn3%n) 752505 * 255 Wh "2hs¥n)

+

1 -
vi(quyy + 70, h) 3 Uy * hzwh'ahzwh)

+

1 -
(3587 * 3 (Bgv) 2210y + 2y, h1"n)?

1-v . - -
M L I e PR N L A LT e RIS .
"n1%h ?h2"n * %n2"n fn1"n)) o (7

] 2 _ | o
Bz (WpoWy) = D[.Zl(aiahiwh’aiahiwh)'*V{(alahlwh’azahzwh)

1

+ (3,0 W, 5878 W)+ S (8 0y W+ 0,0y W,

192" * 220" (&)
Bh(uh’ah) = Bhl(uh’ﬁh) + th (whav_"h) ’ (9)
. 1/2
Npp () = DBy, Gew )] = 212N, (3, wy L0 ), (10)

The finite element approximation u, € Xh to (5) is now defined

by
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h

2
Bh(uh,ﬁh) = Z (11)

. (fi’uhi) + (f3,wh) for all uy eX

1
The difference of the above formulation from the standard one
lies in the use of 94 instead of 3 for the approximation of
aiw and aiw in (5).

We will employ the following hypothesis to assure the con-

vergence of the finite element solutions.

[H1] For any Wy e;X?, we have

I 9y Wy T 93wy Il < M(h)th(wh) , i=1, 2, (12)
with
}11%1 M(h) = 0 . . (13)
A ~ ~ ~
[H2] For any u = {ul,uz,w} < X, we can choose uy = {uhl,uhz,wh}
esXh such that
2 ~ ~
Tl ugly * e —wly >0,
i=1
Ilahiwh - 3w Hl -0 (i=1,2) as h+0 . (14

5. Existence and Uniform Boundedness of the Finite Element

Solutions

Define X1, by
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(f’uhl) - %—(fS’wh) s (15)

’ *
Xh(uh’f) = Bh(uh’uh) 1 i

(I ag! N}

i

- h *
where Uy = (uhl,uhz,wh)esix , and Uy = (phl,uhz,wh/Z).

We will use the Brouwer fixed point theorem to show the

existence and uniqueness of the finite element solutions, cf.
Lions{2 ]. To this end, Lemma 2 given below plays an essential

role.

- Lemma 1 (Korn's inequality) The forms N, (u;,u,) and Il ullll +

| uZH1 are equivalent in H;(Q) x Hé(g)_

Lemma 2 Let uy be an arbitrary element of X such that

-2 . 2 -
Nl(uﬁl’uhz) + th(wh) =1 . (16)
Considef a transformation in Xh
4 . = R? 2. = R? W= Rw (17)
1% L ™ B h2 = © Yh2 h h

where R is a positive number. Choosing R appropriately, u, =

h
(uhl,uhz,wh) satisfies
Xy, (uy,£) 20, (18)
where R is independent of h but may be dependent on f£.
Proof Use the results of [3], but we can slightly simplify

that proof.



Theorem 1 The discrete problem (11) has at least one solution

up = (uhl,uhz,wh) EzXh that satisfies
NP (u o Lu ) /RY e N (v ) /R <1 (19)
1*"h1’ "h2 h2*"h = >

where R is the same as is introduced in Lemma 2. The above also
implies the uniform boundedness of the present finite element-

solutions for h small enough.

Proof The above directly follows from Lemma 2 with the aid of

Lemma 4.3 of Lions [2].

6. Convergence of the finite element solutions

We will show the convergence of (a certain sub-sequence of)
the finite element solutions to (a certain) solution of (5).
The estimation (19) is essential for the proof of Lemma.S given
below, while some compactness properties are needed for the proof
of Lemma 4 and Theorem 2. We will deal with a family or a series

of finite element spaces {Xh} with the property h + 0.
Lemma 3 We can find sub-sequence of finite element solutions

{uh e;Xh} to (11), such that, when h + 0,

u, . > u. |, 3, .wW, ~ aiw (i =1,2) weakly in Hé(ﬂ)

and strongly in LZ(Q), (20)

Wy W strongly in Hé(Q) , (21)

where u = (ul,uz,w) is an element of X.

/
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Proof From (19), (12), and Lemma 1, we have that the finite

element solutions {u & Xh} defined in Theorem 1 satisfy

h

*|fu +l e

g 1y * llagy ly # d ey 1+l apw [+ iy <

for h small enough. Thus we can show the existence of a certain

subsequence of {uh} such that, when h ¢+ 0,

A | ‘
Upg > Yy ahiwh > W, W, > W weakly in HO(Q), and

strongly in LZ(Q).

Here 1 = 1, 2, and u., Wi’ and w are certain elements of Hé(ﬂ).
Using (12), we also have

W, = aiw, and w, - w strongly in Hé(ﬂ).

h
Thus u = (ul’UZ’W) belongs to X, and the proof is completed.

Lemma 4 The element u e X introduced in the preceding Lemma

is a solution to (5).

Proof To show that u = (ul,uz,w) is an solution to (5), we

should take 1limit of (11) after substituting the u, taken from

h
the subsequence defined in Lemma 3. On the other hand, ﬁh in

(11) should be equated to 4, defined for each o e X in [H2].

h
In the limiting process, the most critical step is to show

2 - 2 -
((Bhiwh) ’ahiwh'ahiwh) - ((aiw)‘,aiw 8iw) etc.
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But this follows from the fact

ahiwh - Biw strongly in L4(Q) s

and hence we have
- 2 - -
B(u,u) = _Zl(fi,ui) * (f5,W) B
1=

which is nothing but the relation (5). This completes the

proof.

We have now established the convergence of a certain sub-
sequence of the present finite element solutions, :and also the
existence of the exact solution of (5). Actually, we can show

convergence in a stronger sense:

Theorem 2 The sub-sequence of finite element solutions {uh
< Xh} introduced in Lemma 3 converges to a certain solution u of

(5) in the following sense:

lim [”uhl—ul H]_ + Huhz'uz Hl + H wh—wlll] =0 s (22)

h+0
lim || 3, .w, - 3.w]||;, =0 i=1, 2. (23)
he0 hi"h i 1 ’ ’

Remark Convergence of the finite element solutions as a whole

cannot be expected in general, since uniqueness of the solution

of (5) does not hold.
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Proof For the proof, it is sufficient to show

2 ~ N 2 ~
Ny (U U1 Uh2 0020 * N (W) = 00 (R v 0)
for the considered subsequence of {uh EiXh} converging to the
R . Fa) - A ~ A h .

u = X defined in Lemma 3. Here uy (uhl,uhz,wh) e« X 1is the
approximation of u constructed in accordance with [H2]. . The
details of the proof are essentially the same as are given in [4], and
are omitted here. The essence is to utilize some compactness

properties of nonlinear terms appearing in (7).

7. Example

We have assumed that the considered family {Xh} of finite
element spaces satisfies [H1] and [H2]. We have a few examples
which a;tually satisfy these conditions, see Kikuchi'[ f]. We
will illustrate two examplés briefly. Since it is not difficult
to find an appropriate X?, we will festrict our attention to the
construction of Xg, approximate space for w. |

i

Example-1 shape of element = trinagle; nodes = vertices of
triangle, {Pi}§=1; subsidiary nodes = midpoints of sides, {Qi}i=1
(sée Fig.1); element degrees of freedom = {wh(Pi),alwh(Pi),
azwh(Pi)}§=l (wh and its first order;derivatives are forced to

be continuous at least at nodes); Xg = Zienkiewicz's non-conform-
ing space, or the reduced HCT'space.

We define 9 = 1,2) for each NS Xg as follows:

nj"h O

70
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ahjwh = second order polynomial of Xy and X, such ‘that

b

ahjwh(Pi) = ijh(Pi) (1 <1< 3)

L1319 (Q) +my 3,5 (Qy)

= 21, (o vy b (P5) + 3w (P + my (3,1 (P)) + 3w, (P)Y,

21910 (Q) - mp P2 (Qp)
= 1,3 wh(Ql) -m9,(Q) . etc.,

where (Z 1) is the outward normal vector of the side P2 3-
Similar relations are imposed on the other midpoints. Notice
here that the tangential derivative of w, on each side is conti-

nuous for the present finite element space. The present type of

condition is called the discrete Kirchhoff assumption.

Fig. 1 Nodal configuration of the triangular element

I
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Example 2 shape of element = triangle; nodes = {Pi}§=1 and

3 -
{Qi}i=1’ element degree of freedom = {wh(Pi),alwh(Pi),Bzwh(Pi)}
and {awhlan(Qi)} for i = 1,2,3, where 3/9on implies the outward
normal derivative; Xg = the HCT space, or the incomplete quartic
space whose basis function in each element are

3 3 .3 2 2 .2 2 .2
Ly, Ly, Ly, LjL,, L L5, LoLg, L,L%, LZL;, LgLy,

2 2 2 . .
L1L2L3, LleLS’ L1L2L3 ( L's are area cpordlnates)
In these choices, Wy and its tangential derivative are continuous
slong sides of triangles, and,in particular, the HCT space is

conforming. It is to be noted that the first order derivatives

of wh is continuous at nodes.

The mappings th for j = 1,2 are defined as follows:

h _ . .
thwh for each w, S X2 = quadratic polynomial of Xq and

X, such that

thwh(Pi) = ijh(Pi) and thwh(Qi) = ajwh(Qi)

for i = 1, 2, 3.

In the above two examples, we can prove [H1l] and [H2].

We can consider similar finite element models in rectangular

family.

(&
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Concluding remarks

We have performed convergence analysis of the discrete

Kirchhoff assumption applied to large deflection analysis of

flat plates. The present analysis is directly applicable to

large deflection analysis of shallow shells. We can also obtain

order estimates of errors of approximate solutions around normal

(or non-critical) points of the original continuous problem,

provided that certain regularity results are available.
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