goooboooogn
0 3580 19790 125-133

125

Partially Observable Markov Decision Problems
with Vector-valued Criteria

Akira Ichikawa

Faculty of Engineering

Shizuoka University
1. Introduction. Optimal control of discrete time Markov processes
with partial observation has been studied by many authors, for example,
(11, [5]1, [6], [7T]. Smallwood and Sondik [6] in particular considered
a Markov chain with finite states, signals and actions. They have for-
mulated an optimal control problem over a finite horizon and presented
an algorithm for an optimal policy and the minimum cost. Sondik [7]
has then developed a further study on the infinite horizon problem with
discounting. He introduces a new concept of finite transient policies
and proposes an algorithm. We [3], [4] have studied the same problem
from a different angle and examined the relation between these two
methods.

Recently the theory of Markov decision problems has been extended
to the case of vector-valued criteria. Furukawa [2] has studied vector-
valued Markov decision problems with countable states and established a
policy improvement algorithm as well as the characterization of optimal
policies. In this paper we take the model in [3], [4] and establish
main results in {2] for our Markov process.

2. The model. Let T = {0,1,2,-**} , Y={1,2,--- N} , 8 ={1,2,---M}
and U = {1,2,~°-K} be the index set, the state space, the signal space
and the control space respectively. Our basic stochastic process is a

Markov chain - yt €Y, t €T which is not directly observable. The

system dynamics is described as follows, At time t € T we know that

Yy has a probability distribution X, = x = (Xi) e RN (row vector),

ie., x, = Pr{yt=i} , i=1,2,+++N, If we choose a control u = u
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then the process makes a transition according to the transition matrix

X
pY = (P?j) € RN N (NXN-matrix). From the new state yt+l we receive a
signal Sy € S. We assume that the conditional probability of observ-
ing s, given that the current state is 1 and the control u is se-

NxN

lected, is r?s. Let R: = diag {rzs} € R (a diagonal matrix) and

1

e =[ 2-] € RN. Then the probability of observing s, given that the
1

current probability distribution is x and the control u is selected,

is given by {slx,u} = xPuR:. By the Bayes' rule the distribution of

X of Vis1 is then [6]

t+1
2.1 =
(2.1) Xy 41 T(x|s,u)
u
D PR
{s]x,u}
The process is repeated with the new distribution x . It is conven-

t+1

ient to regard x, as the state of our system. In fact Xy is a Markov

process with values in RN[T],
To introduce an optimization problem we need some preliminary def-
initions. Let X € RN be the set of probability wvectors i.e,,

N

X = {X=(xi): xiZO', ) x,;=1 }. Let A be the set of mappings & : X> U
i=1

and define I = {Gt,teT: 6t€ A}. Each element of II is called a policy.

A stationary policy is a policy which is independent of 1t 1.e., 6t =g
for all + € T. Hence we may identify A with the set of stationary
policies. Now we introduce an Rp-valued cost function

(2.2) °°
Colx ) =B_ ] g%, 8, s e
0 *0 +0

u NxP R e e
where 0<B<1 and Q €R ~, ue€lU. We wish to minimize 06(x

o)

over A in the sense of Definition 2.1.

Definition 2.1. A policy &, is optimal if

CG(XO) < Cgy (XO), be € X = CG*(XO) = Cg (XO)?
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where £ means componentwise inequality.

Definition 2.2 [2]. Let & € R® be nonempty. A point £ € Q is minimal

if Nn<£& Mmef = n = &. The set of all minimal points in @ is
denoted e(R). Let BP(¥) be the space of p-vector valued bounded func-
tions.with sup norm, where we may take any norm in R°. Define on Bp(x)

mappings

(Luf)(x) xQ" + B 2 {s|x,u}f(T(x|s,u)),u e U

(2.3)

1}

() (x) = x%) + 8 T {a]x,6(x)}r(2(x]5,6(x))), 6 € A
S

and a multi-valued mapping

(2.4) (Lyf) (x) = e(ééU(Luf)(X))’
Remark: SincngU(Luf)(x) has‘only a finite number of points, (L,f)(x)

is nonempty and well-defined.
One can easily show that I , Lg are contractions on B(x) and

that the unique fixed point of L6 is the cost CS corresponding to

the policy 6§ € A,

Lemma 2.1. Lu and L. are monotone,

S

Proof. They are monotone componentwise.

Definition 2.3 [2]. A function fy € BP(X) is said to be a fixed

point of Ly if fylx) € (Lyfy)(x), ¥, € X, Tt is said to be minimal
it flx) < folx) , e Lyf = fe=17F .

We are interested in finding fixed points of L, and in character-
izing an optimal policy, We présent two uséful lémmas;
Lemma 2,2, Let {6n} € A be arbitrary, Then there exists a subsequence
{an} which is convergent to some § € A pointwise iee;,
Gn.(x) + 8(x), VX e X.

3
Proof. Let V' = {vi} be the partition of X given by

V? = {xl6n(x) =i},

3
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[ee)
where we omit Vg whenever it is empty. Let Vm =1 V" be the partition
_ n o =1
given by the product of all V. We assume V = {Wm}, m=1,2,°"-
Then each Gn takes a single value on any ng Hence there exists a sub-
sequence 6n such that 5n (x) = il’ X € Wl. Similarly there exists
1 1
J J
a subsequence § of & such that & (x) =1i., x ¢ W
: ngj n]_j np, 2
In general there exists a subSequence § such that Gnm (x) = im,xe:Wm.
J J
Now take the diagonal sequence Sn_ s J=1,2,--+ . Then except possibly
J
first finite numbers of 6n (x) = im on Wm‘for any m, Therefore
. 33 '
§ (x) » 8(x) , where &(x) =i on W,
Lemma 2.3. If Gn(x) + §(x) and fh(x) > f(x) , then
(L f ) 06) > (TgfA(x) , Y € X

Proof, (Lﬁnfn)(X) - (Laf)(x)

= x(% ) - q80)) 4 g ¥ [1s]x,8 G0)f, (2(xs,6_(x)))
L

- 8%, 8(x) HA(T(x]s,6(x))) ] -
For fixed x € X, there exists an integer N > Q such that
n2xN= § (x)=28(x) .
Hence L.H.S. = Bls|x,8(x)HF, (T(x|s,8(x)] - £(2(x|s,6(x)))]
+0as n2N »» ,

Policy improvement. We shall show that policy improvement is wvalid for

our problem.

Theorem 2.1, For any § € A given there exists a sequence '{Gn} €A

s 06 € L*C6 IB CG < Cd and % < Cé .
n+l n

such that L )
ntl “n n ntl 'n n

Proof. WNote that (L,C. )(x) is nonempty and Ly C. = C. . Since
*8y Sn '8, Sp

(L5ncsn)(X) EJgU(LuCGn)(X)’ we can choose u = u(x) such that
(LCcy Mx) £ (L, Cy )(x). Hence there exists @ = fi(x) such that
u 6p Sn Sp

(Lﬁcan)(x) € (L*Csn)(x) and (Lﬁcén)(x) < (Léncdn)(x) for any x € X.
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Now define 6n+l(x) = {i(x). Then

(Ly  Cg )(x) < (Lg Cs )(x) = Cg (x) and (Ly  Cg )(x) € (LuCq )(x).
ntl n n n n ntl n n
But LG is monotone, so
n+l
Cs «—L‘é‘ Cs 5""§L§ Cg <Ly Cg <Cg -
nt+l n+l n n+l n ntl n n

Lemma 2.4. Let 6n be given as in Theorem 2.1. Then Csn -+ COo € BP(X)
and there exists a subsequence an of 6n such that an(x) + 8_(x),6_ € A.
8

oo

Furthermore, C_ = .LG CG =C
(oo B o]

Proof. Since CG is monotone decreasing and bounded below, there exists

n
a limit C_. By Lemma 2.2 there exists a subsequence Sn. such that
: J

§ +68 € A pointwise. By Theorem 2.1
nj o

< <

CS < LG _CS - < CG . .
23 e I ny-

Now we can pass to the limit nj + © to obtain

C <L

But Lg has a unique fixed point Csm, so C_= CS = L6mCQQ .

o« @
Theorem 2.2. There always exists a fixed point of Lg. In fact C_
given in Lemma 2.4. is a fixed point of L.

ce Urc . Suppose there exists

Proof. Since L‘5 C, = C» o€ 2eytuCe

o

£ € (Ly,C_)(x) such that & < C_(x) strictly. Then there exists at least

th 6ne, such that (g)k < Cw(x)lk .

one component, say
So there exists € > 0 such that
(2,5) (&), s )] ~e
Note that there exists § € A such that LG C, = & by definition.
Hence (LGCw)(x)lk < Cw(x)lk - € . Now define

8(y) = { 8,(¥)> yix

8(x), y=x .
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Then (Lgcm)(x) < Cc (x) and

(2.6) (L) ()] € c (0], - ¢ .

Now take nj large enough and define

an(Y) =J Snj(Y) ’ Y¥X
| | 86x) , y=x
then Sn_(y) - S(Y) and

3
(2.7)

‘ , K¥k
(Lg Cs I, = (@g ¢ M)y, s
nj nj—l nj nj-l
(2.8) ‘ 2
(Lg 5 I, ~ e s (e )],
nj nj—l
. _ : 1
(2.9) Cm(x)lk = (Lé Cw)(x)lk < (LS C@ )(X)Ik + =3TE
<] nj njﬂl
Now adding (2.6), (2.8), (2.9) we obtain
~ 1
(2.10) (L3 ¢5 | <@g ¢ N -5«
nj nj—l nj nj—l
Combining (2.7) and (2.10) we obtain
LS CG <L CG strictly,
nj nj-1 ny nj—l
which is a contradiction to the fact Ls C6 e L,C
nj nj—l nj—l

Hence £ ¢ (L*Cw)(x), E<sc (x)=>¢&= CW(X) . Thus we have shown
C, € LyC, -

Characterization of an optimal policy. When CG is real-valued, it is

known that there always exists an optimal policy and that it is a unique
fixed point of TL,[l4]. Next we shall present a necessary and sufficient
condition of an optimal policy,

Theorem 2.3. A stationary policy 8, is optimal iff CG* is a minimal

fixed point of L, .

Proof. Let 8, be optimal. First we show Cs (x) € (L*c6 ) (x), VX e X.
* *
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Note that 05* = Lﬁ*CG* and (LS*CS*)(X) £ ééULuCG* . - Suppose there
exists £ € (L*Ca )(x) such that & < Cs (x) strictly. Then for some
* *

u=ulx) e, &= (Lﬁcs*)(x). Define

Sy) ={gely), vex

Then (LzC. )(y) £ C. (y). By monotonicity of Lz we have
5Cs, 5, - 5

m 2
—-— P <o-c.< < <
06 < LzC hs LSCG* < LSCG* <cC

5, = 8

But C is optimal, so Cz = C . In particular
Sy § 84

which implies C6 € L*C6 .
* *

Now we show that C6 is minimal, Suppose there exists a fixed
* .

point f of Ly, then there exists § € A such that f = Léf . But L6 A

has a unique fixed point CG , SO f = CG' Then CG i
*

Conversely, suppose Cd is a minimal fixed point of L., Suppose
*

for some & € A, C C Then we can constract a sequence 6n as in

<
§ = T8,
Theorem 2.1 with 60 = § , Then

< e
c SLg Cgsi'sc

n+l n+tl n

§ <C

8y

By Lemma 2.l there exists a limit C_ of Cs and §_ of 6n , a sub-
n J

sequence and C_ = CG = L6 C < 06 <C By Theorem 2.2 C_ is a

o0} o]

fixed point of Ly. Now minimality of C(S implies C6 = C, » which
* [+]

[o]

necessarily yleld C.=C_ = C, .
8 8y

Final remarks. In the case of real-valued Cé's we have presented an

algorithm for an optimal policy and the minimal cost. The main problem
in numerical computation is that X is uncountably infinite. But our
algorithm involves only a finite number of vectors at each step. In the
case of vector-valued 06'5 we cannot establish the existence of an
optimal policy, but we may seek for an algorithm for fixed points of

L

% *
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We cannot directly extend our algorithm in [4] to the new situation

and each step to find Gn, CG is more complicated. So we shall discuss
n
computational aspects elsewhere.
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