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QUANTIFIED QUERIES TO LARGE DATA BASES
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ABSTRACT

A new algorithm 1s developed ¢to’ process’ unilversally
quantified queries under the closed world assumption. Our
algorithm evaluates a universally quéntified conditional
query very efficiently’ by reducing the problem to the
application of +the operations of set intersection, summary
and join to the answers to subqueries. Furthermore, the

algorithm is extended to hahdle numerical quantifiers.
The sum-of-product decomposition of a relation 1is
“introduced as an efficient representation schemavto express
a set of uniform intensional data of the form (VX/% )P(X).
Queries to the original reiation are transformed to those to
the decompdsed relations using a query transformation axiom.
Furthermore, universally quantified gqueries to those
relations are converted to quantifier—free queries by the'

symbolic division.

Keywords: deductive question answering, relational data
base, relational algebra, closed world assumption, query
transformation, query evaluation, universal quantifier,

-numerical quantifier.
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1. INTRODUCTION

It has béen shown in Chang [1978], Furukawa [1977],
Minker [1978], Kellog et. al. [1978] and Reiter [1978b] that
deductive logic offeré considerable potential for improving
‘on-line access to large, complex data base domains. The
common feature of the éurrent researches to that direction
1s the attempt +to combine 'a deductive component @ with

relational data bases.

Chang [1978] divided the approaches of these researches
into two groups: One 1s +the evaluational approach where
intensions are used to transform queries and extensions are
used to evaluate queries. The othér is the non-evaluational
one where both Intensions and extensions are used to' prove a
question represented by a formula in the same manner. It has
been shown in Reiter [1978b] that the evaluational approach
is more feasible for data bases with very large extensions

and comparatively small intensions.

Codd [1972] has defined an algorithm to convert queries
exbreésed in relational calculus to a sequence of felational
algebraic operations. In his aigorithm, universally
quantified queries are converted to the application ‘of' the
division opefation to the answers to the subqueries. Parelmo
[1974] has improved Codd's/ algorithm by plaﬁning the
evaluation process locally to keep'intermediafe results -as

small as possible.:



Reiter [1978b] has developed a general framework in the
’restricted first order logic which enables one to get
indefinite answers to any qﬁeries; and féforﬁulated” Codd;s
algorithm‘ in his framework. Reiter [1978a] has also
developed an efficient query convérsion algprithm under the

closed world assumption (CWA).

In this paper, a new algorithm fo evaluate universally
quantified conditional queries under the CWA 1is presented.
Summary operation on a relation 1is added to the set of
primitive operations of the relational algebla. The
algorithm reduces the préblem to the application of the
operations of set intersection, summary and Jjoin to the
answers  to the subqueries. The above strategy is considered

to perform a glébal planning and optimization.

Furthermore, the algorithm 1is extended to handle
numerical quantifiers such as "at least two", "exactly

three" or "more than a half".

In deductive relational data bases developed so Tfar,
only extensions have been considered to compose relations.
Intensions have been stored in knowledge bases outside the
relational data bases., However, it sometimes happens that we
have a set of uniform intensional data of the form
(Y2/2 )P(2). In this paper, a new representation schema
based‘ on the sum—bf—product decomposition of a relation is
introduced as a suitable way to express such data. It will
be shown that the above representation schema increases the
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power of expression of relational data bases nearly as high
as that of hierarchical data bases.

Queries to the decomposed relations are evaluated using
a set of axioms which give users the image of the original
relations as a logical view. Furthermore, it will be shown
that universally quantified queries on those reldlions can be
evaluated very efficiently by a symbolic division.

In this paper, proofs of the theories are omitted

bhecause of the limip Qf the space.

2. REVIEW OF QUERY EVALUATION UNDER THE CWA

In this section,‘ query evaluation under the CWA
developed by Reiter [1978a] will be reviewed quickly as well
as some extentions. , B

A1l queries have the form [xl/rl,..;,xn/Tn:
(Q ;787 )0 ee (@ y /8 IW(R) 5eeesX 5Ty 50ee7p)] where
W(Xl"f"xn’yi"'°’ym) “is a quantifier vfree formula with
free variables KyseeesX sYyseees¥y and qi is eitﬂér vV or 3,
i = l1,...,m. We shall use the abbreviated notation
[R/7 ::(q?/g)W(§;§)] to express a typicai query..The T's and
8's, which are called types, are seté of constant signs
which the vériables . associated wiﬁh them range over. A

-
sequence of types T = (Ti1,e44,T ne

n) is‘the set TyX...XT

A data base (DB) is a set of clauses containing no

functional signs.

Under the CWA, 1f no proof of a positive ground literal
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exists, then the negation of that literal is assumed true.
This can be viewed as equivalent to implicitly augmenting

the given data base with all such negated literals.

Since worlds are completely specified under the CWA,
the set of CWA answers 'Qlayy to Q = [%/2 : (Q¥/B)W(R,¥)] is

defined as follows:

'Qlgyy = @ : T e? and DBUEDBF (a¥/8)W(%,¥)3

where EDE = {Pc : P is a predicate sign, 2 a tuple of

constant signs and DBWP2}.

It seems to be impractical to get the set of CWA
answers to @ since EDB may contain infinite numbers of
literals. But it has been shown in Reiter [1978a] that the
CWA answers to an atomic query .can be obtained without EDB,
i.e. 1Qloya=!Qlgyas If DBUEDB is consistent (1Qly,, is a
set of minimal answérs to Q@ under the open world
assumption). Henceforth, we consider only the CWA answers

and abbreviate !Q!CWA to 1Q!.

The evaluation of any queries afe reduced to the
applications of the relational algebraic operations to the
answers to atomic queries. Before listing query conversion
rules, we define some of the operations of relational

algebra.

Let Q = [X/%,2/¢ + W], and X is the n-tuple XyseeesX o Then

1Q! is a set of (n+l)-tuples, and‘the'projection of Q! with
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respect to z, nz!Q! is the set of n-tuples obtained from !Q!
by deleting the (n+l)st. component from each.(n+l)—tuplé of

!Q! .

Let @ = [X/7,2/y : W]. Then the guotient of !Q! by z, 4,!Q!,
is a set of tuplés and 1s defined as follows:
"3 e A,1Q! 1rf (2,a) € 1Q! for all a € V.

The operater‘Az is called the division with respect to z.

Let Q1 = [%/%,2/¢ : W1l and Q2 = [§/8,2/¥ : W2]. The join of

1Q1! and 1Q2! with respect to =z, #¥z(!Ql!,!Q2!), 1is a set of

tuples and defined as follows:
(3,d,8) e #z(1Ql!,!1Q21)
iff (2,d) e !1Ql! and (3,d) e !Q2!.

We sometimes denote ¥z(1Ql!,!Q2!) as (IQL! ¥z 1Q21!).
The set of quéry conversion rules are listed below:

Rule 1. (Decomposition of AND/OR queries)

1[R/T ¢ Wil o I[R/T : W27!.
1[R/T ¢ Wil v I[R/T : wW2]!.

1. ![z/% T Wl A W2!

2. I[X/2: W1 v Wt

Rule 2. (Elimination of negation)

1. 1[R/T : W] =7 - 1[/T : WL,

2. 1[R/T ¢ W1 A W21 = 1%/ : will - 1[x%/T & w2lL,

33;9 3. (Distribution of quantifiers)

1. [¥/% ¢ @F/8) (WL v w2)] |
[2/2 : G3/8)wil v (/7 : @F/8) w21,
2. (/% : (F/)ML A W2)]
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= [%/7 : (Y3/)wi] A [/7 ¢ (V3/8)uel.

Rule &. (Elimination of exsistential quantifiers)

1[%/7 ¢ G3/8)wl! = 1 [%/7 J7/ 8wt
where Wy denotes “yl“'“ym and Wyi is the projection with
respect to yi.

Rule 5. (Elimination of universal quantifiers)
(/2 « (Y9/8 Hwlt = A%![i/?,ff’/g s W oI
where A? denotes Ayl...Aym and Ayi is the division with

respect to yi.

Rule 6. (Decomposition of éxistentially quantified AND
queries) o
HIE/2 : (/8w A w2) ]t |
- /a8 Wil ¢ oare/t,3/% w2l
where Xi is a sub-sequence of X which appears in Wi, and i
is the corresponding sub-sequence of ?, for 1 = 1, 2. The
Join operation ¥ is performed with respect to the variables

¥ and X1 n 2.

Most of the above rules are derived from Reiter [1978a]. The

extended points are as follows:

1. In rule 2, the restriction that W,‘Wl and W2 must be
quantifier free is removed. For example, if w' = (3§/§)W',
then

PR/ Wt = 1%/ 0 (F/BW I = 1[/2 : (Y§/BW 1.
Rule 2 claims that

HE/2 s /W = T - 1[/2 (I
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but not that
LR/« AF/PWT I = T- 1 [X/2: @y/hwr e,
which has been presented as a counter example in Reiter

[1978a].

2. Rule 3.2 and Rule 5 are new. Reiter has developed a
general framework which enables one to get indefinite
answers, The division operator defined by  Codd [1972]/ has
been properly geheralized in thevframework. However, the
handling of universal quantifiers 1in the CWA has been.
ommitted in Reiter [1978a]. But there 1s no reason to
exclude the handling of universal quantifiers in the CWA and
moreover the seﬁ of conversion rules becomes more

well-structured by adding these rules. SN

3. Rule 6 1is new, too. It 1is easily shown that tﬁis
conversion reduces the amount of computation. Let Qi =
[%/2,3/6 : Wil and T$ , ﬂ{ifg),'iue., the compliment

subsequence of-%i, i=1, 2. We woﬁld have to eQalua%e Q =
(/2 : (3§/8)(W1 A W2)] according to !Q! = TF(1Q1l N 1Q2!),
unless we have Rule 6. But it is easily shown that

1Qit = T x 1[R/RL, Y/B 2 Wil
for i =‘i, 2. By applying Rule 6, we can avoid the execution

of the above costly Cartesian product operations.

3. THE HANDLING OF UNIVERSAL QUANTIFIERS

Let us consider how to compute the division A,!Q! where

Q = [2/3,2/4,: (q?/a)W]. The following algorithm generates

8
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the answer AZ!Q!.

Algorithm D.

‘1. Group the answer set !Q! to the quey Q by X and make a
"1ist of z's for each X (we denote the list by ZX).
2. For each Z%, test whether it includes the set¥y. If the

test succeeds, then put the X in the answer set 4,!Q!.

Rule 5 says that &4,!Q! 1is the answer set for the
universally quantified query Q0 = [X/T : (Vz/p)(d§/§)w 1.
Notice that Q0 is ihe abbreviationuof the conditional query
Q0' = [XA : (Yz)(zey - (a¥/6)W)]. The inclusion test
Y < ZX in Algorithﬁ Drreflects the implication in QO0', where
the consequent z ¢% in QO' corresponds to the lefthand set
Y} and the antecedént (q?/é)w to the righthand set Z¥.

We can use the division operation to efficiently
evaluate a class of conditional queries Q¢ = [X/T :
(Yz/AL) (W1 » W2)] such that Wl does not contain any free
variables in X. The following theorem states the fact more

precisely.

Theorem 1. Let Qe = [X/Z : (Yz/4) (Wl > W2)] be a universally
quantified conditional query»and assume that Wl does not
contain any free vafibles in3®, Q = [i/f,z/yb: W2], and Qz =
- [z/+: W1]. If DBU EDB is consistent, then

AZ'é!Qz!
2 otherwise.

1Qe! 1Q! if 1Qz! % ¢,

We cannot use Theorem 3 1f W1l contains any variables in

9
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X. An example of such queries is: "List the depar;tments that
sell all items that are supplied"; that is,

[x/DEPT : (Yy/ITEM) SUPPLIED(y,x) -» SELL(x,y)].

We can  deal with the general case by introducing the

following cut operation:

Let R = 1[¥”,z/¢ : WX, z)]!. Then the cut of R with

respect to X, denoted by f2(R), is a set of pairs (c;, D;)
where 8.e T and D; is a set of d; ¢ ¥ such that
~ ;>
D; = {d, : (c;,dg) e R}.
>
We regard P;(R) to be a function from mR to 2777'42 and denote

D. as f’g(R)(E’{). f’;(R)(E:’_L-) is called the cross-section of

PZ(R) at 3.

The set of D; i1s exactly the same as ZZ; in Algorithm
D. The cut operation correéponds to the group-by opefation

in SEQUEL2 (Chamberlin et. al. [19761]).

Theorem 2. Let Q = [R/2: (Yz/y4)(Wl - W2)]. If DB U EDB is

consistent, then

1Qt = (T~ 12 (32/-1}.)W1]!)
U {3 : 6% P2(RLR) c faRr2)(D)Y,
where Ri = ![%/2,z/%: Will for i = 1, 2.

Corollary 2.1. Let Q = [®/Z : (Vz/+p) (Wl - W2)] where W1 does
not contain any free variables in X, R1 = ![z/+¥: W1i]! and
R2 = 1[%/2,2/~¢: W2]!. If DB U EDB is consistent, then

{2 : Rlc P2(R2)(3)}  if RL ¥ @,

Q!
= 7 otherwise.

10
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Since A ¢ B iff |A n'Bl= |A] in case A and B are finite
sets, we can replace the set inclusion tést in Theorem 2 by
a simple comparison of the cardinal numbers of two sets.
This strategy has been implemented in GM-RDMS (Whitney
[1974]), where an operatipn called summary has been used to
construct a set of pairs (3{, ID;l ) which summarize the

>
pairs (¢;, D;).

Example '
The following example is taken from "Palermo [1974].

There are four relations: SUPPLY, SUPPLIERS, PROJECT and

| PART, as 'shoWn in Figure 1 (The relation names are
underlined to distinguish them from the corresponding
predicates. They are considered to réfer sets, vrather than
predicates.). The relation SUPPLY (SID, PID, JID) is a set
of tuples (x, ¥, z) such that a supplier x supplies a part y
to a project z. SUPPLIER (SID, SLoc; SNAME) has information
on suppliers! locations and their names. PROJECT‘(JID; JLOoC,
JNAME) has informétion on projects* locations and their
names. PART (PID, PTYPE) defines the type of each part.

Let us consider the following query to the -above data
base: |
Query. Find the name and location of suppliers each of whom
has Supplied at;least 6ne project located.in San Jose wilth
at least one of évery part of type A.

This query is expressed as follows:
Q = [x/SNAME, y/SLOC :

11
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(@s/SID) (SUPPLIER(s,y,x)
| A (33/PID) (PROJECT(SJ,J)
A (Yp/PID) (PART(p,A)
= SUPPLY(s,p,J))))]

The evaluation of Q proceeds as follows:

1. Let QL = [x/SNAME,y/SLOC,s/SID : SUPPLIER(s,y,x)] and
Q2 = [s/SID : (3j/JID)(PROJECT(SI,j) A (Yp/PID)(PART(p,A)

SUPPLIER(s,p,j))))]. By applying RUle 6 to Q, we get
Q! = T (1Q1! % 1Q21).

2. Let Q21 = [j/JID : PROJECT(SJ,j)] and Q22 = [s/SID,j/JID :
(Yp/PID)(PART(p,A) - SUPPLY(s,p,j))]. From Rule 6, we

obtain

—

1Q2! = T5(1Q2l! ¥.1Q221).

d;
3, Let R1 = ![p/PID : PART(p,A)]! and
R2 = ![s/SID,j/JID,p/PID : SUPPLY(s,p,Jj)]!

Since Rl is not an empty set,
Q22! = {(s1,j1) : Rl C'f(s j)(Rz)(sl,jl)& |
from Corollary 2.1,'

The snapshots of the above evaluation process is shown
in Figure 2, where the summary operation is used to evaluate

Q22.
Numerical quantifiers such as "at least two", "exactly

12
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three" or "more than a half" can be neatly dealst wit‘h by
using the summary operation. We adopt the Chang's notation
for numerical quantifiers (Chang [1978]): Let op be one of
the reiative operators <, €, >, 2 or =. The fact (x op n) is
expressed as (3 op nx). For example, (x > 2) is expressed
as (3 > 2x). The following theorems give the algorithms to

evaluate numerically quantified queries.

Theorem 3. Let Q = [/ : (3 op nz¥)W] and R =

1[X/2,z/+4 : W]l. If DB U EDB is consistent, then
1Q! = §2 : | RERIE@)| op n}.

Theorem 4. Let Q = [/ : (@ op nz/¥)(Wl-> W2)]. If DB U EDB

is consistent, then

19! = {2 : |A®LE) A RE)EP)] op n
» 4

where R1 = I[Z/2,2/4 : Will for i =1, 2.

In order to deal with proplortional quantifiers such as
"a half" or "B0%", we need to slightly expand the Chang's
notation. We denote (x op (n/100)e#div) as (3@ op n%x) where
#div is the cardinal number of the divisor y in Theorem 3 or .
the cross-section ff(Rl)(‘c’) in Theorem 4. Note that the
universal quantifier is equal to the extream case of the

proportional quantifiers, that is, "100%" or (@ = 100%x).

4, THE SUM—O_F_—P-RODUCT DECOMPOSITION OF A RELATION
Suppose that the answer of the universaily quantified

13
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query Q22 in the previous example is séved. Then, wWe can
answer to the same query.immediately by simply restoring the
saved answer. We need to save answers for other types, e.g.
a set of supplier-project pairs (x, y) such that x supplies
all parts of type B to y. These answers can be put together
if we associate each type to each answers. Let SUPPLYALL
(SID, JID,VPTYPE) be the relation built in such a way. From
SUPPLYALL and PART relations, we can infer the "SUPPLY"

fact, namely:

(¥s/SID)(¥;/31ID) (Yp/PID)
((3t/PTYPE)SUPPLYALL(s,t,j) A PART(p,t)

- SUPPLY(s,p,J)) (4.1)

Furthermore, we can remove all tuples which are infered in
(4.1) from the original SUPPLY relation. We rename the
reduced SUPPLY relation as SUPPLYSOME. The original SUPPLY
relation is now decomposed into two relations: SUPPLYALL and
SUPPLYSOME, as shown in Figure 3. | ' .

Now, let us consider the query Q22 1n the previous

example:

Q22 = [s/SID,j/JID:(Vp/PID)(PART(p,A):
- SUPPLY(s,p,J)) 1. (4.2)

The extension of SUPPLY(s,p,j) can be obtained from not dnly
the SUPPLYSOME relation; but also the SUPPLYALL relation.
Assume that there are no other relations which contain the

information about SUPPLY(s,p,j). Then, the following

14
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equation holds:

(Ys/sID) ¥ p/PID) (Y3 /IID)
(SUPPLY(s,p,j) =
(Ft/PTYPE) (SUPPLYALL(s,t,5) A PART(p,t))

v SUPPLYSOME(s,p,j)). _ (4.3)

This statement is a kind of query transformation axioms
which give simple lbgical views of relations to the users
(Furukawa [1977]). It is also considered to be a kind of
. definitional clauses (Reiter [1977]). The query Q22 is

transformed to:

Q22 = [s/SID,j/JID :
(Yp/PID) (PART(p,A)
YALL
+ (3t/PTYPE) (SUPPLEER(S,t,J)
A PART(p,t))
v SUPPLYSOME(s,p,J))] (4.4)

by substituting the righthand expressién of (4.3) for the
consequent of (4.2). Considering the meaning of the
predicate "SUPPLYALL", it 1is expected that 1Q221! =
![s/SID,3/JID : SUPPLYALL(S,A,j)]z should be included in the
answer set !1Q22!. In fact, we can deduce !Q221l! as a part of
the answer (actualiy, 1Q221! is the answer Set itself. See
Theorem 5). Sincé the antecedent of Q22 does not include any
free variables, we cah obtain the'banswer set !Q22! by
divisién (Theorem 1). By substituting A for t in the first

term of the antecedent of Q22, we. get

15
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SUPPLYALL(s,A,J) A PART(p,A). (4.5)

Since SUPPLYALL(s,A,j) and PART(p,A) does not share any

variables, the extension Rs of the expression (4.5) is

pJ

equal to the direct product

![s/SID,j/JID : SUPPLYALL(s,A,j)]!

x 1[p/PID : PART(p,A)]!.

d' .
The set RS is a part of the divideny of the division. We

pJ
cirtainly get !1Q221! =_![s/SID,j/JID : SUPPLYALL(s,A,j)]! as
a part of the quotient by symbolically dividing the set‘RSpJ
by the divisor ![p/PID : PART(p,A)]!.
We will give a more géneral description about what we
“have explalned above. . ‘ Lo
Let REL (X, Z) be an arbitrary relation and QEE (z, T)
a relation ﬁhich defines the type t of each element z in ™
(REL). Suppose that there are n types T = {al,...,an} of z.
We select all =z such that (z, al) ¢ DIV and make a unary
relation DIVai (Z) for each ai in T. Let RELail (X, Z) be a
sub-relation of REL which consists of all and only elements
(2, d) such that d e’ggyg;. Then, it is obvious théﬁ
REL = v  RELai (4.6)
aieT
Let ggggg (X) and REMai (X, Z) be the quotient and the
remainder, respectively, which resulﬁ from dividing Egééi by

DIVai; namely,

RELai = QUOai x DIVai uy REMai, ai e T. (L.

.16
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From (4.6) and (4.7), we get

REL = u (QU0Oai x DIVai) v REM, (4.8)

aieT
where REM = vy - REMal.
aieT

The relation QUOal corresponds to the answer set in the
previous example. In order to keep all answers QUOai,
ai ¢ T, in a single relation, we associate the constant type
information ai to each tuple of QUOai and make a new
relation QUOai' (2; T) for each al ¢ T. The unified relation

Quo (X, T) is a union of QUOai! for all ai e T. Since

ﬂt(QUOai' *tDIV) = QUOai x DIVai (4.9)

holds for all ail ¢ T,Awe get

7. (QUO *t DIV) = u (QUOai x DIVai). (4.10)
t -— —————— N
aieT

From (4.8) and (4.9), we conclude

REL = nt(QUO %t DIV) u REM. ' : (4.11)

In (4.11), the relation REL is decomposed into three

relations; QUO, DIV, and REM. We shall refer to such a

decomposition as a sum-of-product decomposition.
The corresponding. logical statement to the equation

(4.11) is

(V%/2) (Yz2/9) (REL(X,2z) = (Ct/T)(QUO(Z,t)
‘A DIV(z,t))v REM(Z,z)). (4.12)

Some of the universally quantified queries to the

.decomposed relations are reduced to simpler quantifier-free

17
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queries by applying the fcllowing theorem:

Theorem 5. Suppose 1 REL (f, Z) 1s decompesed to QUO (f; ™),
DIV (Z, T) and REM (f, Z) as (4.12), and Q =
[2/Z : (Y2/¥)(DIVai(z) - REL(%,z))]. If DB U EDB is

consistent, then
1Q! = I[R/ZT : QUO(R,ai)]!.

The relation QUO, unlike ordinary relations, is a set
of intensional data. It is easily shown from Theorem 5 that
(%,21) € QUO iff (¥Yz/Z)(DIV(z,ai) -» REL(Z,z)); that is, any
tuples in QUO represent corresponding intensional fact. For
example, a tuple (s0,t0,j0) in SUPPLYALL means that the
supplier sO supplies all parts of type tO to the project jo.
On the other hand, "QUO(Z,ai)" may sometimes be interpreted
as an extensional fact by itself. ‘(SO,tO,jO) becomes an
extensional fact if_ it 1s not unﬁsual that some suppliers
supply to some projects all_parts of some types. iIn that
case, .the query will bé expreésed directly in terﬁs ofv
"SUPPLYALL", instéad of throﬁgh "SﬁPPLY".

it has been suggested in Ohsuga [1979] that the
information clustering by the division is an important
mechanism to buiid a structure in the data base. The
sum-of-product decomposition schema, together with  the
associated query transformation axiom, enables"oné’ to
realize the above mechanism in the framework of deductive
relational data bases.

We finally remark the evaluation of queries other than

18
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universally quantified ones to the decomposed relations. For
example, consider the query Q = [p/PID,j/JID
SUPPLY(237,p,J)]. By applying the query transformation axiom

(4.3) to Q, it is transformed to

Q = [p/PID,j/JID : (3t/PTYPE) (SUPPLYALL(237,t,3)
A PART(p,t))

V SUPPLYSOME(237,p,J)].

'Q! is converted to.

Q! = ![p/PID;j/JID : (Ft/PTYPE) (SUPPLYALL(237,t,J)
A PART(p,t) ]!

J ![p/PIb,j/JID : SUPPLYSOME(237,p,Jj) ]! (4.13)

by using the set of conversion rules in section 2.‘

We need to perform the costly join’of the SUPPLYALL
relation and the PART relation to evaluate the first term in
(Q.13).'Howgver, it may sometimes be adequate to answer in
terms of SUPPLYALL and SUPPLYSOME instead of SUPPLY. In that
casé, we can avold the join. It is reiated to the notion of

approximate responses discussed in Joshi et. al. [1977].
5. CONCLUSION

Practical élgorithms to evaluate universally quantified
~queries as well as numerically quahtified ones are
presented. They ére formulated in the same way so that they
can be reélized compactly.

Furthermore, a new representation schema based on the
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sum-of-product decomposition of relations are introduced. A
set of uniform intensional data of the form (YX/Z)P(X) is
expressed as a relation by using the schema. Universally
quantified queries to the decompqsed relations are converted
to quantifier-free queries by the symbolic division.

The DBAP - (Furukawa [1977]) are being expanded to
realize the algofithms presented in this paper.

Th;s .research ‘is considered to be a step ﬁoward a
natural language QA System. It has been indicated in
Furukawa [1977], Sacedoti [1977] and Harris [1977] that the
most difficult problem to be solved to realize such a system
is to mesh the user's conpeptualization of data with the
actual structure of the data. The query transformation
mechanism developed here as well as in Furukawa [1977] will

help to solve the problem.
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- SUPPLY SID PID JID SUPPLIER SID SLOC SNAME
211 31 . 971 211 NY  AA
325 32 971 325 SF XX
211 33 970Q 237 LA YY

211 31 972
237 31 972

237 31 970 'PROJECT JID JLOC JNAME
237 32 970 -

237 33 970 970 = POK A
237 32 971 971 SJ X

237 31 971 972 SJ Y

PART PID PTYPE .

31 A
32 A
33 B

Figure 1. An example data base.

1. 1Q! = SID SLOC SNAME :
31T NY AR -->1B. !Q! = T, (1Ql! * 1Q2!)
325 SF XX
ﬂ' 237 LA YY |
2. 1Q21! = PID ———————=————32B. 1Q2! = m(1Q211 * 1Q221)
71 \
) 972
3. Rl = PID ‘ SID JID #PID
3T 211 971 T
H, 32 211 970 1
. 325 971 1
[R1] = 2 237 970 2 <
4 237 971 2
R2 = SUPPLY £;¢§§§,¢>'237 972 1
1Q22! = SID JID
237 970
| 237 9an
2B. 1Q2! = SID
“’ 237
1B. !1Q! = SLOC SNAME
TA  YY

Figure 2. The process of the query evaluation.
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Figure 3. The decompoSed relations

of SUPPLY.

SID

237
211
237
237

SID

211
325
211
237

PTYPE JID
A 971
B 970
B 971
A 970
PID JID
31 971
32 971
31 972
31 972



