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LOGICAL DESIGN OF A 4NF D-TREE SCHEMA OF A RELATIONAL DATA BASE |

YUZURU TANAKA

Graduate School of Information Engineering
Hokkaido University
Sapporo, 060 Japan

The design methodology of a sound schema that consistently reflects semantic
structures of a real world is acquiring a greater importance to cope with
both the increasing size and the versatile utilization of data bases. We
show the design method to construct a BCNF and 4NF schema from ﬁhe descriptions
of the dependency structures of a data base. We include embeddéd MVD's as
such dependency structures and analize them to reflect their structure as
well as others in the synthesized schema. Our schema has an interrelational
tree structure that increase thebintegrity and the handleability of a data
base, and hence it is called a D-tree schema. With this interrelational
structure, query processing can be highly automated. This paper reviews

the BCNF D-tree schema with some significant modifications and extends

this ﬁheory to the 4NF schema theory. Some heuristic considerations for

the application order of FD's and MVD's to .decompose a data base are also

shown in this paper.
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1. Introduction

The design methodology of a sound schema that consistently reflects
semantic structures of a real world is acquiring a greater importance to
cope with both the increasing size and the versatile utilization ‘of data
bases. Without the establishment of a method to describe and to analize
semantic structures of information, it will become almost impossible in the
near future to construct a sound schema.

It is the purpose of various studies on schema synthesis based on the
relational framework [CODD70] to establish a theoretical basis necessary
to cope with the difficulties of a sound sehema synthesis [DEL0O72] [ZANI76]
[BERN76] [FAGI77] [TANA77]. ‘

In most of the researches, a schema is coﬁsidered as an unstructured
set of relations. In this view, a sound schema means an irredundant set
of most simélified relations that represents a data base. The
simplification means the separation of dependency structures to minimize
the update operations including the validity check of dependencies.
-However, it is well known that the total separation of dependency
structures can not always be achieved without abandonment of some
dependencies to be embodied in a constituent relation of a synthesized
schema [BEER78]. ‘ )

The synthesis approaches sacrifice the total separation, while the
decomposition approaches sacrifice the embodiment of all dependencies
and allow some of them to be treated as semantic constraints that are
checked procedurally.

The interpretation of the representation and the irredundancy differs
between these two kinds of approaches [BEER78]. The synthesis approaches
strive fer a minimum set of relations that embody all the dependency
structures, while the decomposition approaches strive for minimal set of
the most simplified relations that can represent the information content
‘of a data base under design.‘ .

Our approach is classified among decomposition approaches. However,
different from other approaches, we consider a schema as a strﬁctured set

of relations. This is a very natural extension of a previously mentioned
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view of a schema. This extension improves integrity of a schema by adding
a global description of its dependency structures to a schema description.
This global description enables us to remove both redundant relations from’
a schema and redundant attributes from each constituent relation. The
removal of redundancy of this kind is necessary to guarantee the semantic
integrity of a logica% data base, and this is only possible in the
decomposition approaches.

The tree structure is sufficient to describe such interrelational
relationships. Thus a schema of this kind is named a dependency-tree
schema} or simply a D-tree schema.

In our previous paper [TANA77), we introduced a D-tree schema
consisting of Boyce-Codd normal form (BCNF) relationé. Such a schema is
called a BCNF D-tree schema. Fig.l shows an example of a BCNF D-tree
schema. We formalized an algorithm to construct a BCNF D-tree schema from
a given set of functional dependencies (FD's) in a given set of attributes.
If a synthesized D—tfee schema is stored in a computer, the composition of
a relational expression that computes a relation over an arbitrarily given
subset of attributes can be automatically performed By a computer. This
facility enables us to design both a highly nonprocedural query language
and an automated mechanism for integrity checks on inconsistent update
operations.

In this paper, we extend this D-tree schema theory to the fourth
normal form (4NF) D—treé schema theory. The input set of dependencies
is extended to include multivalued dependencies (MVD's) and embedded MVD's
together with FD's. The review of the BCNF D-tree schema approach is also
given with some improvements. As a common characteristic of‘decomposition
approaches, the algorithm has nondeterministic aspects. Some heuristic

consideration on this problem is also given in this paper.
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2. Preliminaries

2.1. Relational model

A relation R(X) over an .attribute set x={Al, By eees An} is a subset

¢
of the cartesian product Dom(Al)XDom(AZ)X---XDom(Anf, where Dom(Ai) is the
domain of Ai. The projection of R(X) to a subset Y of X is R(X) [Y]
={<y>l<y,z>_€ R(X)}, where Z=X-Y. The set of all the attributes of a data
base A is denoted by Q. In this paper, we assume that the uniqueness
assumption holds in 2, i.e., R(X) [Y]=R(Y) for any subsets X > Y of Q.
This condition is not always satisfied. However, we beliéve Q caﬁ be
modified to satisfy this condition. The natﬁral join of two relations
R(X,Y) and S(Y,2) is a relation {<x,y,z>|<x,y>e€R(X,Y) and <y,z>e€R(Y,Z)}

denoted by R*S, where X, Y, Z are disjoint. Since natural join is

commutative and associative, the natural joiﬂ of m relations Rl' RZ' ey
R can be defined. This is denoted by Hi_T R, .

If each value of X in R(X,Y,Z) is associated with only one value of
Y, it is said that there is a functional dependency (FD): X-»¥. If X,Y<C2Z
and R(Z)=R(X,Y')*R(X,Y"), where Y'=Y-X and Y"=Z-X-Y, then it is said that
there is a local multivalued dependency (LMVD) : XY in Z. The set 2 is
called a context. The definition of LMVD includes both MVD and embedded
MVD (EMVD) defined by R. Fagin [FAGI77].

We conjecture the following set of axioms forms a complete set of
axioms for FD's and LMVD's. Proofs of LMVD4 and 5 are shown in [TANA79].
It is well known that the set of axioms FDl—3,‘LMVDO—3, FD-LMVD1-2 forms
a complete set of axioms for FD's and such ILMVD's with a context equal to
2 [BEER77]. However, the completeness of the following axiéms is

unfortunately not proved yet.

FD1. (Reflexivity) : If ¥ € X then X-»Y.

FD2. (Augmentation) : If Z € W and X-2Y then XW->YZ.

FD3. (Transitivity): If X-»Y and ¥Y-»>Z then X--Z.

LMVDO. . (Complementation): If X-=Y in 2 then X>Z-Y in Z.

LMVDL. (Reflexivity): If YC X< Z then X¥»Y in Z.

LMVD2. (Augméntation): IfVvCwWc?Z and XY in Z then XW>YV in Z.
LMVD3. (Transitivity): . If XY in Z and YW in Z then XW-Y in Z.

LMVD4. (Embedding) : If XCWCZ and XY in 2 then X>YNW in W.
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LMVDS. (Extension) : If XY in 2 énd (2-Y)>>Y in W, where W > 2
then X»>>Y in W. | ;

FD-LMVD1. If X—Y and X,Y<Z then XY in Z.

FD-LMVD2. If XY in Z and (2-Y)—Y then X—Y.

2.2. Normal forms

As to the separation of dependency structures into a set of simplified
dependency structures, various normal forms are proposed [CODD72] [KENT73]
[cODD74] [BERN76] [FAGI77] [BEER78]. We define two of them that are important

in this paper.

1. Boyce-Codd normal form (BCNF)

R(X) is in BCNF if, for any (Y, A) such that Y<X, AcX, and A¢Y, an
FD: Y->A implies that Y--»X holds.

2. Fourth normal form (4NF)

R(X) is in 4NF if a nontriVial IMVD: Y>>Z in X implies an FD: Y->Z.

The two main different kinds of approaches to the design of- schemata
take different normal forms as their basis. The synthesis approach takes
3NF that was first defined in [CODD72], and was modified in [BERN76], while
the decompqsition approach takes BCNF defined in [CODD74], or 4NF in
[FAGI77].

2.3. Closure of dependencies..

To design a schema, it is necessary to know the closure of FD's and
IMVD's, i.e., all dependencies inferable from given FD's and LMVD's. Let
F and M denote respectively a given set of FD's and that of LMVD's. The
closure is denoted by (F, M)+. Since the axioms'LMVD3—5 are not convenient

to use as inference rules, we introduce LMVD6 to replace them.

IMVD6. - (LMVD interaction)
If XY in 2, UV in W, X<W, and UcCZ
then X(YNU)>>YNV in 2-(Y-W), and
U(VNX)YNYVY in z-(Y-W).

For the same reason, we replace FD-LMVD2 by FD-LMVD3.
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FD-LMVD3. (FD~LMVD interaction)
If X-+Y, U=V in W and X<W then U(VNX)—>YNV.

The following Lemma holds with respect to these replacement.

Lemma 2.1.
A set of axioms FD1-3, LMVDO-5, and FD-LMVD1-2 is equivalent ﬁo a set
of axioms FD1-3, LMVDO-2, LMVD6,‘ FD-LMVDl, and FD-LMVD3 [TANA79].

| We denote FD part and LMVD part of (gi M)+ by (F, M):D and (F, M);MVD
respectively. The partial closure (F, M)~ ' is a set of all FD's and all
LMVD's inferable from (F, M) by a subset I of a set of inference rules
given in section 2.1.

The fqllowing Lemma assures the computability of (F, M);D without

considering LMVD-LMVD interaction.

Lemma 2.2.
Let I be a set of axioms {FD1-3, LMVDO, FD-LMVD3}, i.e., I does not
include LMVD1-2, LMVD6 and FD-LMVDl. Then the following holds true.

ST S R

FD FD [TANA79].
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3. Schema of a data base

3.1. Decomposition vs. synthesis

A pair (2, T), where { is an attribute set of a data base A and T is
a dependency structure, is called a scheme over {). A schema is a set of
schemes over subsets of {, i.e., {(Qi, ri)}i=t’
least redundancy. The definitions of representation and redundancy differ

that represents ({, I) with

among researchers.  In synthesis approaches, representation means that

t_ t
= (Uif?fk Ti) ’

and irreduhdancy means that

v. & T _ +
i, fePi s.t. ' = ((Ulfjf} Fj)\/(Ti {£th," .
J#i
While, in decomposition approaches, representation and irredundancy

repectively means that

1. (representation)

R(Q)=Hl<i<k R(Qi)
and
2. (irreduhdancy) .
vi, ¥A€Q& s.t. R(Q) = (H1<j<k R(ﬁg))*R(Qi—{A})
j#i
[BEER78].

It is well known that it is not always possible to make each (Qi, Fi)

in BCNF in synthesis approaches, nor to make a schema to embody all

.}.

dependency structures, i.e., to make F*Q(U Fi) , in decomposition

1<i<k

approaches. -
Our approach stands on a basis of decomposition approaches, however,

some part of our ideas presented in this paper may be also applicable to

synthesis approaches.

t T

Since the equivalence of T’ and (\&=§Fi) does not hold in
dgcomposition app%oaches, a minimal set Fr of dependencies satisfying
TT=((Ui=tFi)\’Fr)T should be considered in decomposition approaches.
We call this set a residue dependency structure. This set Fr plays an

important role in érocedural validity checks upon inconsistent updates.
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Therefore a schema is characterized by ({(Qi, Fi)}, Fr) in decomposition

approaches.
3.2. Dependency-tree schema

Some part of the dependency structure [ defines interrelational
dependency structure among {(Qi, Fi)}. It is desirable for a schema to
have a description about this structure since time invariant structures
of a data base should be reflected in a schema to increase integrity and
handleability of a schema. The interrelational dependency structure
defines a graph structure G among {(Qi, Fi)}. Therefore a schema is
characterizgd by ({(Qi, Pi)}: G: Fr). However, it is sufficient to
define a tree structure T instead of a general graph G among {(Qi, Fi)}
since, under the uniqueness assumption, multiple associations between two
constituent schemes represent a same semantic relationship between them,
and hence superfluous.

Therefore, a schema denotes an irredundant set of schemes
({(Qi, Fi)}; T; Fr) that represents (2, T). A schema of this tyée‘is
called a dependency-tree schema, or a D-tree schema. A D-tree schema
with every (Qi, Fi) in X-normal form is called a X-NF D-tree schema.

Fig.l in chapter 1 shows an example of a BCNF D-tree schema.
3.3. Dependency-diagram

In this section, wé only consider FD's, i.e., I'=F. For each FD f:
X->Y, let £(f) denote the set of all the attributes that are functionally
dependent on X. This set is called the maximum dependent set of f. It
should be noticed that €(f) includes X. For each f in F; €(f) can be
calculated using'FDl—3; For an attribute set Z, a subset W of 2 is éalled
a determinant of 2 if W-2Z holds and no subsets of W satisfy this.

For an FD £:X-Y, X is a candidate of determinants of €(f). If €(f)
=€(g) holds for f:X-2Y and g:U-»V, X and U are both candidates of
determinants of €(f). 1If both €(f)=¢c(g) and X< U hold then U is
superfluous as a éandidéte since X is a stronger candidate than U. We
define a list of candidate determinants of €(f) as a family of minimal

attribute sets each of which determines €(f). If €(f)D €(g) holds then
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the FD:X-2U holds. 1In other words, a candidate determinant of €(f) .
determines every candidate determinant of €e(g).

We define an equivaledce relation fX in F as
f=g iff ¢g(£f)=¢€(qg).

The classification of F by € is a set of equivalence classes with respect
to "=". This is denoted by F/€. For each g in F/€, the maximum dependent

set £€(g) and the }ist T(g) of candidate determinants are defined as

e(g)=e(f) ( g=If] ),
-and
T(g)=ker (Up - {lefe(n) D,

where left(f) denotes the attribute set on the left of £, and ker is

defined for a family S of sets as
ker(S)={s]s€S,*s'es(s:s')}.
We define a partial order ">" in F/€ as
f>g iff e(f)> e(qg).

In the sequel, we aésume F includes a special trivial FD fo:Q-+¢. The
equiyalence class including fo is denoted by 95 The partial oxder ">"
uniquely defines a Hasse diagram (F/g, >) for a given scheme (2, F) of a
data base A. A Hasse 'diagram with values of £ and T at each node is
-célled_; dependency-diagram, or a D;diagram of A and is denoted by
(F/e, >, €, T, . It should be noticed that a D-diagram (F/eg, >, €, T, )
is a compiled view of (2, F) and that (F/e, >, €, T, ) is equivalent to
(R, F) in a senée that (F/e, >, €, T, Q) has the same dependency structures
as (2, B).
In Fig.2, we show an example.sét of FD's. Fig.3 shows their maximum
dependent sets, and Fig.4 its D-diagram.
It may probably be the best way irrespective of the destination
normal form to start schema synthesis with the D-diagram (F/¢, >, €, T,.9),

since it clearly describes the overall dependency structure of A.
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4. BCNF D-tree schema

4.1. Definition of a BCNF D-tree schema

"In this section, only FD's are considered. Thus a D-tree schema is
a tuple ({(Qi, E})}; T; E}) equivalent to (2, F). A D-tree schema’is said
to be a BCNF D-tree schema if every scheme (Qi, E&) is in BCNF. Since
(Qi, f&) is in BCNF, a list of determinants qf Qi is sufficient to
describe its dependency structure. Let N be a finite set, attr(ni) be
Qi for ni in N, and T(ni) be the list of determinants of Qi'» A tree

structure T is represented by a triple (N, par, no), where n_ is a special

0
element of N called a root and par is a function that defines for each
node its parent node in 7, i.e., par:N—{nO}—+N. For each node n in N, we
choose one determinant denoted by a(n) as a key of this node. Then a

BCNF D-tree schema.can be characterized by an octuple (N, n_, attr, o, T,

0
par, Q; Fr)-

The conditions for an octuple (N, n_, attr, o, T, par, Q; E;) to

0
be a BCNF D-tree schema are-listed below.

(1) (representability)
R(Sl)=IInE‘:‘I R(attr (n))
(2) (irredundancy)

Ynen, #Asattr(n) ( R(Q)=(Hn R{attr(n')))*R(attr(n)-{a}) )

*eN-{n}

(3) (existence of a key)
Ynen ( a(n)#¢ and a(n)-sattr(n) )
(4) (existence of dependants)
VnEN-{nol.( attr (n) #a(n) )

(5) (extended Boyce-Codd property)
4%neN ( ¥xc¢Q, "acattr(n)-X s.t. a(n)~>X, XA, and
A is nonprime in the set of all the attributes dependent on X)

(6) (downward interrelational dependency)
Ynen-{n ) ( a(par(n))-sa(m) )

(7) (a list of determinants)

attr(n)

Vhen ( T(n)=ker(t(n)), t(n)<2 , and ¥

XeT{(n) ( X->o(n) )-)
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(8) (residue FD's) .

_F} is a minimal set of FD's satisfying

t_ ot
(U UXET(n) {X-+attr(n)})\’E}) =F .

The condition 5 differs from BC property described in the definition‘of
BCNF in section 2.2. Since BC property is defined within an attribute set,
even a set of two subschemes ({a,c}, {a--c}) and ({aA,B}, {a--B}) for a
scheme ({a,B,C}, .{aA-+B, B-+C}) are both in BCNF. However, this separation
is not desirable. To guarantee such a desirable separation as ({A,B}, '
{a-»B}) and ({B,C}, {B-»C}), BC property must be replaced by extended BC

property.
4.2. Algorithm for BCNF D-tree schema design

Our algorithm uses the D-diagram of A as a basis of schema design.
Let (F/e, >, €, T, Q) be the D-diagram of A. If a node geF/e€ has no son
nodes, R(e(g)) is already in BCNF. Let attr(g) be defined as €(g) for
such a node g. The key of g is arbitrarily chosen among members of T(g).
Suppose that a node g has son nodes gl, Tyr =eer gh and that the ﬁélﬁes
of attr and a at these son nodes are already calculated. We define the

list w(g) of attribute sets as a set:

{x|x<e(f), X-+e(£), R(X) is in BCNF, and
Byox ¢ Y<e(f), Y-»X, and R(Y) is in BCNF ) }.

The following program calculates w(g).

procedure w(g);
begin

w:={e(g) }; .
while there exists 9; for some 0 in w s.t. 0’\(8(91)—a(gi))#¢
do

begin

w:=ker(w”{(c—€(gi))\’a(gi)};
end;

end;

Let attr(g) be an arbitrarily chosen attribute set in w(g). Then R{attr(g))

has no transitive dependency and thus it is in BCNF.

- 10 -



141

Corresponding to attr(g), the list T(g) of candidate determinants of
e(g) should be modified so that each element of T(g) becomes a candidate
determinant of attr(g). 1In this process, some determinants of €(g) are
found impossible to be embodied by R(attr(g)). These should be listed in
Fr without redundancy. However, we do nct show the computation process
of Fr in this paper. This is explained in the previocus paper [TANA771,

and the utilization of Fr for integrity checks will be described elsewhere.

procedure T'(g);
begin
while there exists a son node 9 of g for some O s.t.
o & attr(g) and g N( (e(gi)—a(gi) )#$
do
begin
t(g) :=ker ((1(g)-{oh) V {alg;) V (c-elg;)) };
end;
olg) :=an arbitrary element of T(g);

end;

The computation process of attr, o, and T for the D-diagram in Fig.4
is shown in Fig.5. The resultant diagram is a kind of schemata, however,
its irredundancy is not guaranteed.

Let Mark(r, X) and Delete(S, X) be two procedures defined below,
where ID(r) denotes a set of all the son nodes of r in F/e. We assume

that, for each g, ulg) is initially equal to ¢.

procedure Mark(r, X);
begin
wr) :=X;
Y:=X;
X:=XN (eglr)-ofr));
S:=ID(r);

while there exists r'%e S do

begin
2:=Y;
S:=S-{r'};

Mark(r', 2Z);

- 11 -
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Y:=Y-Z;
Delete (S, Z);
end;

end;

procedure Delete(Ss, X);
begin
S':=§;
while there exists r'es’' do
begin
s':=s5'-{r'};
attr(xr'):=a(r') V (ulr") Nattr(r")) V (attr(r')-X);
T:=ID(x"');
Delete(T, X);
end; |

end;

The execution of Mark(go, ) will remove all redundant attributes from
the previously obtained redundant schema. This execution for Fig.5 (d)
is shown in Fig.6.

The par function of a BCNF D-tree schema is defined as=follows by

truncating superfluous links in the diagram.

par (g)=if attr(g')#oa(g') or g'=go then g'
else par(g'), where g' is a parent node of g satisfying

that u(g')> u(qg).

The irredundant BCNF D-tree schema can be obtained by deleting those
nodes except 9 that have no dependant part, i.e., a(g)=attr(g). The N
conditions (3),(5),(6) in section 4.1 holds from the definition of par,

(i) and (2) holds from the definition of y, and (8) holds from the
construction method of F}. Fig.7 shows a resultant BCNF D-tree schema of
the example data base in Fig.2.

Since the algorithm is nondeterministic at several steps, man-
machine interaction may be necessary to design a better schema. Otherwise,
we must define some cost function for each nondeterministic step listed

below:

- 12 -
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1. the selection of attr(g) out of w(g),
2. the selection of a(g) out of T(g),
3. the order of marking process, i.e., the calculations of u(g)'s,

in Mark(go, Q.
4.3. Query Processing with a BCNF D-tree schema
A query has a following general form under the uniqueness assumption:

SELECT Q)
WHERE Pred(Qz; e),

where Ql and Q2 are attribute sets, Pred is a predicate, and € is a vector

constant. The relational expreésion for this query is expréssed as
R(Ql\le)[Pred(Qz; G)][Ql}:

where [Pred(Qz; €)] is a restriction and [Ql] denotes projection. It is
not recommended to execute this expression directly. However, some
optimization techniques are already known [SMIT75]. Therefore, if we can
automate the process to compose a relational expression for R(QlU Qz), we
can design a highly nonprocedural query language.

This section shows an algorithm to compose the most simplified
relational expression for R(Q), where Q is an arbitrarily given subset of

. Let (N, n_, attr, o, T, par, ) be a BCNF D-tree schema. For each

0
A in Q, define the uniquely determined node node(A) in N as

node (A)=if A Eattr(go) then 99 else g s.t. A gattr(g)-a(g).

Let des(g) denote all the descendant nodes of g including g itself, and
Rel(g) denote R(attr(g)). We define a minimal node in a subset N* of N
as a’minimal element of N' with respect to the partial order ">". A
relational expreséion for R(Q) is given by rel(Q) of the following

procedure.

procedure rel(Q);
begin
rel:=1; (1 is the identity of join operation, i.e., L=R(¢).)
M:=N; ’
while Q#¢ do

- 13 -



144

begin
Qd:=U;€M (a(r)-p(r));
if Q—Qd=¢
then P:=Q

else P:=Q-Qd;
r:=minimal node of {node(a)| Aepr};
if Q-attr(r)=¢
. then
begin
rel:=relx(Rel(r) [Q]);
Q:=¢;
-end
else
begin
rel:=relx(Rel(r) [a(xr)VQl);
Q:=(Q-attr(r))V a(r);
M:=M-des (r);
end;
end;

end;

In Fig.8, the composition process of a relational expression for -

o={1, J} in the example data base Fig.7. is shown.

- 14 -
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5.1. Some considerations on 4NF D-tree schema synthesis

The purpose of this chapter is to extend the BCNF D-tree schema theory
to the 4NF theory. Therefore, in this chapter, the dependency structure is
a pair ( E M), where F, M are sets of FD's and ILMVD's respectively.

The calculation of (F, M)+ by the set of axioms given in section 2.3
is not a difficult task. However, we have to consider the appropriate order
in which we apply each LMVD to decompose the data base. One might suppose
that decomposition by FD's should precede that by LMVD's or vice versa.
However, that is not the case as shown in Fig.9 and Fig.10. In Fig.9,
priority given to FD's cause redundancy, while, in Fig.l0, opposite
situation occurs.

Fig.1ll shows two alternative decomposition order between two MVD's.

The redundancy occurs when the LMVD with a left attribute set including that
of the dther‘is applied first to decompose the data base.

Further observaﬁion indicates that the redundancy may occur if the
decomposition by an LMVD £ precedes that by another g such that the left
attribute set of g is functionally dependent on that of f. The previous
examples in Fig.9 and Fig.l0 are such cases.

Besides, the following heuristic observation also approves the criterion
in which the decomposition by an LMVD f should not precede the decomposition
by g such that the left attribute set of g is functionally dependent on that
of £f. Fig.1l3 shows two alternative decomposition orders for a data base in
Fig.l2, where Fig.13 (a) contradicts the criterion. Although it causes no
redundancy in this case, the table corresponding to {<Employee>, <Item>,
<Supplier>} in Fig.13 {a) will become a very large table comparing to
{<Department>, <Item>, <Supplier>} in Fig.13 (b). This is a different type

of redundancy.

- 15 =
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5.2. Closure of Fb's and LMVD's

For the convenience of computation of closures, we introduce a standard
representation of an LMVD. The standard representation of an LMVD f with

a context Z has a form:

X: LY 1l v, I>Y2

or Y7 e Yn} is a partition of z, X-»Y, and XY, in 2 for any

i. Three functions are defined for a standard represehtation;

RN

where {X, Y

context(f) = 2,
left(f) = X,
righti(f) = if i>n then ¢ else Yi'
In the sequel, we assume that LMVD's are in standard form.
Let F' and M' denote the FD part and LMVD part of (F, M)If, where T

o
={FD1-3, LMVDO, FD-LMVD3}. By Lemma 2.3, F'=(F, M)

7D holds. If M is
initially represented in standard form, LMVDO can be deleted from inference
rules I. To obtain the intermediate set M', we have to remove FD's from M.
For each £ in M, if there exists a functional dependency from a subset X
of 'left(f) to all the attributes‘in left(f), left(f) should be replaced
'by X and left(f)-X should be moved from left(f) to righto(f). All
attributes in righti(f) that are functionally dependent on left(f) -should
be also moved from righti(f) to righto(f). Then, for each functional
dependency f: X -*> Y satisfying that ¥ is a maximum set dependent on X

and X is a minimal set that determines XVY, we add an LMVD g to M'

that is defined as

context(g) = ,
left(g) = X,

"

righto(g) Y,
rightl(g) = (-X-Y,

0 (i>1 ).

rlghti(g)
The closure of all LMVD's is obtained as the LMVD-closure. of M, i.e.,
mt \ . ,
(M) , where IM={ILMVDO-2, LMVD6}. Instead of calculating all LMVD's in
mt
(M) , we calculate a set M' of LMVD's that satisfies the following

conditions.
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vf € (M')I"-r, 319 € M" such that

1. (Minimality of left(g))
left(g) < left(f),
2. (Maximality of righto(g))

righto(g) > righto(f),
3. (Minimality of left(g)V r:ightj (g) (3#0) )

Vizo, 3570 s.t.
left(g) Vv rightj (g) < left(f) V r:'u;;ht__,L (£),

4. (Maximality of context(g))

context (g) > context (£f).

Since the calculation of M' is the direct application of LMVDé on M
in standard representation with some modification to the resultant LMVD's
by LMVDO-2, we do not show the details of this process here.

Fig.1l4 shows example sets of F and M. The FD-closure F' and the
intermediate set M of IMVD's are calculated in Fig.l15. The LMVD-closure

M of M is shown in Fig.16.

5.3. 4NF decomposition

We now show how to use (F', M") to decompose a data base into 4NF
relations. Since the completeness of the set of axioms in section 2.1 is
not proved yet, we‘can not say that the following procedures produce a
4NF D-tree schema. However, since our algorithm is based on the closure
of dependencies obtained by the axioms in section 2.1, a D-tree schema
obtained by this algorithm is assured of its 4NF property if the axioms
are proved to be complete. »

Let M* denote a standard representation of F' and M". The execution
of Decompr, M*) will produce a 4NF D-tree schema following the strategy

considered in section 5.1. The procedure Decomp (X, ¥) is defined as follows.
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procedure Decomp (X, M);
begin ‘
if there exists £ € M s.t.
1. context(f) > X, left(f) < X,

2. the set {il, i vy ik} of all integers s.t.

2’
rightil(f)f\x # ¢ has more than two integers,
J
3. there is no other such LMVD g as above in M that also
satisfies a functional dependency left(f) — left(qg),

then

o] . i nx M
Decomp: H¥iiik(Decomp(left(f)\J(rlghtij(f) ). M))

else
Decomp:=R(X) ;

end;

The relational expression Decomp(Q, M*) with parentheses defines a
decomposition tree. Fig.1l7 (a) shows M* of a data base in Fig.l4.
Fig.17 (b) and (c) respectively show the dependency diagram among left
attribute sets of dependencies in M* and a 4NF D-tree schema obtained
by the execution of Decomp (2, M*).

We now prove the weak'irredundancy of this decomposition.

Theorem 5.1.

For any constituent relation Rk of a 4NF D-tree schema Decomp(Q, "),
i
there exists no such subexpression E of Decomp (2, M") satisfying that

=T. E., E.= ... E : . . .
E Hi i By Hj i kj * Rki, and Rki is a projection of either

Mipk Bp OF Mypy Ekj’

proof
Fig.18 shows this situation. Let ij Qk*, Qki' Qki* denote respectivelybthe
ibutes in E_, I, E, . E . i =R(Q, *
sets of attributes in Ek 37k EJ, Rki, Hj#l Ekj Then it holds that E R(Qk )
* : * 1 = * *)
*R(S'zki )*R(Qki) If Qkic szk holds, it holds that E R(Qk )*R(Qki ) Thus
Qk*n Qki*++Qk*|Qki* in the set of attributes in E. Since,for any j, the inter-

section of the attribute set of Ej and Qk is equal to the intersection of
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all the attribute sets of Ej's in decomposition trees, it holds that the left
attribute set of the LMVD that was used to get the sub-decomposition-tree E
i Q. *nQ D *NQ *xc D *NQ : . " .. L
is equal to X sk If X ki 4 k Kk holds, it contradicts the minimality
Q*n Q. Q. *n Q ' QNQ = i i
of " n X Thus X n i should be equal to X K which is equal to
* * i * 1 1 < 1
Qki (\(Qkiﬂki ). Hence it holds that Qkic Qki . Since it holds that Qki is a

subset of Qk{qgki*f Rk could not be_a constituent relation. This contradicts
i

the assumption.

The query procassing with 4NF D-tree schema is similar to that with
BCNF D-tree schema. However, the irredundancy of an expression is not
guaranteed unless ILMVD's hidden in this schema are taken into consideration.

This is illustrated in Fig.19.
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6. Concluding remarks

The D-tree schema approach presented in this paper may be usefull to
cope with the logical problems of data bases cbncernihg data base integrity.
We are implementing a relational query language based on this approach
that is similar to SEQUEL but has default facility to analyze the access
path when FROM clause is omitted. The validity check of update operation
can be also treated following this approach. We can find a set of relations
necessary to check dependency structures with respect to the validity of
update request. It should be noticed that the introduction of
interrelational tree structure is not the complication of a SCheme but the
simplification of it. Therefore, the handleability of a schema is 9
increased significantly.

On the other hand, this simplification may cause various problems
concerning a gap between the reality and its rathler mathematical\model
[KENT78]. Further studies such as [SCHM75] [SMIT77] may be necessary to fill
up this gap. One of them may be a theoretical basis for a design of
attribute sets each of which satisfies the uniqueﬁess assumption.

Problems also exist among different interpretation of mathematical
models. Although the concept of independent relations by J. Rissanen
[RISS77] has suggested some theoretical orientation, we do not think
this interpretation problem like the selection problem among syntﬁesis
and decomposition approaches may be tractable in mathematical formalizations.
We believe some of the integrity checks must be done procedurally. Hence
we think it is not absolutely necessary to make a schema to embody all
dependencies. This is the reason we are standing on the basis of

decomposition approaches. -

As to the decomposability of a relation, the concept of mutual
dependency [NICO78] may be interesting to consider in D-tree framework .
However, much more studies may be necessary to know complete mathematical

properties of relational structures.
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<Department><Item><Company><Vol. of Purchase>

\

<Department><Item><Vol. of Sale> <Comgany><Address>

_55\\\\‘\“\“““*--

<Department><Floor> <Item><Type>

Fig. 1 An example of a BCNF D-tree schema.

( A data base of a department store )

F:

. - f + A -

fl ABC E 5 E CB
. - e D —=>

f3 B DH f4 E
. R : -~

f5 : G DF J f6 DF I
. -

f7 : H B

Fig. 2 An example of a set of functional

dependencies.

€:
€lf,) = {a, B, c, D, E, F, G, H, I, J}
e(f,) = {a, B, ¢, D, E, H}
e(f,) = {a, B, c, D, E, H}
e(fy) = {B, D, E, H}
e(f,) = {p, E}
€(f,) = {p, E, F, G, 1, J}
€(f,) = {p, E, F, 1}
e(f,) = {B, b, E, H}

Fig. 3 Maximum dependent sets of functional

dependencies in Fig.2.
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e : {a,B,c,D,E,F,G,H,I,J}
9, T: {{a,8,c,p,E,F,G,H,I,J}}

9] €: {a,B,Cc,D,E,H} g, € : {D.E.F.G.I1.J}

l T : {{a,B,C}, {a,E}} 14 T : {{c}}

g, €: {B,D,E,H} g, € : {pD,E,F,1}

T_: {{s}, {éii///’,/’/,,,— T : {{p,F}}

g; €: {D,E}
T : {{p}}

Fig. 4 D-diagram of a data base in Fig.2.

g g

0 0
‘”////////\\\\\\\\\\*g ga;’ZRQ:;;;{A:;Tgii\\sg . wig)=1{,F,G6,35}
I ‘ Uorgp={amcl, g )=1le))
l w(g,)={{s,D,n}} l w(g5)={{o,F,1}}L {a,B}} l
qéi\ffifiii{%j;ffjf///?S‘ e ={.r 1 %27 By Y T,
g7 De T:{(D}) g DB T:{{p})

(a) (b)

: m(go)={{ArB,G}} gO: ABG 1:{{a,B,G}}

9 ={{a,B,G}} |
/T\(go)‘" /\

g,: ABC g,: GDFJ g ABC g,: GDFJ
w:{{a,8}} 1 t:{{c}} | wtasn || wtien
2w B 2 ffif//////?5: o))
T:11BJs,tHS! T: ' : ' : '
\g;ﬁh}}} \93: DE :{{D}} ’
(c) (d)

Fig. 5 Computation of attr, o, and T of a data base in Fig.2.
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g,: ABG M : {A,B,C,D,E,F,G,H,I,J}
TT——attr: {a,B,G}
g7t ABC U : {a,s,c,pn,E,F,G,H,I,J} g,: GDFJ W : {a,B,7,6,1,J}
l attr: {a,B,c} attr: G,F,J}
g,: BoH W : {A,B,C,D,E,F,G,H,I,J} gg: DET  u : {a,B,F,G,1,J}

\\\\\\"att{i\ififié},‘,,,’//””’//#’/’/ attr: {p,F, 1}

g3 DE v : {a,8,c,n,E,F,G,H,1,J}
attr: {p,E}

The attribute "D" in g4 is redundant.

Fig. 6 The removal of redundancy from a schema

by the marking process Mark(go, Q).

g, : ABG
‘r/’,,f/’//////\\\\\\\‘\\\\\\\‘
gl : ABC 94 GFJ
l |
g, : BDH gy : DF I
1
93 : DE

Fig. 7 A BCNF D~tree schema for a data base

in Fig.2.
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Q={1, 3} Q={D, F, J}
Qq = (D} g = ¢
/\\ ) /\ e
g;: ABC g,s GFJ gt ABC g, GFJ
l l ° 1 M/’—i‘_—’
g, BDH gg: D F I g,: BDH /,/ gt DF I
| : | ‘
- T /
93: DE __ -~ 93: DE s
_-"’ /
- Vs
..__//
rel = Rel(gs) rel = Rel(gs)*Rel(g4)
(a) (b)
o = {¢, pn} o ={B, G}
Q, = Q. =
d ¢ d ¢
ABG A B
99 - 99 G
. : g
g;: ABC M// g, GFJ 9t ABC g,: GFJ
l ° // 1 ——1—.” l
g,: BDH ; gg: DF I g,: BDH gg: DF I
) ' |
DE 4 D E
93 _// 93 =
/7
s
-~

rel = Rel(gs)*Rel(g4)*(Rel(g2)[B,D]) rel = Rel(gs)*Rel(g4)

‘ t(Rel(g2) {B,D}) * (Rel (go) {B,G])
(c) (d)

Fig. 8 The composition process of a relational expression

for Q={1, J} in the example data base Fig.7.
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(a)

(c)

{A, B, C, D, E}
AB — C
D — BE

B »» AC DE in

an example scheme
Q, (7, M))

I3

decomposition with

priority to FD's

AD is redundant.

157

F' : AB — ABC
D — DBE
AD - ADBCE
M" : B> 2AC | DE in Q
AB -+ DE in 9
D > AC in Q

(b) the closure (F, M)+

*
ABC DBE

(d) decomposition with
priority to LMVD's.
( decomposition by

B > AC DE in Q)

Fig. 9 An example of a data base in which the decomposition

with priority to FD's causes redundancy.
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Q:{AI BI CI DI E} F' : B — BC -
F:B—C M" : AB->C | D E inQ
M :AB-—>CD| EinQ B +> ADE in Q
(a) an example scheme (b) the closure (F, M)+
Q, &, M)
* /*
ABE BC *

VA DTN

AB - AB is redundant.

(c) decomposition with- (d) decomposition with

priority to LMVD's. priority to FD's.

Fig. 10 An example of a data base in which the decomposition

with priority to LMVD's causes redundancy.
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M": aB>>cC | D in aBCD
A->>B | C|D in ABCD

(a) an example M"
*
SN N
AB AC ~ AB AD -

(b) AB > C | D then a~>> B |cC |D
( AB is redundant )

AN
\

AB AC AD

() a+B|c|D

Fig. 11 Decomposition order and redundancy.
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Mll

= {<Employee>, <Salary>, <Department>, <Item>, <Supplyer>, <Skill>}
: <Employee> --- <Salary><Department>

: <lf>epartment> - <Employee><Salary><Skill> < Item><Supplyer> in Q
<Employee> =+ <Skill> in Q

(a) an example scheme (§, (F, M)

: <Employee> --+ <Salary><Department>

: <Department> - <Employee><Salary><Skill> ] <Item><Supplyer> in {Q
<Employee> --> <Skill> | <Item><Supplyer> in § '
.f‘
(b) the closure (F, M

Fig. 12 An example of a data base and the closure of dependencies.

*

<Employee><Item><Supplyer> <Employee><Skill> <Employee><Salary><Department>

(a) decomposition with the application of

<Employee> > <gkill> ] <Item><Supplyer> at first

N

<Department><Item><Supplyer> <Employee><gkill>

|

<Employee><Salary ><Departfnent>

(B) decomposition with the application of
<Department> -+ <Employee><Salary><Skill> | <Item><Supplyer>

at first

Fig. 13 Comparison of two decompositions of the data base in Fig.ll.
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Q = {AIBICIDIEIFIGIHIIIJIKILIMINIOIPIQ}

F: G -> DKLM M : AB > CDEFKLM | GHIJNOPQ
AC -+ OPQ C »> AELM | BFOP
H -> ABN D »> AHL | BIJMOPN

F - ABG | HIJLM
HC -> AD | BEF
K +~ LM | QPAB
L~>QP |cC
M->>ON | C

Fig. 14 An example scheme (2, (F, M).

_E‘g_



162

F' : G -~ BDGKIMNOP M' : G [ BDKIMNOP ] ACEFHIJQ
AC -~» ACLMOPQ AC [ LMOPQ ] BDEFGHIJKN
H -—> ABDHKLMNOPQ H [ ABDKIMNOPQ ] CEFGIJ
AB -— ABDKLMNOPQ AB [ DKLMNOPQ 1 CEF | GHIJ

ALMOP ] BDEFGHIJKNQ
BMNOP ] ACEFGHIJKLQ
ABDKLMNOPQ ] CEGHIJ

C -—> ACLMOP c [ awoe 1 E| BF
D -—> DBMNOP D [ BMNOP ] AHL | 1IJ
AD -— ADBKLMNOPQ F [ ABDKIMNOPQ ] G | HIJ
F -— ABDFKLMNOPQ K [ LMOP ] ABCDEFGHIJNQ
K -— KLMOP L [ P ] ABCDEFGHIJKMNOQ
L -~ LP Lirplo]c
M -~ MO M [ O ] ABCDEFGHIJKLNPQ
M[OlIN]| C
C I
D[
F[
aD

[ BKLMNOPQ ] CEFGHIJ

Fig. 15 Calculation of (#', M') from the scheme in
Fig.14.

M" : G [ BDKLMNOP ] ACEFHQ | IJ
H [ABDKIMNOPQ ] CEF | G | 1J
AB [ DKIMNOPQ ] CEF | ¢ | H | 1J
F [ ABDKIMOPQ 1 G | H | 17 | CE
C [ ALMOP ] E | BDFGHIJKLMNQ
D [ BMNOP ] IJ | ACEFGHKLQ
CB [ ADKIMNOPQ 1 E | F | ¢ | B | 17
DA [ BKLMNOPQ ] IJ | CEF | ¢ | H
Lirlolec
M[O]lN]|C

Fig. 16 Calculation of " for the scheme in

Fig.14.
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M : £1 : G [ BDKLMNOP ] ACEFHQ‘| 13 £8 £14
.£2 : AC [ LMOPQ ] BDEFGHIJKN
£3 : H [ ABDKLMNOPQ ] CEF | G | 1J
f4 : AB [ DKLMNOPQ ] CEF | G | H | 17 £1 (£7, £4) 2
£5 : C [ ALMOP ] E | BDFGHIJKLMNQ
£6 : D [ BMNOP ] IJ | ACEFGHKLQ
£7 : AD [ BKIMNOPQ ] IJ | CEF | G | H

£8 : F [ABDKIMNOPQ ] G | H | IJ | CE £9 5
f9 : K [ LMOP ] ABCDEFGHIJNQ ///////////
£10 : L [ P ] ABCDEFGHIJKMNOQ

fl1 : L[P]lQ |C )

£12 : M [ O ] ABCDEFGHIJKLNPQ (£10, £11) (le £13)

fl13: M[O]1N |C

£14 : CB [ ADKIMNOPQ ] E | F |G | H | 1T

(a) M ' (b) dependency diagram
(ABCDEFGHIJKLMNOPQ)
by £f10
LP (ABCDEFGHIJKLMNOQ)
by £12
MO (ABCDEFGHIJKLMNQ)
by £9 ' ‘
KM (ABCDEFGHIJKNQ)
by f6 ‘////////J
DBN (ACDEFGHKQ) DIJ
by fl ‘///,//”/y
GDK (ACEFGHQ)
by £5 ) A//////’”/y'\\\\\\\*k
(CFGHQ)
by £8 ‘///////;Z.Q:::;f“‘\\\;*
FC

(c) 4NF D-tree schema

Fig. 17 An example 4NF D-tree schema obtained from (2, (F, M)) in Fig.14.
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Fig. 18 A general form of a decomposition tree.

M:AB +~cC |bD
B>cC |D

4NF D-tree schema

*

ABC ABD

Query : 9 = {c, p}
automated processing without
any consideration for hidden IMVB's

( ABC * ABD )[ C, D ]

irredundant expression

(BC*BD)[C, D]
Fig. 19 The necessity of consideration for hidden

IMVD's to compose an irredundant relational

expression for a given query.
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