Group Duality and the Kubo-Martin-Schwinger Condition

Masamichi Takesaki

Daniel Kastler

(presented by D. K.)

For ω an α -invariant state of a C*-algebra \mathcal{T} endowed with an action $g \in G \to \alpha_g \in Aut \mathcal{T}$ of a locally compact abelian group G, we study the relationship between the two following facts:

(i) ω is KMS w.r.t. some continuous 1-parameter subgroup of G (ii) there exists a linear map T_0 , closable in an appropriate topology, such that

$$T_{o} \; F_{AB} = G_{AB}$$
 , A,B $\leftarrow \mathcal{O} \mathcal{I}$, where $F_{AB}(g) = \omega(B\alpha_{g}(A))$,
$$G_{AB}(g) = \omega(\alpha_{g}(A)B) \; , \quad g \; \leftarrow \; G \; .$$

1) Typical result: Assume \mathbf{W} extremal τ -invariant for an action τ of an amenable group H on \mathcal{O} which is asymptotically abelian and commutes with α ; and imbed the set $\mathcal{F} = \{F_{AB}; A, B \in \mathcal{O}\}$ in either $L^{\infty}(G)$ or B(G) endowed with their weak*-topologies. If there is a closable linear map T_0 s.t. $T_0F_{AB} = G_{AB}$ for all A, B $\in \mathcal{O}$ 1, (i) holds.

Ingredients are:

2) <u>Duality results</u>; e.g.: Let \mathcal{A} be a weak*-dense trans-lation invariant subalgebra of $L^{\infty}(G)$ (or B(G)). If T is a weak*-closed homomorphism of \mathcal{A} into $L^{\infty}(G)$ (or B(G)) commuting with the translations, there is a continuous 1-parameter group $\{g(t), t \in R\}$ of G and $s_0 \in G$ s.t. for each $f \in \mathcal{A}$ and $s \in G$, $t \to f(s + g(t))$ and $t \to Tf(s + s_0 + g(t))$ are the boundary values of a function in $H^{\infty}(\{IImz\} < 1\})$.

- 3) Density results, e.g.: Let ω be an α -invariant state of $\mathcal{O}1$ generating the covariant representation $\{\pi,H\}$. Then
- (i) \mathcal{F} is weak *-total in B(G) iff SpU= \hat{G}
- (ii) Assuming ω extremal τ -invariant for an action τ of an amenable group H on $\mathcal{O}l$ which is asymptotically abelian and commutes with α , \mathcal{F} is weak*-total in $L^{\infty}(G)$.

Results of the type 3) allow to apply results of the type i) to the closure T of the operator T_0 in results like 1) to obtain the conclusion.

Bibliography

- [1] R. Haag, N.M. Hugenhaltz, M. Winnink. On The Equilibrium States in Quantum Statistical Mechanics,

 Comm. Math. Phys. 5(1967) 215.
- [2] M. Takesaki. Tomita's Theory of Modular Hilbert Algebras and its Applications, Springer Lecture Notes in Mathematics, No. 128.
- [3] H. Araki, R. Haag, D. Kastler, M. Takesaki. Extension of States and Chemical Potential, Comm. Math. Phys. <u>53</u> (1977), 97.
- [4] N. Tatsuuma. An Extension of AKTH-theory to Locally Compact Groups, Kôkyûroku, Research Inst. Math. Sci. Kyôto Univ. 314(1977), 88-104.
- [5] M. Takesaki, N. Tatsuuma. Duality and Subgroups, Annals of Math. 93(1971), 344.