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Trace formula for a nonpositively curved manifold

Toshikazu SUNADA (Nagoya university)

This is a preliminary report of my forthcoming paper
which will be published elsewhere.

to
1. Introduction. The intention of this report isAgive an

application of a geometrical version of Selberg's trace formula
to the heat equation asymptotics of a compact manifold of non-
positive curvature.

The original form of trace formula given by Selberg him-
self works well on the class of weakly symmetric spaces.
Applying it to the upper half plane, he could construct the so-
called Selberg's zeta function and gave a functional equality
and a broof of generalized Riemannian conjecture for the zeta
function.

As ones know, the Selberg's trace formula can be considered
as a non-abelian generalization of Poisson summation formula:
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where }u)23 e fla)dy | Putting especially jwk)r e )
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one obtains ‘
= -4mwinzt | f -m At
2 € * Im &
Nz -o0 me-~so
This equality has a geometrical meaning, namely ¢ 4TCr’) neZj
is just the spectrum of the Riemannian manifold st = IR/Z (the
circle), and.'{mezj is the label of homotopy classes of closed
paths in Sl. _
In this point of view, many mathematicians have intended

to generalize this formula to general manifolds. To explain
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some results in this direction, we make use of the following
notations: Let (M, g) be a compact manifold with a Riemannian
metric g, and let O =:lo<%4§ﬁaé'~7a9 be the spectrum of its
Laplacian A acting on functions. The set of closed geodesics
in M will be denoted by Geo(M) and by Geo%(M) the compo-
nent of Geo(M). Y.Colin de Verdiere [5] and J.Chazarain [3]
proved that for & generic (M, g), the @ -series

@) = ) ef-nsE) , ReZ 70

can be written in the form

5 a0 enp (-T2 WN)

in which ¢{(d) stands for the length of closed geodesics in

Geo™ (M) , and f,(z) is a function expanded as

{a (2~ em(ﬁ}ﬁ«;) (‘_}_i)ﬂ«/z‘(aw e 27k Qe 2 )}
where n, = dim'Geod(M), Gax is the Morse index, and the state- >
ment "z-2s0 " means that a fixed Re z = s is chosen and that
"Im z - +oo ". _

In general it is difficult to calculate the higher order
coefficients ay, . For the case of strictly negative curvature,

H.Donnellyu%ave an algorithm for computing the a, . (A.Morchanov

(121 also Ereated the heat equation asymptotics for such a case.
But his argument seems incomplete. For instance he claimed that
the first coefficient obtained by his method agrees with that

of McKean {jc] for the case when.‘M is a surface of negative
constant curvature. But this is incorrect.)

If we take away the assumption of stfict hégativity and
assume only nonpositivity fbr curvature, then the matter becomes
somewhat complicated, and the argumenté in [f] can not be directly
appliable to this case. » »

In this paper, nofing that a geometrical version of trace

formula works well on a class of manifolds of nonpositive
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curvature satisfying a condition of non-degeneracy, we will.\\d

establish the asymptotics of the QD ~series for such manifdlds)
One should note that locally symmetric spaces belong to this
class.

In the course of argument, we need ::voff diagonal asymp-
totics for heat kernels on simply connected manifolds of non-
positive curvature. We should note here that Y.Kannai [ %]
treated the off diagonal estimates for general case, but his
results are not available for our purpose because we need the
fact that the remainder terms can be estimated by a function
with at most exponential growth at infinity. (The author is
very much indebted to Prof. N.Ikeda for indicating the reference

(g1).

2. Notations. First of all, I will establish some notations
which will be needed later. For more information you should
refer to W.Klingenberg "Lectures on closed geodesics" Springer-
Verlag 1978, or J.Milnor "Morse theory" Princeton 1963.

‘Let M be a compact connected C®-Riemannian manifold of
dimension n. The inner product of two vectors Xp, Yp & TPM
will be denoted by < XP, Yp? . The curvature tensor R 1is
given by the relation

R(X.Y)Z:- Ve 24 VN UxZ + Vixyy Z
Let Sl = R/Z be the circle. The set of closed paths :
Sl-—a M of class Hl will be denoted by [2(M), which is con-
sidered , in a natural way, a Hilbert manifold. For a smooth
curve c ¢ () (M), the tangent space chlxM) is identified with
™) .
The manifold () (M) is endowed with the complete metric given by

ER B IR TA L RN P2 AL

the space of vector fields of class Hl along ¢, Hl(c_
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We consider a functional E on .fl(M):
| Y
Ecc)- 2-33‘ newlt

which is called the energy or action integral. The differential

of E is caluculated as
de E(X)+ SJ] <C VX ot

which deduces that the critical point set of E is just the set
of closed geodesics) C: Vc=0 . For simplicity we write
Geo (M) for that. Let ¢ € Geo(M). Then the Hessian of E at

c 1is given by
Hess E (X, Y)< —S (X, VY H RIE,Y)C > dx
AR

2 . P
Putting Jc(X) = V X + R(c, X)c, we have immediately

Null space of HesscE = Ker Jc‘
We call Jc the Jacobi's differential operator.

Definition. M is said to be non-degenerate if the function
E 1is non-degenerate in the sense of Bott, that is
. 1) Geo(M) is a submanifold in L), '
ii) TcGeo(M) = Ker Jc '

It is known that M is non-degenerate for "generic" metrices.

We consider now the geodesic flow Qﬁj : ™M —>» TM which is
given by

PP ) = (expty, AC‘?‘Ppt'f)z

If ¢ & Geo(M), then ?Q(é(o}) is a periodic orbit, and the

differential d ¢ : ™ — T ™ (c(0) = p, ¢(0) = v)

T(p,V) (p,v)
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is called the (linearized) Poincare mapping associated with the
closed geodesic c¢. Using the connection on TM, we have a

direct decomposition:

_ . H \%
T(p’V)TM T @T’

where TH is the horizontal part, and v is the vertical part.
Let

H
H ct T M —
(p,v) p - T

be the isomorphism which is defined by

where QA (t) = (exp tv, U(t)), U(t) Dbeing the vector field along
exp tu obtained by parallel translating v. Let

\Y%
v : TM — T
(p,v) p
be the canonical isomorphism. From now on, we identify T(p v)TM
with the direct sum TPM @>TpM via the isomorphisms H, V.
Lemma 2.1. P(p ) (Y(0),VY(0)) = (Y(1), VY(1)), where
14

Y(t) is a Jacobi field along c.

From this lemma it follows that the eigenvalues of the
Poincare mapping P is uniquely determined by the geodesic c.

We will denote by det(Pc- I) the product of eigenvalues which

are differ from 1.
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3. Manifold of nonpositive curvature. This section will

describe the behavior of closed geodesics in a manifold of non-
positive curvature and will give a usefull criterion of non-
degeneracy for such manifolds.

Let M Dbe a compact manifold of nonpositive curvature and
with fundamental group [’ , which acts isometrically and proper
discontinuously on the universal covering fﬁ/ as deck trans-
formatiqu. {E’is:standard'fact that the exponential mapping
exp : TXM — M 1is a diffeomorphism( so that M is a Kfﬁ, 1) -
manifold. ' The free homotopy classes of closed paths, [S™, M],
can be then identified with the conjugacy classes in |7 in a
natural way. We denote by [P) =§E&3} the set of conjugacy

classes, and by M the set of closed geodesics c with [c]

= [2], [c] Dbeing é%i homotopy class of c.

For each %e¢l , we put fy(x) = d(x, rx)z, d  being the
distance function on M. We denote by ,ﬁ}, the critical point
set of £, .

by V.0zols [j3].

We will review some basic properties of £y obtained

o~
Lemma 3.1. A point x lies in WM, if and only if ¥

preserves the minimizing geodesic from x to ¥ Xx.

' >
Proof. Let VY be the fundamental vector field on M,
defined by

exp V' (x) = ¥ x.
. lond . N
Given a vector v € TxM’ we can form a surface in M by
d (s, t) = exp(svakexp tv)).

Then T =0Q(;%), X ==&*(gi) are vector fields along the surface
ol satisfying VXT =VTX, and we have
2

_ 2 22
X(O,t)f = 51 d” (exp tv, ¥ exp tv)

('3 ? as
NET
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_ A
= 2) £ <%, T7as

4
24X, T>
°
By deflnltlon‘of X, x(l,O) = Ix 0,0)" ‘
We now suppose xe(ﬁ;, and let C, be the minimizing
geqdesic from x to ¥x, so STS) =& (s, 0).
= E;(l) . For this
/é;(O). Then

We prove aéKO)
let vé T/ﬁ’ be any orthogonal vector of
0 =<X, T)\
so that Jxv

<x, r‘(:L)) -< v, f‘(o>> ={ X, 8(1)/,
is orthogonal to ’ﬂl), which 1mp11es y?ﬁO) ‘”Yl\
Conversely suppose that ¥ preserves a geode51c c. If
vV e TX/M is tangent to c, then v.f, =<X, T7) =< Vs &*C(O))—
(v, &(0)7 = 0. If v is normal to c, then
pve €17 =< v, c(0)7 =

v. £
= 0, which implies
Proposition 3.2

Xt M .
¥

N

My

its absolute minimum

Proof.

Non-emptyness follows from the compactness of
Easy calculations show

1
?
v

{VgXr VX 7 -<R(T,X)T, X >ds.
By the assumption of curvature, we have

f (exp tv)
Qt

52

e} f (exp tv)
in other words, £,

nv

0,

is a convex functlon on
our assertions immediately follow.

~ . '
M, from which

The minimum of fb, will be denoted by 4 ()
We denote by [’y the centralizer of ¥
as

M, is i i

Lemma 3. 3.
~

in Y’ The set
is invariant under Y§,~action and contractible.

Let x Dbe any interior point of
ve T M,y be a transeverse vector to
(s € R,

(\./
My s and let
Cyx., Then the surface (s, t)
-¢<t¢g¢ ) is totally geodesic,and has zero curvature.

2" <x, T\ =

is non-empty, and a connected totally
geodesic submanifold possibly with boundary on which fk attains

M.
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Furthermore the vector fields T and X are parallel on «.

2
Proof. Since & fb(zi(s, t)) = 0, we have
, ov R

N |
_S VX, VpX) -<R(T,X)T, X7 ds = 0,
3

so that VTX = VXT = 0, <R(T,X)T, X> = 0. Hence it remains
only to prove §7XX = 0. But this follows from the

A
Lemma 3.4. Let «c¢(t) and c'(t) be geodesics in M.
Then the function t — d2(c(t), c'(t)) is convex.

Proof. Easy and omitted.

We now define a mapping'%ﬁ:.ﬁg—ﬂglﬂm as follows: For x
€ ﬁ;. let [E% : R—> M be the unique geodesic with rEQ(O) = X
and (8;(1) = ¥ X. Since )fE%(t) =(E;(t+l), the geodesic ‘E;
can be considgzgd as a lifting of a closed ggg?esic C, ¢ Sl*—ﬁ M.
Then we put T, (x) = c.. It is clear that q&(ﬁg) '
each Cy is of length {(&).

[>] and

. ~ 7
Lemma 3.5. The mapping -@, : M&\B'M; —> (M) is smooth.

~—
Further the mapping q& induces a homeomorphism q&fﬁ;/fn onto
M[&]. In particular M[&] is a manifold possibly with boundary,

and qr (4 is isomorphic to §7&.

1

This follows immediately from the definition of smooth

structure on () (M).
" The following is a main goal of this section.

Proposition 3.6. A manifold M of nonpositive curvature

is non degenerate if and only if for any %¢[7, the function £,

is non degenerate.
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Proof. We adopt the notations in Lemma 3.1. By Lemma 3.5
M[y] is without boundary if and only if so is fﬁ;. The linear
mapping

Null space of Hessxfy————g Ker JC
W v

v —_ X

is an isomorphism, so if dim T;ﬁ; = dim Null space of HessXQ,

then  dim M[&] = dim Ker Jc )and vice versa.
X
Lemma 3.7. If M is nondegenerate, then the evaluation
LR . . .
mapping i[)] : M[)]——a M 1sAtotally geodesic, isometric
. W
immersion. € s ()

Proof. The tangent space TCM
and the differential of i[&]

Since each X ¢ Ker JC is parallel, we have

coincides with Ker Jc’

[¥]
is just the restriction X =2 X(0).

<X, X% = Sﬂ< X, Xy ds = <X(0), X(0)7,

<

which implies i[&] is isometric. Totally geodesicity is obvious.

Corollary 3.8. A manifold of strictly negative curvature

is nondegenerate.

Corollary 3.9. A compact locally symmetric space of non-
positive curvature is nondegenerate.
Lis)
Remark. In our previous paper, we proved directly the above

corollary, using the Morse theorv. Seg alse [i7)

4, Selberg's trace formula. From now on we assume M is

of nonpositive curvature and nondegenerate, so that M[t] is a
Riemannian manifold with the metric induced from that of M by

immersion i[H : M[&]——a M. The canonical volume element on
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M will be denoted dv .
[7] [7] ~
Let Ny be the normal bundle of M,

in lﬁf The central-
izer [’ acts on N, , and the exponential mapping exp : Ny,—>
ﬂﬁ' is a S’y -equivalent diffeomorphism.

It is convenient to introduce a volume element dM, dvs
on N, which is defined by the fiber product of dv, on ’ﬁ;‘/
and the ordinary Lebesgue measure dy, on the fibers 'Nax 2

j Ol./u-a- CLU\ < J(\_ O(U}CJ&) J du!’)‘\\w)
N : My Nrx ‘

¥

On the. other hand, the pull back of dgv by the exponential
mapping yields another one on N?" so that we get a smooth
function ?} on N, satisfying

(exp) * (dv) = ¥, o thr ol Uy

We now turn to the normal bundle of the immersion i[}]
Mr,1 —> M, to be denoted N[&q. The quotient N,/{7, 1is

identified with N[&] via the natural projection N, — N

and the following diagram is commutative:

[>]

T 2 N

) l

o, 2R TS

Further the exponential mapping yields a diffeomorphism exp :
S .
N[}]—ﬁ M/p}. In the same way as above, we construct a volume

element d}4[&]~dv[?] on N[&] and the function 71&] on N
satisfying

[¥]

(exp)*(dgg) = ?%&]d/d[&]'dv[ai'

where d@}_ is the volume element on ’ﬁyrg . It is obvious that
@, ;s the lifting of @ ., aﬁd ‘P[k](O) = 1.

- 10 -
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Lemma 4.1. [%nhw)) §C67p§hﬂ0“) for any normal vector Vv €

N[)], and the constant C, h does not devend on V.

~—
Proof. Take a point pé»M&. Since M[k] is compact, it

is enough to show that
1yl € C ey Cowh)

for any veg N&p' Using the trivialization of the bundle N,
given by

E:.[MQ*NH > N:)*

(%», \/”) v—7 TP‘I"U{- ,

where ﬁtpq : N&p——~9 Nqu denotes the parallel translation

along the unique geodesic joining p to g, we have
EX (s dury )= Alyyn dUy )

which implies

Paw)=: | det d(ﬁv)(ﬁﬁp°ﬁ)\ )

But if uieTéﬁ; then

d

(expeg ) (u) Ui(nvﬂ)/nv;\/

(p,Vv)

and if uIEN%p, then

d(p,v) (expof ) (19 Ul(uv;\) '

where Ul ’ U2 are Jacobi fields along the normal geodesic

t ) exp tv/mvi satisfying

u, (0) =0, AY U, (0) = u, :

- 11 -
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Ul(O) = Upo VUQ(O) = 0.

From the theorem of comparison of Rauch and Berger ([4-]) , the’
norm | U, (t)ii are bounded from above by functions with at

most exponential growth at infinity, hence the lemma follows.

. . , . e ~
Let now K(p, qg) be a continuous function on M X M

satiszing the relation

Ky pr ya) = K(p, Q)

for all p, g in ™M and all M in {7. We make the follOVJing

assumption: The sum

Z Ky

rer
converges uniformly if p and g are in some compact region
of M . Since the function (p, @) » ;Z:PK(p, yq) 1is f’_xp—
invariant, it yields a continuous function on M X M, to be
denoted k(x, y). Further the function p —~— K(p,¥p) is l';-
invariant, hence it can be considered as a function of (ﬁ'/r[& .
We write Kr_}](v) = K(exp v, »exp v) via the identification

IR

Proposition 4.2.(A version of Selberg's trace formula)

jk(xl x) dv(x) = Z j dv[}](x)J K1 (v) gp[&] (v) d/[(“_]X(v).;E

M Lerr) Mm Nonx
Proof. Let @ be a fundamental domain for the action
N\ .
of [ on M, and let ,fj, be that of the action of f; . We
then get :

5 k(x, x) dv(x) = Z J K(p, »p) dvip)
‘ Fey 08
M

=5 > | K@, Mp) avtp)
ff)J&[)'lJ '“'('U‘) ‘,8« :

- 12 -
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5 e
-z 2 j K (p, kbAp) dv(p)
L) M&P/na_ IS
— ne
=2 K(p, 3y p) dv(p)
Laefm) QQV ’
U 4 is a fundamental domain of the action of j7, on
M ;, we have
[¥]

since REPh,
. - .
Regarding here M/(7, as fiber space over

~
M.

the assertion.

We continue with the situation

M.
heat

5. Heat kernels on
First we review the basic properties of the

of ¢ 2.
e
kernel on a simply connected, nonpositively curved manifold WM.
be the fundamental solution (heat kernel)

' Let K(t;p, q)
of the heat equation on

2 -
51}k’*4ﬁ k=0

K(0;p, q) = (F?(').

p
M

In order to describe an asymptotical property of K, we let

for brevity
O (p, q) = \det dvexpp \ (y = exp_PV)e

and define inductively

-/,
Y, (p, q) = GZ(P, q)

\ V vt~

5%, q)i O (¥ exptv)) “Aa Uin (r, erp, ) THT,

il

u, (p, Q)
The comparison theorem and an inductive argument yield estimates
Cexy hdir §)
being positive constants

[V ORUE S0 B
20, C and h
and general case is due to

for each integer i
(the case dim M = 2 is due to [§],

P.H.Berard [1]).
N 0, there exists positive

1\

Lemma 5.1. For any integer

- 13 -
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constants C, h such that

" N ,
| (4mt)> @(y( dip e At) Kltipp)- ﬁz% Uotr )ty \

€ Copp Chdirpp) VT

for small positive t.

Proof. This is essentially due to [5], therefore the
proof will be outlined.

Put v ,
Snltipg) = (4nE) P oxp (- dip vt e ) 2 Welp i)t

Ty e ) = (0hy +8:)dx (b P L)

then

~ms _ ~dr )4 e hol (v 8/

| Sn (ap 2] € kit €

N~Mp

—d (. 4L e h dey. i)

' Ty ey € Lt €

and

Kitiw )= Swltsp 4 -1\2—: ('1);\(')%*0\* J,v) (t:p, 5 ))

where )K denotes the convolution. We need here the following
estimate which is sharpened slightly than that of [§] : If two
functions A(t;p, q) and B(t;p, d) are estimated by

1 .
th e - A MAVCMU”J and LtB€ ~du. b/ 4t e hd . ﬁ”) respectively and

o B2 m ., then
b2

2

h . 5y ]
| (RKE) (biv)) € KL C E@ErEnte-du 2o hdrs)

for small t, where C 1is a constant depending only upon n,

h ;and lower bQundvof sectional cu;vature of @E The proof can
be done in the same way as [535], so we omit it. Applying this
estimate to A = SN and B = TN’ we obtain | |

ATk Su) £ KL ¢ EPNTEY o WA ond
J

- 14 -
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and inductively - , ,
A Ay AW -E A o

Hence " )
L= PNEY _d o d
t e <

[EaN

2()“”* Sv] € ¢C

for small t D 0, as desired.

6. Asymptotic expansion. Using the estimates in f'S,

we easily observe that the sum

Z Kitir vt/

rer
Eenverges absolutely and uniformly on any compact subset in
‘ o~
M A-M, and yields a fundamental solution k(t;x, y) of the
heat equation on M. Applying Proposition 4.2 to K(t;p, a)

we have
Q= Ze Mt J Rltsa,x) den)
= Z AV\Q)“)J K[i? v V) CP{))\V) dj/‘tnf ()
BIE[P) My, Nipa Y
where K[&](t; v) = K(t;p,&q) (p‘= exp V). We put now
‘ dim My, /-
%m (E-x) = [41v) w éxp (r)/ﬁ/j o> \E7V) gy 10 ) (ot \/)
NHDA

so that (i) = 2_ (fre )™ M 2 C;(Ip( f(rJ/tH,]JM hb-] (20 (P )

el
Then we have )

Proposition 6.1. The funétion h{;] can be expanded as

}\m’[t:x)f\. 0 &) ¥ Q'L{”(A)t F we £ LD

- 15 -
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where the coefficients agﬂx) are smooth functions on M[r]

The proof will be broken up into several steps. ' To begin,

we make an estimate of the function d(p, yp). For this we write
d}(v) = d(exp v, rexp v), V& N,/ and let d[r] be the function
i . It i i = .
on N[k] induced from d, t is obvious d[&](O) £(x)
Lemma 6.2. We can find constants Cl> 0, C2 such that
=
= +
d[a] (v) Cprvn + C,
for all v ¢ N[%].
Proof. Let v¢€ N} with Wvil = 1, and put
Y (s) = d(exp sv, ¥ exp sv).

We recall here the second variation formula for arc length

which asserts

g = %)'3501<'T"“"7<\7x'm7ﬁ7 - 4T T 7 Ak

¢
- )t | <R X, T dx

where we adopt the notation in f 3. The assumption for curvature

and the Schwartz inequlity shows %%2 Z 0, so that ? is a

convex function. Further

3 R ‘ S
: = — - T4t >0
T ) 7 o Sbmvx,wx? RIXTIX, T

from which our assertion follows.
We introduce the notations: For a positive integer N,

uiV(V) = ui(exp VvV, ¥ exp v) i=29,1,...,N,

exp(d2/4t)t-N_l(K(:/fﬁlii::ﬁ?l:ﬁj
. dexp v),

Ugppp(ts V) = (ame) ™2

- 16 -



43

and u (v) , U ](V) are the induced functions on N

if¥]

From Lemma 5.1, we obtain

N+1[> [>]°

\UN+l[bﬂﬁvﬂ Lc exp (hd , ,(v)),

and by definition s N ,dﬁkvbét
hegy (t32) = (‘ﬁtt)d/lm Moz =Wz, WA 5 ¢ j,\, e " Wi () i 10) d e a ()

(e LA
(%) 4 H_Kt,cu'mm /2 —W;{ Vit N j e’ A1/ Uhryayttes V}‘F&,,w}fu{m.ﬁ ()
Nian
Hence, to prove Proposition 6.1, we must establish asymptotic

propertieé of the integrals

_ 12
Ii(t) = j&/ exp ( d[}](v)/4t)ui[&](v) Y%&](V) éu[a]x(V),

LA

- 2 | - S
I (B) = exp(—d[}](v)/4t)UN+l[}](t,v) Y[}](V? QIqa]x(v).
A Nipa

More generally consider the integral of the form

M I(t) = &S exp(-f(£)/t) g(§) daf ,
PJ

where f(f) and g(f) are smooth functions on RS satisfying

v

£(§) 2 0
£5) 2 ¢y g’ + C, >0

|o(7)] £ 5 exp c £(5) /2.

v

A

Furthermore we suppose that the origin is only one critical
point of f(§), and Hessian of f at the origin is positive

definite. Then we have a real form of stationary phase method:

+ c,t +....) .

: s/2
Lemma 6.3. I(t)i}z (27Ct) exp(—f(O)/t)(CO 1

Proof. Some observations show that without loss of gene-

rality we may assume g(f) € CO(RS). Therefore we let suppose

- 17 -
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that the support of g(§) is contained in a neighborhood U
in which there exists a Morse type coordinate system (7bw~ ,{x):

U ) = A S
Putting h j 7) = i ,‘af/
g here gl(%,”..i,Z) 9(%;~'~,Z)\&¢qu) we get

_ g 0'/ ) - 2. 2 . K
T(t)-(i Jlo), tjp.rﬁ (M T’?.r)/t gitwl,v~, ;7‘)0()& L‘(,’f_c
$2 o ~Fw/t ~hinh
£ ¢ (o JRJQ i 3;N€%}47'

tlaking the Taylor expansion of 97 and using the fact that
| =0, 4 - _ -
\JRSG 1%dY=nv t}\w\-m+~~+ch o oodd
we are done.
We now revert to the proof of Prop. 6.1. We easily observe

; 2 ) . .
that the function d[&] defined on the fiber N[i]x

one critical point 0, at which the Hessian is positive definite.

has only

Hence we are in the situation where we can apply the above lemma

to the integrals Ii(t), and get

I, (t) = exp (-4(F)2/at) (amg)™/2 = dimM /2 X

X (aio”¥ Reet v Y Qon-y [t CD(tNH|-L)J

Further

i Tun e h o \v)

th hn[”)dﬂan\wj

itas 2

e — RV /AL 0 ( t{‘ - domMps) /1)

oxp (- den (W) 4t )

YA,

aA

’

Substituting these estimates into (%) and adding up the coeffi-

cients, we have
N : , .
ho . (t; x) = 2 0k, 0)th+ O(t‘”‘) Q%q30)=zajﬁ
[)’] t=e . : J »Jfﬁ:(f
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Ssmooth dependence of the coefficients QinM} is obvious from

the construction.

We now give an explicit calculation for aéJx). For this

let f£(§f) and g(§) be functions given in Lemma 6.3.
Substituting the formal expansion of £, g by homogeneous

polynomials
_ 1 2
£(§) = £(0) + 3 Hess £(0) (§,§ ) + ﬁ?; £, (5),
X
g() =2 g (3)
ﬁ-:O

into I(t), aﬁd making the change of variables \fuJ{Y‘ , one has

A ~fisj /' -
Tw=t e " tj P{~- Hes 300, 1) ) expp =2 L * s ) 5

P =)
i‘_ . y[)t}/z L){

- 2o =hei/e [ fo S R %
T e j exp \-;‘ﬂemso)m,n))gat " Qo) dy
N l 5 =

where Qk(%) is a polynomial of 7 whose coefficients are
polynomials of derivatives D’ f(O), DEqg (0) (jxy23,1€)20 . Let
A Dbe a symmetric matrix whose (i,]j)-component is QPTW¢@VL5{

Then the change of variable %:A44 yields

Tw:=t%e """ exp(- i\on)Z PR (A7) Tt AL g
Jps

so
~1a

3 Yol / X
1) ~ptr F e T der A 2 et

Cb%:ZEQJCAP(~§mﬁ)Qﬁ(NWA)dA

where we have used the fact

j w&;p\\)mm ) =0 Be wdd.
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The coefficient a5y is given by a universal polynomial of
A_l/2, Ddf(O) and D€g(0). For instance

o
1l

0 g (0)

a, = 90 5 250 oy 53410 |

1 12 » 9?,3_{ ng e ;,QP&; 9§( ,‘92 "aj&/ (A }oj"‘l:e/ y'_,_"/,_i )(1‘
X @d@&d/‘sfa,/ ‘
I's 2%/

- =2 . AJ )
€ < 2508, 05, e B Tay Yoes EXA J=oss
d 7N

Fs 2 df-18, Vvelie due F

in which in general we put

. | ~ 12/ V2
T, cdg T _Smrjla(;“-lyt € dx (PMQ)= A

L4

The formula gets rapidly out of hand.

Finally we would like to show that the first coefficient
a[}] coincides with det (P, -I) —1/2, where P, is the
linearized Poincare mapping associated with C, »

For this we note the Poincare mapping induces

Pral F "o1x @ Vg — Nix @ Yiax

and det(%, -I) = det(P[H -I).

(A B ) _ ((< U O (1)))”. (<o, Vya)>)
CD B "
(U VO,92)

We then put

L<ve, V2 de,
where Ui(t), Vi(t) are Jacobi fields along c¢ (0,11 —5 M,
with ‘
Ucte)=vy \ Veiw=o
VOclo)=9 VVi)=uy
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Viresser Vg (s = dim N[y]x) being an orthogonal basis of N[X]X.
Since
A-I B
det(P[&] - I) = det(C D-T

= det(C + (D—I)B—l(I—A))adet B,

it is enough to see that

|get Bl= ©(p, ¥ p)

2
[»

S

|det(c + (D—I)B_l(I-A))\ =‘det Hess d ](0)' » 27

For this let Veg1’® [3] be an orthogonal basis

and Vi(t) (i=s+1,...,n) be Jacobi fields with

ceer Vo € TXM

Vi(O) =0, ‘VVi(O) = v,
Since <“§i, Vj{l)7 = 0 for s+l<i¢n, 'l £ | £ s, we have
- _ «
S, yp) =|det vy, Vo2 S |

=\det<vi, vy det<v, , vj(1)7

i,j=s‘{ s+l=i,j=nl

=| det B) D (0, 30
) N

But easy observations show E%fp,a—p) = 1l,which implies the
first equality. A My
On the other hand

I

1
2 5 VX, VX2 - <KRUT, X)) A > ki
<
P4
2 < x,, '\7xj.7 \a

2
Hess d[)‘] (O) (Vilvj)

H

where Xi(t) is a Jacobi field such that Xi(O) = Xi(l) = V.
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Hence we can find a matrix E = (eij) such that

Xj(t) = Uj (t) + Z ekjvk(t).

By definition of ‘Xj' we have

X, (1) = Uy (1) + 7 €3V (1)

v, =
3

X (1) = Vuy () +7 ey V(D)
Xj(O) = Z? x5 Vk

so that
Xv, Vo1 E=eu, VO, 15 e, <ve, Vel - ey,

- C+DE-E

= B'l(I - A).

ary Uj(l)> + BE, hence E

But « Vi’ Vj >
This implies

X =
<xi, ij7o— C+ (D-1I)B (I -A),

as desired.

Sumarizing these results we have

Let M be a compact nondegenerate manifold of

Theorem.
nonpositive curvature. Then for each [3]1¢ [ '] there exists
such that

](t; X) on m}x M[&]

(4t )" &M jyef;(p (-Jem%st)L hew, (32 2d Vs, (3
' 23]

can be expanded as

a function h[&
i) @) =2
’ e[}

ii) each h[}](t; X)

ht {(tex) ~~ %, ) ¥ q}'.y t 4
¥3 L0 (4%] 0
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where azfx) are smooth functions on [ 17 which can be rea—
resented as universal polynomlals of normal derivatives of d ’
?[t], ui[}], and (Hess d[&]) . The first term is given by
[H(x) = |det(R =~ I) 172,
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