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Difference Analogue of Volterra's Equation
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In the classic works of Volterra and Lotka the following coupled

nonlinear differential equation

f%f— = (a - y)x ,
{ (1)
_%tL = - (B - x)y ’

is presented to discribe the growth of populations of two species, prey

1)

The differential mapping (1) is known to exhibit the following

x and predator y ', where o and,B_are positive parameters.

invariant curve

x+y -8 log x ~-0o logy = const.

We look for a difference analogue of eq.(1l) which exhibits an
invariant curve. For this purpose we transform eq.(l) into the bilinear
form and construct a difference analogue of the bilinear form using the
dependent variable transformation.e)’3)

Let x(t) = g(t)/f(%) and y(t) = h(t)/f(t), then eq.(1l) is transformed

into the following bilinear form

1]

D g(t) » £(t) = a g(t)f(t) - g(t)n(t)

(2)

Dth(t)- £(t)

- Bn(t)f(t) + g(t)n(t) ,



where the bilinear operator Dtn operating on a+b is defined, for an

integer n, by

D a(t)s () = (go= - o )Palt)b(t')

t=t' .

A difference analogue of eq.(2) is obtained by replacing the bili-
near operators in eq.(2) by the difference analogues of them, namely D,
by st [exp (GDt/E) - exp (_6Dt/2)] and 1 (unit operator) by (1 - ei)
exp (GDt/E) + € exp (- GDt/Q), where § is the time difference and €5 is
a parameter,and the difference operator exp (aDt/2) operating on a(t). b(t)
is defined by

expv(SDt/Q)a(t)- b(t) = a(t + 8/2)v(t ~ 8/2) .
By these replacements, eq.(2) becomes

871 [g(t+6/2)£(4-6/2) - g(t-8/2)(++8/2)]
= al(1-€))g(t+6/2)£(t-5/2) + ¢, 8(t=8/2)£(t+6/2)]

- [(1—82)g(t+6/2)h(t-6/2) + ezg(t-5/2)h(t+6/2)]» .

5'1 [h(t+8/2)f(+t-8/2) - h(t-8/2)f(t+5/2)]

= - B[(l-€3)h(t+6/2)f(t—6/2) + €3h(t-6/2)f(t+6/2)]

+ [(1€)g(t+6/2)n(t-8/2) + e,g(t-6/2)n(t+6/2)] .
Dividing the above equations by f(t+§/2)f(t-8/2), we obtain
st [x(t+8/2) - x(t-8/2)] = d[(l-el)x(t+5/2) + €lx(t—5/2)]

- [(1-62)x(t+6/2)y(t-6/2)

+ €,x(5-8/2)y(t+8/2)] ,
}o(3)



st [y(t+8/2) - y(t=8/2)] = - B[(l—€3)y(t+6/2) + esy(t—élz)]
+ [(1-e,)x(t+6/2)y(£-6/2)
+ ex(t-8/2)y(t+8/2)] ,

Equation (3) is a candidate of difference analogue of Volterra's
equation. Now we impose the physical condition on eq.(3) that for
arbitrary value of positive §, the populations x(t) and y(t) should be
non-negative for all time if they were positive at a time. We shall

select parameters € 5 and €3 to satisfy the condition. For small

€
l’
values of x and y, eq.(3) is approximated by the linear equations,

1 + Sae
x(t + 8/2) = ——L — x(t - §/2) ,
1- 5&(1-61)

1 - 8Be

2 oyt -8/2) ,

y(t + &8/2) _
1+ 66(1—33)

which show that x(t + &/2) and y(t + §/2) become negative for large
values of § unless € = 1 and 83 = 0.
Hereafter we put x(t + &/2) X410 x(t - §/2) = X5 yv(t + §/2) =

Vigy® y(t - §8/2) = Yi» € =1, €, = € and €3 = 0, and rewrite eq.(3) as

X - X

sy~ % = Oloxy - (1-e)xp 0y, - exy ]

Vear = Vg = L= Brgyy + (Q-elxp vy +exy ] ()

Equation (4) can be transformed into an explicit scheme for X end ¥ o

[1 - 6e(1468) ™" x,1(1460) - de(1+68) ™ y,

x‘t+l = X oo (5)

1 - se(1+88)~T x, + 8(1-€)y,




1+ d(l—e)xt

Loy (6)

y =
o+l 1+ 88 - GSXt

Equation (5) shows that x becomes negative when x_ and y, satisfy the

t41 t
following conditions
-1
1 - 8e(1+6B) x, <0, (7)
1 - 63(1+6B)_l X, * 6(l—€)yt >0,
or
1 - 6e(1+68) ™t x, >0, (8)

t

[1 - se(1+88)~t x, 1(1+8a) - se(1+68) 7" Y, <0,

for positive values of x_ and yt; Hence € must be zero. Accordingly

t
we have a difference analogue of Volterra's equation

Slomy = x,9¥y)

{ (9)
yt+l - yt = 5(_ By.t_'_l + Xt'l"lyt) ]

I}
|
e}
"

which reduces to eq.(1) in the small limit of §.

Several numerical experiments carried on eq.(9) show, within

8

experimental errors, (~ 10 ), that there exisit invariant curves of the

mapping eq.(9). We plot a typical example of them in Fig. 1.
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