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On Unorientable Surfaces in S3

by Masayuki Yamasaki (Tokyo Univ.)

81. 2/4-quadratic spaces.

We recall the definition of 32/4-quadratic spaées. Let V
be a finite dimensional vector space over Z/2 provided with
a non-singular symmetric bilinear form (x, y)—>x.y € 2/2,
and let ¢ be a function : V——>3%/4 satisfying P(x + y) =
?(x) + 9(y) + 2(x.y) for all x, y € V. ¢ is called a 2/4-
quadratic function and X = (V, *,% ) is called a Z/4-quadratic

space.
Definition. A Z/4-quadratic space (V,* ,% ) is even, if

®(x) = 0 mod 2 for all x € V,

A Z/4-quadratic space (V, - ,P) 1is odd, if P(x) =1
mod 2 for some x e V.

(Even Z/4-quadratic spaces are usually called Z/2—quadratic
spaces. )
Example. Let F be a smoothly imbedded (not necessarily
orientable) surface in S3 whose boundary gF is homeomorphic
to Sl. Then we can define a Z/4-quadratic function §: Hy(F;z/2)
—> 7/4 as follows:

Let C bDe an immersed circle in PF. The normal bundle VC

1 x R2 such

of C in §° has a unique trivialization Vj = S
that the linking number of C = S'x 0 and Six* (% e R%, £ 0)
is zero. Since the normal bundle of C in PF defines a sub-

bundle V of Vg» We can count the number n(C) of right-handed
-] -
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half twists of V, using the trivialization above. Now the
required function @ is defined by

¢(c) = n(c) + 2 se1lf(C) mod 4,
where Self(C) is the number of the self-intersectioh points

of C on PF.

Proposition 1. ([5], Lemma 5.1) 9(c) € z/4 depends only

on the Z/2-homology class of C. The function ?: Hl(F;Z/Z)——+ z2/4
is 2/4-quadratic with respect to the Z/2-intersection pairing
of Hl(F;Z/Z).

Remark. Let X, denote the 2Z/4-quadratic space (Hl(F;Z/Z),

F
‘y T)above. Then XF is even, if F is orientable, and XF is

odd, if F is unorientable.

In [2], E. H. Brown defined a generalized Z/8 Arf invariant,
called Brown's invariant, of Z/4-quadratic spaces. The Witt
group W is isomorphic to 2/8 by Brown's invariant. (See [5]
for the definition of the Witt group.) The definition of Brown's
invariant is as follows:

Let X be a 2/4-quadratic space (V, *, ?). We set

A = G FIT e
Then the complex number A (X) has the property that X(X)%e R,
and the integer m modulo 8 is well-defined. It is called

Brown's invariant and is denoted by (S(X) € 7/8.
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Proposition 2.4 (2.B). The isomorphism classes of even (odd)
Z/4-quadratic spaces can be completely classified by the dimension
of V over Z/2 and Brown's invariant f3(X).

For the proof, see [1], [2]1, and [5].

§2. Unorientable surfaces in s,

Let us consider smoothly imbedded surfaces in 33. Two

surfaces F and G are regular homotopic, if there is a contin-

uous family {F.} o <tg1 OFf smoothly immersed surfaces in s>

such that Fo 1

-orientable surfaces with boundary in S3 by regular homotopy.

=F, F, =G, In [6], the author has classified
(See also [4].) In this section we classify unorientable surfaces
in S3 whose boundaries are homeomorphic to S1 by regular

homotopy. See also [2] Example (1.28).

Theorem, Two smoothly imbedded (not necessarily orientable)
surfaces F, G in 83 whose boundaries are homeomorphic to S1
are regular homotopic if and only if the associated 2/4-quadratic

gspaces X and X are isomorphic.
F G

Corollarx A (B). Two smoothly imbedded orientable (unorienta-
ble) surfaces F, G in 83 whose boundaries are homeomorphic to
st are regular homotopic if and only if dimz/zHl(f;Z/Z) =
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We prove Theorem for unorientable surfaces. See [6] for
the proof of orientable surfaces. Let F and G be smoothly
imbedded unorientable surfaces in S3 whose boundaries are

1

homeomorphic to S such that XF and XG are isomorphic.

Lemma 1. Suppose that {el"°°’er} is a basis of Hl(F;Z/Z)
satisfying the condition (*);

(*) e;re5 =0 (i437).

Then €15 ceey € can be represented by mutually disjoint

T
imbedded circles Cysesesy Cre

Remark, By the non-singularity of the intersection pairing

of H (F;Z/2), the condition (*) implies e;-e, = 1 € 2/2
for all i =1,..., r, and therefore ?(ei) =t1 € 2/4.

(proof of Lemma 1) Each Z/2-homology class e; can be
represented by a generic immersion of Sl. Using the method
illustrated in Figure 1, we may assume that the class ey is

represented by an imbedded circle Cye
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Since we can prove this lemma by an induction on r, we
shall prove in the case r = 2, Let Cys Cp be imbedded
circles representing the elements el,'ez. As e, e, = 0 €2/2
ey N 02’= ipl, Ppreces Popoqs Pprle If Kk # 0, we modify the curve
c, as the dotted line in Figure 2, This can be done, because

the regular neighborhood of the circle is a Mobius band.

c
1
(See Remark above.) The new curve, also denoted by Cor has no
intersection points with cq and represents the same Z/2-homology
class e, as before, but it has some self-intersection points.
Using the method illustrated in Figure 1 again, we kill these
double points, and the lemma is proved.
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Cyo ! Figure 2. Co 2

From the classification of unorientable surfaces, the
Z/2-vector space Hl(F;Z/Z) has a basis {e;,...,e.} which

satisfies the condition (*). Let be the imbedded circle in

c
i
Lemma 1, and Ni be a regular neighborhood of Cy» for 1 =1,

ceey Yo Let N denote the boundary-connected-sum of Ni's in

F, Since the boundary 3“1 of Ni is homeomorphic to Sl, for

i=1l¢.., ry, the boundary 9N of N 1is also homeomorphic to

1 1

sl, and 3(F - int N) is homeomorphic to S' V sl(disjoint

union).
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From the following Mayer-Vietoris exact sequence;

0
-7
0 —> H,(3N;3)—>H, (N;2)@H, (F-intN;2)—> H., (F;2)*—
1 SH 1 1 1M
2 rZ ' rZ
(F;2)—0

—>»H. (8N;2)——> H (N;2)eH.(F-intN;2)——H
70 0% 0 0%
Z 7 ‘ Z

”

O¢

we obtain Hi(F - int N;2) = 2 (i=0,1), and therefore PF - int N

1

is homeomorphic to S x T 0, 1], and

Lemma 2. F 1is regular homotopic to N,

Since the Z%/4-quadratic space X; is isomorphic to Xg,
there is a basis {fl,o.o,fr} of Hl(G;Z/Z) such that
ej-ey = fi-fj (i, J = 1,e0e,1)
‘j’(ei) = ‘5’(1‘1) (i =1,00e,1)e
Let di's be mutually disjoint imbedded circles on G representing
fi's as in Lemma 1, and let M denote the boundary-connected-
sum of regular neighborhoods of di's in G. ©Now from the
equality ?(ei) = ?(f&), it is easy to construct a regular
homotopy between N and M ([3]), and therefore F and G

are regular homotopic by Lemma 2, The converse is quite trivial

and Theorem is proved.
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