On Unorientable Surfaces in S³

by Masayuki Yamasaki (Tokyo Univ.)

§1. Z/4-quadratic spaces.

We recall the definition of Z/4-quadratic spaces. Let V be a finite dimensional vector space over Z/2 provided with a non-singular symmetric bilinear form $(x, y) \longmapsto x \cdot y \in \mathbb{Z}/2$, and let \mathcal{P} be a function : $V \longrightarrow \mathbb{Z}/4$ satisfying $\mathcal{P}(x + y) = \mathcal{P}(x) + \mathcal{P}(y) + 2(x \cdot y)$ for all $x, y \in V$. \mathcal{P} is called a $\mathbb{Z}/4$ -quadratic function and $X = (V, \cdot, \mathcal{P})$ is called a $\mathbb{Z}/4$ -quadratic space.

<u>Definition</u>. A $\mathbb{Z}/4$ -quadratic space $(V, \cdot, 9)$ is <u>even</u>, if $9(x) \equiv 0 \mod 2$ for all $x \in V$.

A Z/4-quadratic space (V, \cdot, \mathcal{G}) is odd, if $\mathcal{G}(x) \equiv 1$ mod 2 for some $x \in V$.

(Even Z/4-quadratic spaces are usually called Z/2-quadratic spaces.)

Example. Let F be a smoothly imbedded (not necessarily orientable) surface in S^3 whose boundary ∂F is homeomorphic to S^1 . Then we can define a Z/4-quadratic function $\mathcal{F}: H_1(F; \mathbb{Z}/2) \longrightarrow \mathbb{Z}/4$ as follows:

Let C be an immersed circle in F. The normal bundle V_C of C in S^3 has a unique trivialization $V_C = S^1 \times R^2$ such that the linking number of $C = S^1 \times 0$ and $S^1 \times *$ (* $\in R^2$, $\neq 0$) is zero. Since the normal bundle of C in F defines a subbundle V of V_C , we can count the number n(C) of right-handed

half twists of $\mathcal V$, using the trivialization above. Now the required function ϕ is defined by

$$\varphi(C) = n(C) + 2 \operatorname{Self}(C) \mod 4$$

where Self(C) is the number of the self-intersection points of C on F.

<u>Proposition</u> 1. ([5], Lemma 5.1) $\varphi(C) \in \mathbb{Z}/4$ depends only on the $\mathbb{Z}/2$ -homology class of C. The function $\varphi: H_1(F; \mathbb{Z}/2) \longrightarrow \mathbb{Z}/4$ is $\mathbb{Z}/4$ -quadratic with respect to the $\mathbb{Z}/2$ -intersection pairing of $H_1(F; \mathbb{Z}/2)$.

Remark. Let X_F denote the Z/4-quadratic space $(H_1(F;Z/2), \cdot, \emptyset)$ above. Then X_F is even, if F is orientable, and X_F is odd, if F is unorientable.

In [2], E. H. Brown defined a generalized Z/8 Arf invariant, called Brown's invariant, of Z/4-quadratic spaces. The Witt group W is isomorphic to Z/8 by Brown's invariant. (See [5] for the definition of the Witt group.) The definition of Brown's invariant is as follows:

Let X be a Z/4-quadratic space (V, ·, φ). We set $\lambda(X) = \sum_{x \in V} \overline{(-1)}^{\varphi(x)} \in \mathbb{C}.$

Then the complex number $\lambda(X)$ has the property that $\lambda(X)^8 \in \mathbb{R}^+$, and the integer m modulo 8 is well-defined. It is called Brown's invariant and is denoted by $\beta(X) \in \mathbb{Z}/8$. Proposition 2.A (2.B). The isomorphism classes of even (odd) Z/4-quadratic spaces can be completely classified by the dimension of V over Z/2 and Brown's invariant $\beta(X)$.

For the proof, see [1], [2], and [5].

§2. Unorientable surfaces in S3.

Let us consider smoothly imbedded surfaces in S^3 . Two surfaces F and G are <u>regular homotopic</u>, if there is a continuous family $\{F_t\}_{0 \le t \le 1}$ of smoothly immersed surfaces in S^3 such that $F_0 = F$, $F_1 = G$. In [6], the author has classified orientable surfaces with boundary in S^3 by regular homotopy. (See also [4].) In this section we classify unorientable surfaces in S^3 whose boundaries are homeomorphic to S^1 by regular homotopy. See also [2] Example (1.28).

Theorem. Two smoothly imbedded (not necessarily orientable) surfaces F, G in S^3 whose boundaries are homeomorphic to S^1 are regular homotopic if and only if the associated Z/4-quadratic spaces X_F and X_G are isomorphic.

Corollary A (B). Two smoothly imbedded orientable (unorientable) surfaces F, G in S³ whose boundaries are homeomorphic to S¹ are regular homotopic if and only if $\dim_{\mathbb{Z}/2} H_1(F;\mathbb{Z}/2) = \dim_{\mathbb{Z}/2} H_1(G;\mathbb{Z}/2)$ and $\beta(X_F) = \beta(X_G)$.

We prove Theorem for unorientable surfaces. See [6] for the proof of orientable surfaces. Let F and G be smoothly imbedded unorientable surfaces in S^3 whose boundaries are homeomorphic to S^1 such that X_F and X_G are isomorphic.

Lemma 1. Suppose that $\{e_1, \dots, e_r\}$ is a basis of $H_1(F; \mathbb{Z}/2)$ satisfying the condition (*);

(*)
$$e_{i} \cdot e_{j} = 0 \quad (i \neq j).$$

Then e_1, \ldots, e_r can be represented by mutually disjoint imbedded circles c_1, \ldots, c_r .

Remark. By the non-singularity of the intersection pairing of $H_1(F;\mathbb{Z}/2)$, the condition (*) implies $e_i \cdot e_i = 1 \in \mathbb{Z}/2$ for all $i = 1, \ldots, r$, and therefore $\varphi(e_i) = \pm 1 \in \mathbb{Z}/4$.

(proof of Lemma 1) Each $\mathbb{Z}/2$ -homology class e_i can be represented by a generic immersion of S^1 . Using the method illustrated in Figure 1, we may assume that the class e_i is represented by an imbedded circle c_i .

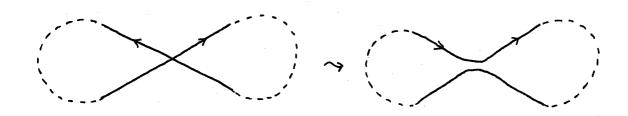
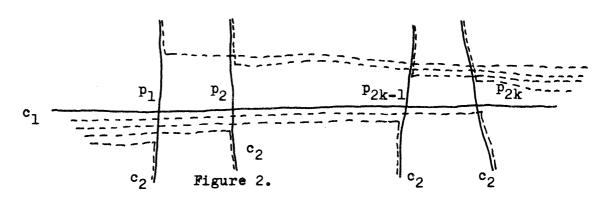


Figure 1.

Since we can prove this lemma by an induction on r, we shall prove in the case r=2. Let c_1 , c_2 be imbedded circles representing the elements e_1 , e_2 . As $e_1 \cdot e_2 = 0 \in \mathbb{Z}/2$ $c_1 \wedge c_2 = \{p_1, p_2, \ldots, p_{2k-1}, p_{2k}\}$. If $k \neq 0$, we modify the curve c_2 as the dotted line in Figure 2. This can be done, because the regular neighborhood of the circle c_1 is a Möbius band. (See Remark above.) The new curve, also denoted by c_2 , has no intersection points with c_1 and represents the same $\mathbb{Z}/2$ -homology class e_2 as before, but it has some self-intersection points. Using the method illustrated in Figure 1 again, we kill these double points, and the lemma is proved.



From the classification of unorientable surfaces, the Z/2-vector space $H_1(F;Z/2)$ has a basis $\{e_1,\ldots,e_r\}$ which satisfies the condition (*). Let c_i be the imbedded circle in Lemma 1, and N_i be a regular neighborhood of c_i , for i =1, ..., r. Let N denote the boundary-connected-sum of N_i 's in F. Since the boundary ∂N_i of N_i is homeomorphic to S^1 , for i = 1,..., r, the boundary ∂N of N is also homeomorphic to S^1 , and $\partial (F$ - int N) is homeomorphic to $S^1 \cup S^1$ (disjoint union).

From the following Mayer-Vietoris exact sequence;

$$0 \longrightarrow H_{1}(\partial N; Z) \longrightarrow H_{1}(N; Z) \oplus H_{1}(F-intN; Z) \longrightarrow H_{1}(F; Z) \xrightarrow{SII} Z$$

$$Z \qquad rZ \qquad rZ$$

$$\longrightarrow H_{0}(\partial N; Z) \longrightarrow H_{0}(N; Z) \oplus H_{0}(F-intN; Z) \longrightarrow H_{0}(F; Z) \longrightarrow 0$$

$$Z \qquad Z \qquad Z$$

we obtain $H_i(F - int N; Z) = Z$ (i=0,1), and therefore F - int N is homeomorphic to $S^1 \times [0, 1]$, and

Lemma 2. F is regular homotopic to N.

Since the Z/4-quadratic space X_G is isomorphic to X_F , there is a basis $\{f_1,\ldots,f_r\}$ of $H_1(G;Z/2)$ such that

$$e_i \cdot e_j = f_i \cdot f_j$$
 (i, j = 1,...,r)
 $\mathcal{G}(e_i) = \mathcal{G}(f_i)$ (i = 1,...,r).

Let d_i 's be mutually disjoint imbedded circles on G representing f_i 's as in Lemma 1, and let M denote the boundary-connected-sum of regular neighborhoods of d_i 's in G. Now from the equality $\Im(e_i) = \Im(f_i)$, it is easy to construct a regular homotopy between N and M ([3]), and therefore F and G are regular homotopic by Lemma 2. The converse is quite trivial and Theorem is proved.

REFERENCES

- [1] W. Browder, Surgery on simply-connected manifolds, Springer (1972).
- [2] E. H. Brown, Generalization of the Kervaire invariant, Ann. of Math. 95 (1972), 368-383.
- [3] M. Kato, 帯のトホロジー, 数理研講突録243 (1975), 88-96.
- [4] L. H. Kauffman and T. F. Banchoff, Immersions and mod-2 quadratic forms, Amer. Math. Monthly (March 1977), 168-185.
- [5] Y. Matsumoto, An elementary proof of Rochlin's signature theorem and its extension by Guillou and Marin, (preprint).
- [6] M. Yamasaki, S³の中の surface につけて, 数建研練資銀 297 (1977), 92-99.