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On codes and projective designs

by

Christoph Hering

§ 0. Introduction

The original purpose of this paper was to investigate if
the ideas of coding theory can be used to obtain information
about cbllineation groups of incidence structures. It turns
out that this is indeed the case, certainlywhere finite
projective designs are concerned. We very easily obtain a
substantial émount of inforhation about automorphisms of
these geometries. Surprisingly, some of the results we obtain
are similar to the results which‘Hughes (1957) obtained with
the help of the Hasse-Minkowski Theorem on the rational
equivalence of quadratic forms. The new methods however seem
in principal to be more general, and they can be more readily
adapted to specific situations. On the other hand, they are
only really powerful if there exists a prime dividing the

order of the given design to the first power.

In § 3 we present a description of the codes over GF(2)
arising from projective planes of finite even order.
This is not necessary for our‘investigation of collineation
groups. It might, however, help to obtain some insight into
the nature of these codes. Also it leads to an existence
proof for the "large" Mathieu groups which is somewhat shorter
than the one presented in Liineburg (1969). We construct here

only My, (see § 4).
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§ 1. Codes

A code is a subset of a metric space. In this chapter we
shall restrict ourselves to sets of points in Hamming spaces,
where a Hamming space is a metric space defined in the

following way:

1.1 Definition. Let P and F be non-empty sets and V the

set of all functions from P into F. For f,g € V define
a(f,g) = [{x € P | £(x) + g(x)}].

Then (V,d) is called a Hamming space.

Note that in 1.1 obviously d satisfies the triangtle

inequality. For € & V we define

dm(c) = min d(f,g)
f,g € ¢
and fig

and call it the minimum distance of €. One of the objectives

of coding theory is to find codes € of large cardinality
such that dm(C) is not too small.

If F is a field, then V becomes a vector space 6ver F. For
this case we define w(f) = d4(0,f), which is Jﬁst the cardinality
of the support of f. We callw&f) the weight of f. Note that now
d(f,g) = w(f-g) for f,g € V.

A code € 8 V is linear if F is a field and ¢ is a subspace of

V. In a linear code ¢,
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a (¢) = i ).
m( ) , fégi?O}W( )

If 2 is a subset of P, then the characteristic function

fi of ¥ is defined by

1 if P € %
O if P ¢ %.

There is an obvious way for constructing codes from

incidence structures: Assume that P is the set of points of

an incidence structure (P,8,I), and F is a field. Let
1l = € 8).

Then of course 2 is a cade in V. Codes constructed in
this way are frequently interesting from the point of view
of coding theory. Appart from that, they can be used to
obtain information about‘the geometrical propefties of

(,8,I).

Let ¢ be a code over a field. For each non-negative .

integer i we define

and w, = wi(c).f v 'ﬁil.
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§ 2. Codes derived from finite projective planes

Let (B,8) be a projective plane of finite order n and F

a field. Furthermore, let V be the set of all functions from

i = f ‘ € g °

Let I be an incidence matrix of (3,%2). Note that the
dimension of # is just the rank of I, if we consider I as a '
matrix over F. It is quite important for our theory to obtain
information about the dimension of #%. The following lemma

contains a Certainly not very good) lower bound:

2.1 Lemma. Let P and Q be two different points in P and

[N

t € [Q] - {PQ}. Then the set

{f(g) ' g € [P] ulQ]l\ {5}}

is lineary independent. In particular, dim 2 2 2n.

Proof. Denote gb = PQ, {g1,"',gn} = [P] - {g,} and
{gn+1"”’ San_q} = [Q} - {go,L}. Let ao,"',azn_,l ’E F and
2n-1 o
f= 7 aif( ). Assume that f = 0. If X € PQ - {P,Q},
i=0 8i/ '
then f(X) = a , 8o that a = 0. Let 1< i<n and X = g;N4.
Then O = £(X) = a,. Letn + 1S j< 2n -1 and 2 = g;Ne; for

some i between 1 and n. Then O = f(Z) = ai'+ aj = aj.

For £ € V and ¥ & P, denote Sf =3 f(X). Also,
I Xex

let Va = {f € V| Sf = 0} and let E be the function in V
? ' ‘
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which maps each element of P onto the identity of F. Set

216=V6n21.

2.2 Lemna. Vs is & hyperplane of V. Furthermore, V = E) ¢ Vs

unless char F = p < ® and p|n?+n+1, in which case (E) < Va;

Proof. The map

fl—)xf for all £ € V

?
is an epimorphism of V onto F with kernel Va‘. Clearly E € Va

if and only if char F l |B| = n2+n+1.

2.3 Lemma. a) % = V unless F has finite characteristic p

and p | n(n+1).

b) If char F = p < = and pln+1, then ¥ = Vs and V = (E) 0 1.

c) If char F = p < = and pln , then E € # and % = <E) @ ¥,.

Proof. a) CQn’side‘r the incidence matrix I as a matrix over F.
We have |det I| = .(.;_;ﬂ)p(’.‘ *P)’a by I.x.x. So det I 4 O and
dim % = Tank I = n2+ri+1 unless F has characteristic p <<_°°, where

pin or pln+1..
b) If P € B, then

nf . a‘ E f A - B
P} = .
{..; : L€[ P] .(_‘4)
So V=E+#8, as p [/ n. Since p | n+1, each characteristic

function £(,yfor a line £ € 8 lies in V. Therefore o S V.



2.3
Finally, p cannot divide both n+1 and n°+n+1, so that
V=<(E)® Vs =E® by Lemma 2.2.
c) Here E € 81, as

‘E}Q f(l) = (n+’l) E

and p / n+1. Hence U, is a hyperplane of # by Lemma 2.2.
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This together with the preceding lemma seems to indicate
that the code # for our purposes is most interesting if F
has finite characteristic p and p|n. Therefore we shall in
‘the remaining part of this paragraph restrict ourselveé to
this case. Then, as we shall see in Lemma 2.4, we really do

get. a non-trivial situation.

Let Po be a further point and let P* = P U{Po}. Let V*
Vbe' the space of all functions ffom ‘B* into F. Fo‘r“f €V we
define T € V* by T(X) = £f(X) for X € B and ‘f(Po) - i}g‘pf(x).
Clearly — defines a monomorphism from V into V*, and

V= (V‘)a. Also, we define a bilinear form on V*:
(f,g) = -f(PJg(P ) + T £(X)g(X) for all f,g € V*.
A (3

Clearly, this form is non-degenerate.

2.4 Iemma. If pln, then ¥ < T* and dim 8 < (n2+n+2)/2.'

Proof. Let £ 4+ h € 8, We have v
(T(4y0T(ay) = ~(=@))(=(2+1)) + n+1 = 0% = n = 0 as pln,
and ("f(‘),'f(h)) = =(n+1)2 + 1 = -n® - 2n = O. Hence ¥ & T*,
and dim T S dim T* < n%+n+2 - dim ¥, so that dim # = dim.yﬁ.s (n<2+n+2)/2‘

2.5 Theorem. If plln, then dim # = (n2+n+2)/2.

Proof. Consider the incidence matrix I as a matrix over the
real numbers. There exiéts matric‘es M a}ndv'xover'z‘ of deter—

minant 1 or -1 s,u.‘ch‘ that .
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where T = n° + n + 1 (see e. g. van der Waerden,
1967, Kapitel 12, § 85).

2
Hence e,...e = det MIN = fdetT = *(n+1)n(BZ+0)/2

n2+n+1
As p / n+1 and p? ) n, the number of 6;'s divisible by p is

at most (n2+n)/2, so that at least n2+n +1 - (n2+n)/2=Cn2+n+2)/2 of the
éi's is not divisible by p. Let "denote the reduction modulo |

Pe. Then M and N have determinant + 1, so that the rank of I

considered as a matrix over F is equal to the rank of

AAN . O

MIN = .

So rank I > (n2+n+2)/2. Combining this with 2.4 we obtain

our theorem.

Mac Williams, Sloane and Thompson (1973) attribute this
result for p=2 to a forthcoming paper of Thompson. The fact,
that it is true in general was first pointed out to me by

E.F. Asmus, Jr.
2.6 Lemma., If p|ln, then V* = (E’f{Po}> It Va.

Proof. Clearly (E,f(Po}) has dimension 2. Let
aE + bfipo} = h for a,b € F and h € Vy. Then
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0 = g A=b, as V = (V")b.. Therefore -a = h(Pp) = —'S nh =0
P P _
and h = 0. Comparing dimensions we see that V* = '<E’f{Po}> @ Va.

If v € V5, then v(Po) = - S v = 0, so that (f{Po}’V) = 0 and
' B
(E,v) = ZE-)'p E(X)v(X) = S v = 0. This proves our lemma.
X
. P

-

If pln, then E € 2 by 2.30). Let v € ¥*. Then
0 = (E,v) = <E(Po)v(Po) + S v = v(Po) +'§ vV = S v. Hence |
P B e -

™ s (V"“)'6 = V. We denote the preimage under - of T* in V by 2.
Note that ¥ s 2 by 2.4. '
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§ 3. The case |F| = 2 and 2|n

In this section we keep the notation introduced in §2 and
assume in addition that |F| = 2 and 2|n. Our results generalize
‘the work of Mac Williams, Sloane and Thompson (1973), who
investigated the case n = 10. Since F = {0,1}, each element
of V* is the characteristic function qf some subset of P*, so
that we can identify V* with the power set of P*. Also, we
have V + W =v Uw\v N w for v,w € P*, In the same way we
can identify V with the power set of P. Concerning the mono-

morphism - from V into V* we have for all ve& P

_ {v if |v] = 0 (mod 2)
v =
v U {Bo} if |vl|

1 (mod 2).
0 (mod 2) for all v € V. Also, w(v) = |v|, the

m

So |+v]|
weight of an element is just its cardinality. Finally, we have

a geometrical interpretation of our bilinear form on V*:

If x,y ¢« B*, then

: 0. if |x n‘yl-E 0 (mod 2)
(x,5) = :

1 4if |xn y| =1 (mod 2).

Therefore Lemma 2.4 implies

3.1 Lemma. If v,w € #, then |[¥ N W| = 0 (mod 2).

3.2 Lemma. |a| = I'al = 0 (mod 4) for each a € .

Proof. If 4 € 8, then |E+4| = n° ® O(mod 4), so that in

particular E + 4 € #y.
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Also,

E+(E+t | £€8)2(2 | L €2 -u,
so that

o= Eet | £ € D).

Hence each eléﬁeht a € ﬁa can be represented in the form
a = (E+£1) +#"+'(E+£r), where»li €8 for 1S i< r. We
prove our lemma by induction on r: Let b,c € ﬂa such that

le] = 0 (mod 4). By Lemma 3.1 we have |[b N c| = |[Bncl| =

m

(v]
0 (mod 2), so that |b+c| = [(b U )\ (b N ¢)| = |bl+|c] -2lv n ol =
0 (mod 4).

]}

A consequence of Lemma 3.2 is

3.3 Corollary. If a € & - Y, then lal = n+1 (mod 4) and

|al = n+2 (mod 4).

Proof. By 2.36, there exists an element 8y € ﬁa such that
a = E + ay. Here la] = %0+ - laal = n+1 (mod 4) as 4|n2
and 4 ‘ laal by 3.2. In particular, lal] = 1 (mod 2), so that

a = aU {Po}, and |a| = n+2 (mod 4).

3.4 Lemma. If a € V, then a € 8 if and'onlz_ii ¢ n al = |al
(mod 2) for all 4 € 2, .

Proof. Assume at first, that a € # and let £ € 8. Then
@ € T by the definition of #. So (&,%) = 0 and [aNnT| =0

(mod 2). Assume at first that |a] is even. Then
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T n E-'Tna-'ln(é‘n'B)=(Tn‘b)na=lnaandhence
 |£ nal =|Tngl=o0 (mod 2). Assume now that |al is odd. Then
ITna=(Ln a) u {Po}, so that |£n a] = |Tn 3| -1 2 1 (mod 2).

Assume on the other hand that |4 N al = |a| (mod 2) for all £ € 8.
The same type of argumentation shows that & € ¥-.

5.5 Lemma. If @ 4 a € 2, then |a| > n+1.

Proof. Assume at first fhat la|l is odd. Clearly we can
assume that a is a proper subset of . Let‘ P € P\a and let
L € [P]. Then £ N a| = |a] = 1 (mod 2) by Lemma 3.4. In
particular, £ N a 4 ¢, so that |a] > |[P]| = n+1. Assume
now that |a| is even. Choose a point P € a. If 4 € {p], then
|4 N al > a by Lemma 3.4. Hence |a| > n+2.

3.6 Lemma. Let k €IN and a € & +k' If L € 9 and £ 4 a,
then |a N zlsk. N

Proof. Assume at first that k is odd. If £ ¢ a, then
|4+a| = k-'l, so. thatk2n+2 by 3. 5 and hence certalnly
lan 2] = 2] < k. So we can assume that there exlsts a point
P€ L\a. There are n lines in [P]\{L}. Each of these 11nes '
intersects a in at least one po:.nt by 3.4, So |a\ tl > n and

hence |la N ¢| < k. L

Assume now that k 1$ even, and assume furthermore, that
a N £ contains a pomnt P. Then each line in [P]\U} 1nter-
sects a\ £ in at least one point, again by 3.4. So once more

la\.tl > n.



38 3.4

~

3.7 Lemma. .4 = 8.

Proof. By definition 2 ¢ U .1 S U,,q- Let a € 2,41+ Choose
two different points P and Q in a. Then a = PQ by 3.6.

’ ”~
3.8 Theorem. If n is even, then ¥ _, is the set of hyper-

ovals of (P,8). Also, 8 ,,s¥ifn=2 (mod 4) and

8n+2<_=2l—2!_i_£n50(mod4).

Proof. Let v € ﬂn+2' Then each line intersects v in at

most 2 points by Lemma 3.6, so that v is a hyperoval

On the other hand, let £ be a hyperoval and £ € 8. Then
|#n 2] =0o0r2 . “Hence |#n 4] 202 |#]| (mod 2)
and # € ¥ by 3.4. |

m

If n = 2 (mod 4), then ¥ = ¥ so that % = 8 and hence

8 4,0€8. Ifn=0 (mod 4), then n+2 =2 (mod 4) and % does

not contain any vector of weight n+2 by 3.3.

3.9 Remark. By the famous Mac Williem identity. , ‘the

'weight enumerator of ¥~ is determined by the weight
enumerator of ¥. Hence Theorem 3.8 shows that the number of
hyperovals in (%,82) can be computed from the weight

enumerator of .

3.10 Lemma on various vectors of small weight.

Let v € % and define
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8, = (€8 [ |vn el =1) for 0 S i S n+1.

‘We have three linear equations in the Iﬂil which often are

linearly independent: First, obviously
LI N ) = = 2
lQOI +o0 0t |8n+1| 8] = n“+n+1
Secondly, we count incidences in (P\v,8) and obtain
(n+) |8 | + n|8 ] +eoev 218 g 1+18 | = (2+1) [P\v].

'Thirdly, we count the function of the 2-subsets of v into
8,U-+eU 8 , given by {P,Q} > PQ for P,Q € v and P % Q.
.This leads to |

(3) 12,1 + (3) 1850 40004 (=5 i9n+1| _ <|g|),

a) Assume that |v| = n+3, and let 4 € 8. Then
[t nv| = |v| = 1 (mod 2) and |£ N vl < 3 by 3.4 and 3.6. So

8 =84 U 8,. The equatioﬁ(E) impliesthatlsalla (n+3)(n+2) /6.

3

Also, whenever P and Q are two different points in v, then -

PQ € 93. So (v,83) is a Steiner triple system.

b) If|v|= n+4, then v is a cylinder of hight 4. To prove

this we observe that 8 = 90 v 82 u 84, again by 3.4 and 3.6.
The equations (1)-(3) imply that Iﬂol = (2n2-5n)/4,

|92| = n(n+4)/2 and |ﬁ4| = (n+4)/4. Let P € Vv and suppose that

[P] n 8, contains 2 different lines 4, and 4,. Then 4, and &,

already contain 7 points of v. Also, each further line in [P]

contains at leaét one further point of v by 3.4. So |v| > n+4,

‘a contradiction. Therefore [P] contains at most one line of 8,

(N

(2)

(3
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so that actually |[P] n 8,1 = 1, because 12,1 = (n+4) /4.
So v is the union of certain colliﬁear point sets of
cardinality 4, which are pairwise disjoint, and each line
not intersecting in one of these distinguished point sets
intersects v in at most 2 points. This is what we call a

cylinder of hight 4.

¢) If vl= n + 5, then n < 16. Because in this case
each line intersects v in 1, 3 or 5 points by 3.4 and 3.6.

So we have the 3 equations
le,1 + |93|> + |95| = nZ+n+1,
nl8,l + (a-2) 1851 + (a-#)|85] = (a®~4)(n+1), and
(g)|93| + (g)|s5| - (n?)

There iS‘exactly one solution: |8,] = 9n(n-2)/8, IQ | = n(16-n)/4

and |8 | = (n-2)(n-4)/8. As |93| is a non-negatlve integer,
it i‘ollows, that n < 16. ‘

Assume n = 16. Then 33 = ¢ and !ﬂsl - 21. Counting incideﬁces )
in (v,ﬂs) we see that |[P] n Qsl = 5forP€v.Ii‘ zess,thenthere are
4|4 N v| = 20 lines different from 4 in 95 which intersect 2

in v. Therefore v is a Baer subplane.

Assmnen=1+ Thenﬁ ‘= ¢ and |8 |='12. So any two
different points P and Q in v are incldent with exactly one
line in 8,. Also, le = 23+1, 8o that (v,ﬂa} is a unital by
' def_inition.; ,
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' There remain8 and the non-prime powers 6, 10, 12, 14, Here
6 and 14 are excluded by the Bruck-Rysér Theorem. That
n = 10 ié not possible is the main result in MacWillisms,
Sloane and Thémpson (1973). As far as we know, the case

n = 12 is still open.
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§ 4. On planes of small even order

In this paragraph we mainly want to determine the weight,
distribution (W05W1"") of ¥ over GF(2) in the casés h = 2
or 4. By 2.3¢c) it is sufficient to investigate %5 If n = 2,
then dim #, = 3 by 2.5. Therefore ¥y = {E+4 | 4 € 8} v {0},

and we obtain w, = w7 = 1, Wz = Wy, = 7 and wi f O otherwise.

Assume now that n = 4, (The weight enumerator of planes
of order 4 has also been previously determined by Asmus

(1970 and Erbach (1977)).

4.1 Lemma. Each quadrangle is contained in exactly ome

hyperoval.

Proof. Let ¥ be a quadrangle in (P,2). Then the 6 secants of
- ¥ carry 46 pbints._There remain 2 points P and Q._Let f be

‘the sum of all secants. Then E + f = (Dq;Da,DB} u {P,Q} , where
f D,],D2 and D3 are the 3 diagonal points of %. So E+f €8 by 3.7.
This shows that % U {P,Q} is a hyperoval (and at the same time
that ¥ U {Dﬂ'Dz’DB} is a subplane) :

4.2, wgz 280.

Proof. Let A be a triangle in P and f the sum over its
sides. Then f € ﬂ9. In this way we obtain a map of the set
of triangles into ﬂg. Let A' be a second triangle, and assume

that the sum f' over its sides equals f. If 4 is a side,of A,
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then £ N A = ¢f, because |4 N f| = 3. So the preimages of f
lie in P\f and are pairwise disjoint. Therefore their

number is at most 12/3 = 4, and

Wy = (n2+n+1) (n2+n) n? / 31 + 4 = 280.

4. ?. w8 2 2400

Proof. If ‘4; 1, € & and 4, 4 4, then Iz,|+42| = 8. The
-representation of 4, + 42 as sum of 2 lines is unique (up
to orderiné); because any 1igé_different from £, and 4,
intersects £, + £2lat most in2§cinﬁs. So vy 2 (31). (Actually,'
wg = (31) vy 3.100)).

Now ¥ < T by 2.4, and actually ¥ < T by 4.1 and 3.8.

§b dim T S 10, and dim %, < 9. On the other hand, %, contains

o}
0O, 21 complements of lines, (g‘) = 210 sums of two different
‘lines and at least 280 vectors of weight 12 by 4.2. Thereforé
dim % = 10, W, o= Wpq = 1,vw5 = Wi = 21, wg = qu = 210 and

wg = w42'= 280, while all other coefficients are trivial.

We collect some further information about (P,8):

4.4 Lemma, The number of hyperovals is 168.

Proof. 4.1 provides us with a map of the set of quadrangles
into the Set pf hjperovals. The number of preimages for each
hyperovallis (2)\: 15. Thus the number of hyperovals is
21+ 20 + 16+ 9 /41 * 15 = 168, | |
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By 2.%¢),P* = E€ T. If v € ¥ \ ¥, then O = (v,P*) = (v,v),
so that ¥ + (v) is self-orthogonal. Hence ¥ contains 3 self-

orthogonal subspaces containing ¥, say €, €' and S".

We now assume that (P,®) = PG(2,4). Then PI'L(3,4) acts on
B. We extend fhis action to P* by letting the group act ’
trivially on {PO}; Clearly PIL(3,4) leaves invariant ¥, and
PSL(3,4) lies in the kernel of the action of PI'L(3,4) on T / E.
Let R be a group of order 3 of homologies in PGL(3,4). R hés 5
nontrivial orbits in P*. Hence the module‘ (V*,R) has 5 non-
trivial composition factors. But (V* 7/ T*,R) is contragredient
to (¥,R). So these two modules togethér have an even number of
non-trivial composition factors. This implies that R is noﬁ-

trivial on T* /@ 1). As PTL(3,4) / PSL(3,4) = 83, we obtain

4.5. PTL(3,4) is 2-transitive on {&,8',6"}.
Let 2 = 66 and § the set of hyperovals in €. Then 8* =« T U b}
by 3.7 end 3.8. | |

4.6. lx N y| = 0 or 2 for x,y € 8* and x + 3.

Proof. This is trivial if x € T. Assume that x,y € . Then
x,y € 6 \ ¥ by 3.8 and hence x+y € ¥, so that |x+y| = 5. On
the other hand, 2 "Ix N yl, because ® is self-orthogonal.

1) This argument I owe to Hans-Jorg Schaeffer. The statement
also follows from 6.1b').
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The Mathieu group M22

The symmetric group Sv‘ acts on V*. We define ﬁ22 to be
the stabilizer of 8P on €. By 3.7 the stabilizer of fl,,
on P° leaves invariant 8. Therefore it is faithfully
represented on the projective plamne (P,2), so that this
stabilizer is a subgroup of PI'L(3,4) containing PSL(3,4)
as a subgroup of index 2 by 4.5. In particular, (ﬁgg)Po
is 2-trensitive on P, and |f,,| =22 - 2 + |PSL(3,4) .

4.7, ﬁ22 is triply transitive on $*, and
|ﬁ22l =22 2 'lPSL(3’4)|-

Proof. We only have to show that ﬁzé contains an element
moving P_. Let Q € B, 8' = {b € g= | Q € b} and consider the

incidence geometry ¢
£ = (p* - {Q}, {b-{Q} | b€ g})

6] = 56 by 3.8, 4.4 énd 4.5. Counting incidences in (3,6),
we obtain |Blu = |6|6, where u is the number of hyperovals
in & containing Q. Hence u = 16, and |[8'| = 21. Now 4.6
implies that %¥ is a projective plane of order 4. Hence

I« (P,8) by Witt (1938). Therefore there exists a bijection
© of P* - {Q} onto P which maps {£-{Q} | Llé 2'} onto 8.

We extend ¢ to a permutation of P* by defining QP = Po'

Note that ¢ maps 2' onto ¥, and hence (2') onto (¥) = .
Here © 4 (Qi), as & is self-orthogonal, and therefore

€? * (8')® = F. Hence € € {€,6',8"}, and by 4.5 there
exists § € PIL(3,4) such that €% = &, Now o € fi,, and Q?g-P6
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§ 5. Some remarks on group spaces

Let (N,G) be a finite group space, F a field and V the
set of functions of N into F. Together with poaintwise
addition and the obvious multiplication, V is a vector
space over F. For £ € V and g € G we define a function

f€ € vV by
£8(a) = £(aB ) for all a € 0.

With this binary operation V is a FG-module. This is the
permutation module over F of the group space (0,G). Our
group G leaves invariant bilinear forms on V: Let
04s°°*yN, be the orbits of G in n and‘a,‘,"',at € F.
Define
(£,8) =ay T f(x)egx) +a, D f(@egx)+-+a. T f(xelx).
x€M x€0 x€0
1 2 t
Then ( , ) is a bilinear form invariant under G. Note that

( , ) is non-degenerate if and only if 8qy°° "8, $+ 0.

In the following we investigate the situation that
CVPRARY 4 O and G leaves invariant a subspace M of V such
that M = M* (+ with respect to ( , )). Note that dim V is

necessarily even, and dim M = %-dim V.

2.1 Lemma. Let A ,*-*,A  be the factors of a composition

series of the G-module V. Then there exists a fixed-point-

free involutdnypermutationxxgg{Aﬂ,'-',AS} such that'Aia

is the contragred;ént module of Ai for1s is s,
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Proof. Let
0 = Mo <My < cer < Mn =M
be a composition series of M. Then

<N
o

4
O =M <My< e <M <M <. <H =V

is a composition series of V. Here the G-module M / M 1 is
contragredient to M, 4 / M, for 0 =i < n-1. So the map «
~interchanging M, 4 / M; and Mi /'Mi+1 for 0 S i < n-1 has

the required properties.

5.2 Lemma. Assume that char F J IGI Then dim €uG = % dim €,G
and dim [M,G] = z dim (V,G].

Proof. Since G is ¢omplete1y reducible, dim ¢ G is equal to
the number of trivial composition factors of (V G) So by 5 1 |
the number of tr1v1al composition factors of (M G) is z'dlm CVG
and the first equality of our lemma follows. The second equallty
follows from the fact that V = [V,G] @ €,G. This implies
dim [M,6] = dim M - din €yG = % dim V - % dim €,G = 5 dim [V,G].

A second proof for Lemma 5.2 can be established with the
help of the following\fact:

5.3 Lemma. [(v,6] « ¢ yGe 1f G is czcllc or char F Y G|,
then [V,G] = (¢ G)

Proof. Let v € V, g € G and w € €,G. Then
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([v,el,w) = wg-v,w) = (vg,w)=(v,w) = (vg,wg)-(v,w) = 0

Hence [V,G] < (€,G)*. If G = (g), then [V,G] = V(g-1) so that
dim [V,G] = dim V(g-1) = dim V - dim €,G = dim (€y&)*. If
~char F ) |G|, then V = [V,G] @ €,G, so that again dim (v,G] =

. n '
dim (QVG) .

~ So if char F Y |G|, then V is an orthogonal direct sum of
[(v,G] and €yG. Therefore ( , ) induces a non-degenerate
bilinear form on these spaces, and hence

dim (M n [V,G]) < % dim [V,G] and dim (M n €y8) = % dim €4G,
as M < M'. On the other hand, | |

M =[M,G] ® eyG, [M,G] s M n [V,G], €4G S M N €,G and

dim M = % dim V. This implies 5.2.

5.4 Corollary. Assume that F has finite characteristic p

Proof. Let m be the number of non-triviai.orbits of G in
0. Then the total number of orbits of G is h+|n|‘; ﬁr;.So
dim €yG = % dim €,G = % (n+]0| - rm) end hence
dim M/€yG = (lnl-m-ln_v|+m)/2 = m(r-1)/2 by 5.2. Now G acts
frobeniusly on M/€yG, so that r | pm(r~?)/2 - 1. Let e be
the order of p in Z / rZ. Then e | m(r-1)/2. On the other
hand, e | (r-1) by Fermat's Theorem. So e | (m(r-1)/2,7-1) =

= (r-1)/2 as nivE 1 (lﬁod 2>).

Note that the condition r | p(r-fl)/ 2 - 1 is equivalent
to the‘~property that p is a square.'.'in %Z/ rZ, i.e. p is a quadratic
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residue modulo T. Corollary 5.4 also is a corollary of the

_Theorem 5.5 below.

5.5 Theorem. Assume that G is cyclic of order n and that

F has finite’dﬁaracteristic'p‘such that p / n. If the number
of orbits of length n of G is odd, then n > 2 and

n qu(n)/2 -1.

Proof. We count the faithful composition factors of the -

G-module (V,G): For 1 < i S t we define

v(ny) = {f €V I £(8) = 0 for all & € n—ni}.
" Then
Vo= V(0,) Leees V(Qt)’

and V(N,) is a G-submodule for 1 = i < t. If Ioil = |G|, then
the number of faithful composition factors of (V(Qi);G) is
©(n)/e, where e is the order of p in the group of units of

Z /nZ.If, on the other hand, lQil < |G|, then V(Qi) does

not have aﬁy faithful composition factor at all. To prove

this, choose any element a € 0. Then G, + 1, and

N = af ¢ Q(Ga),as G is abelian. Therefore G, actuélly is
trivialonﬂKQQ.So the number of non-trivial composition factors
of (V,G) in ?b(n)/e, where t is the number of regular orbits

of G in N. So To(n)/e is even by 5.1. As T is‘odd by our

assumption, it follows that 2 ©(n)/e. In particular n> 2.

We present a further simple example of an application of

5.1, which will be useful for our investigations of

|
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collineation groups of projective planess

5.6 Lemma. Assume that F has finite characteristic p % 3

and that G is a 3-group. Assume furthermore, that |0,| = 1,

102| = 3 and lnil 2 |G] for 3< i < t. Then 3 | p-1.

Proof. As above, we have the orthogonal direct decomposition
V = V(n1) 4 V(Qg) LR S V(Qt).

Suppose that 3 f/ p-1. Then V(Q,) = Vyq @ Vyo, where'vzq and
V22 aré irreducible G-submodules such that V2,I is trivial
and dim V22 = 2. We count the number of compdsition‘factors
of (V,G) of dimension 2: v(nz) contains one, and therefore "
the total number is odd, as t-2 = (lnl-u)//'lcl = |n|l-4 = ||

= 0 (mod 2). So we obtain a contradiction to 5.1.

5.7 Lemma. a) If char F / |G|, then the number of orbits

of G in 0 is even.

b) If char F % 2, then each element in G induces an even

permutation of N.

1 -

Proof. a) t = dim €,G. If char F / |G|, then dim €.G is
the number of trivial composition factors of (V,G), and
this number is even by 5.1.

b) Assume that char F 4 2, and let x be a 2-element in |
G Then_ln(le = tnl'¥ O (mod 2). So the number of trivial

;;dfbits:qf (x) in1h.isveven, and by a) the number of non-.
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trivial orbits is even likewise. Let 01,'°',Qu be these
latter orbits. Then x can be written as the product of
(|O1l-1) 4oy (lnu1—1) transpositions. This number is

congruent to u and hence to O modulo 2.
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§ 6. Collineation groups represented on codes

We now return to our projective planes: Let (P,2) be a
projective plane of finite order n and F a field of finite
characteristic p. Let V,ﬂ,Po,$',V*, the bilinear form ( , )
and the homomorphism - be defined as in § 2. In addition,
let G be a group of automorphisms of (P,8). From the group
space (P,G) we obtain a group space (P*,G) by defining

g -
Po Po v for all g € G.

As in § 5 we make V* to a G-module. Note that for £ € 8 and
g €G

W) =T

In particular, G leaves. invariant ¥. If p | n but p2 ¥ n, then

W'ig self orthogonal, and we can apply the techniques and

results of § 5. As an immediate consequence we have:

6.1 Theorem. Let (P,2) be a projective plane of finite

order n and G a group of automorphisms of (P,2). Assume

that there exists a prime p such that p | n but p2 / n. Then
a) Assume that G is cyclic of order m and that p ¥ m. If the

number of orbits of length m of G is odd, then m > 2 and
o(m)/2 _ 4 |

m | p

b) Assume that G has prime order r 4+ p. If |B(G)| is even,

then r> 2 and r | p(r‘q)/Q - 1.

~¢) Assume that 2 }/ n and that G contains gg elation of prime
(r-1)/2 _ 4.

'ordér_r,+ p,jThen r'lﬁP
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d) Assume that 2 | n and that G contains a homology of
(r-1)72 _ 4.

prime order r # p. rJ)hen rlop

e) Assume that p $# 3 and that G is a >-group fixing 8

subset ¥ of cardinality 3 of P. If G is semi-regular on

P-%, then % & B(G) or 3 | p-1.
£) If p / |G|, then the number of orbits of G in P

d.

is odd.

Proof. We use 5.4 - 5.7. To prove b) note that

m

I‘ISI = n2+n+’l 1 (mod 2), so that the mimber of non-trivial
orbits of G is odd, if G has prime order and |B(G)| is even.
__b)v implies ¢) and d), as in these cases the number of non-

trivial orbits of G is n2/r and (n,2~1)/r respectively.

b) and f) in Theorem 6.1 can be deduced from Theorem 3.1

_in Hughes (1957).

If p2 | n, ‘then. the ‘same tedhniQue still provides some
information. about the action of Gon¥' /T. Actually, we
can generallze a.nd rephrase all our results in this way. For

example we have

6.1b'). Let (B,8) be a prcjective plane of finite order n,and

G a group of automorphisms g (P,2). Assume that F has
finite characteristic p such that p | n. Li G has prime
order r % p and I8(G)| = 0 (mod 2), then r > Zg_;;d_ |

r I p(r 1)/2 - 1 or G acts n’on-ltriﬁ_.Lally _9_1_1_”'!1'* /¥
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§ 8. Generalization to projective designs

Let (P,8) be an incidence structure such that there exist
A,k €N with the-properties | o
a) I(®)| =k  for all b € B,
b) [(®) N (e)| = A ~ for all b,c € P such that b % ¢,
c) Il = I8|, and
d) A< k< |p] - 1.

Denote v = |P| and n = k-A. We call (B,8) a projective design

‘and n the order of (3,8). Let A be the incidence matrix of (,8).
We see that AAY = nT + AJ, where I is thev X v identity matrix and
J is the vXv-matrix all of whose entries are 1. It follows that
At = aat (see Ryser, 1963, Theorem 2.1). Therefore |[P]| = k
for all P € P and |[P] N [Q]| = A for all P,Q € P such. that P + Q
Counting incidences we obtain k(k=-1) = (v-1)k and hence

v = (aeA)(nrA-1)/A+1. Also, (det A)2 = det (nI+dd) = (n+h)Za"".
Hence |det A| = (n+>‘)n(v -1 /2 and in particular v is odd orn is
a square (Schiitzenberger, 1949). '

We now proceed in a way very similar to that of § 2.
However we want-to apply a slightly different method for the
determination of the dimensions of the codes generated by
(B,%), which is much more clear from the geometric point of
view. This makes it necessary to replacé sometimes the ground
fleld F by the ring ZLof rational intergers. So we generallze

our concept a little.j



8.2 %3

~ Let R be any ring with 1 and V the set of functions from
B into R. Then V is a free R-module, As 1 € R we can define
characteristic functions as before. Let o be the‘R-submovdule

generated by the set
The element E we define as in § 2.

We consider at first the case R = Z. Then % is a sublattice
of the complete lattice V, and we can easily obtain a lot of

information about the factor group V/%. We already know

8.1 Lemma. The abelian group V/¥% is finite of order

|det A] = (n+)\)n(v_1)/2.

8.2 Lemma. Assume that R = Z. Let d be the order of E + &

in V/¥%, and let p be & prime. Then
a) d | ner,
b) if % |l n%)\, then p° | 4, unless plv, p®In and p® lIrA; and

¢) if (n,A) = 1, then d = n+A.

Proof. a) Let
f il T |
and X € P. As f(b)(x) =1 if X € (b) and f(b)(x) = O otherwise,we have
f(X) = |[X]| = n+X and hence ‘
D £ = (n+\) E.
In particular_.(n-}k) E € 8, so that d | n+x.
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b) We can assume that ¢ > O. Define

Vo, = {f €V ] o l § .

Glearly, V

Y ig a subgroup of V, and 8 S V__,. As

dE€n=V_,, p° I n+ l S dE = dv. Suppose now, that

¢

p° Y 4. Then p | v = (n+k)(n+l¥1)/x+1. Thus p V (n+k)(n+x—1)/l,.‘

and hence p® | A, as p® | n+\ by hypothesis. So p® | n. Suppose

c+1

that p | A\e As ¢ > 0, p | n+tr, and as A | (n+r)(n+r=1) we

c+1

obtain p | n+A, contradicting our hypothesié. So p° || A.

c) follows immediately from b).

8.3 Lemma. Assume that R = Z . The exponent of V/# divides

(n+\)n.

Proof. This follows from the fact, that for each pbint
P € P the sublattice % contains the element

(n+)) béf%] f(b) - X‘n+x)E = n(n+k)f(P}.'

We now have quite some information about Sylow-p-subgroups
of V/%, in particular, if p is a prime dividing n to the first
power: Let p be a prime such that p || n. If p / A, then
p / n+), so that S is just an elementary abelian group of
order p$V""172 vy 8.1 and 8.3. If p | A and p° is the highest
power of p dividing n+)A, then S contains a cyclic subgroup of
order- p by 8 2 (In fact, <E+ﬂ) contains a c¢yclic group of order

;]p unless c-1) On the other hand, in this case |S| pc+(v-1)/2
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So we have

8.4 Lemma. Let p be a prime such that p | n but p2 X n,

and let S be a Sylow p-subgroup of V/u.
is (v-1)/2.
b) If p | A, then the rank of S is at most (v-1)/2 +1.

a) If p / )\, then the rank of S

This is very important here because of the following fact:

8.5 Lemma. Let p be any prime and S a Sylow p-subgroup of

V/4. Denote the rank of S by u. Then |Bl-u is the dimension of

the code H  of (B,8) over GF(p).

Proof. V/(pV+t) = V/4 /(pV+21)/21. Here (pV+%)/8 = p(V/8), so that
V/(pV+2) = V/h)//p(V/ﬁ). This is an elementary abelian p-group

of order ﬁu.

We now assume that R is a field of characteristic p. We

have to distinguish four cases:

8.6. If p = or p <o but p ¥ (n+\)n, then % = V, because
|det A| = (n+k)n(v-1)/2;

8.7. If p< o, p | (n+)) but p /' n, then % is a hyperplane
of V by 8.1, 8.2 and 8.5.

8.8. Assume that p < «, p | n but p / n+\. To obtain
further information, we proceed like in § 2: We augment P by

a new point Pa,tq{ajset_$‘ - {Po},U » and denote V* = R’ .
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8.5
For £ € V we define T € V* by
f(PO) a - S f and
T(X) = £(X) . for all X € B.

Also, we define a bilinear form (,) on V%
(f,8) = -f(P dJe(P) + A S fg for all f,g € V*.

Here fg stands for the p01ntw1se product of f and g. As P ) 4 k,
‘this form is non—degenerate. One easily sees, that T < T, 80
that dim 2 < (v¢1)/2. If p | n, then din 8 = v = (v-1)/2 = (v+1)/2

by 8.4 and 8. 5. We summarlse°

Ifpll nand p /A, then ¥ = T and dim & = (v+1)/2.

8.9. Assume that p < ®, p | n and p |\. This case is in
some way easier to handle than the previous one: We define ( , )

‘to be Jjust the standard bilinear form on V:

(£,8) = g g for all f,g € V.
v P : ' v
Then % < 8% and dim % < v/2, as p | A. Assume now that p || n.

Then v is odd as pointed out gx the beginning of this paragraph.
Hence dim # = V - [(V-1)/2+1] = (V-1)/2 by 8.4. Note that
dim 2*/8 = 1. Clearly, # is contained in the subspace |

V= {f eV l g £ =0},
S0 E ¢ % unless p | v. We summarise:

pll nand p | 2, then # = ﬁ and dim & /ﬁ = 1, where

gt ,;_ he space orthogonal to ¥ with respect Yo the ordin gx
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scalar product on V. Also, in this case g' = (E) @ ¥ unless,

possibly, if p | v.

8.8 and 8.9 shows that the téchniques of § 5 are applicable

to collineation groups of (P,8) whenever p || n.
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