goooboooogn
0 3630 19790 188-217

188

Associative Data Structures and Their Applications.

Masayuki Suzuki*, Eiichi Goto* **,

and Nobuyuki Inada**

*: Dept. of Information Science,
University of Tokyo,
Bunkyoku Tokyo 113 Japan.
**: Dept. of Information Science,
-~ Institute of Physical and Chemical Reseach,

Wakoshi 351 Japan.

169
Abstract.

The unique representation of arbitrarily nestable ordered
tuples and unordered tuples, called GID(Generalized IDentifier),
is described. The LISP flag scheme and property list scheme are
generalized to AMT(Associative Membership Table) and CAT(Content
Addressed Table) with GIDs. Associative operations on these data
types are described. Slow but operationally equivalent LISP
simulator of GID, AMT and CAT is described. The effectiveness of

GID, AMT and CAT is demonstrated in some programming examples.

190

‘1l.Introduction

FLATS 1is a machine[l] for scientific computations in both
numerical and algebraic fields equipped with hardware for
associative capabilities, 1list processing, overflow free and
variable precision computations. "FLATS" means "Fortran" and
"Lisp" machine with "Associative” features for "Tuples" and
"Sets". In this paper, we describe "ATS" part of
FLATS: associative data types, basic operations and their
applications. Associative capabilities for tuples(ordered
n—-tuples) and sets(unordered n-tuples) were implemented in HLISP
[2], which is the software version for "L"-part of FLATS. These
capabilities, in FLATS, are implemented by using parallel hashing
hardware which consists of multiple RAM banks, hash address
generators and hashing control units [3},[4]. |

" The FLATS machine 1is designed to efficiently execute
programs written 1in two languaées: HLISP and BFORE(Big FORTran,
i.e., FORTRAN with big number features). Portable compilers will
also be written so as to enable these two lénguages to be run on
other machines. We éhall describe the associative‘capabilities
of HLISP from the apllication programmer's view.

In HLISP, H(Hashed)-type, R(Rom)-type and two more data
types, AMT(Associative Membership Table) and CAT(Content
Addressed Table), are added to the data types of the "Standard
LISP"[5] as shown in Table 1. H-types, AMTs and CATs whiqh
involve = hashing for efficient implementation, are treated in
this paper. The other types will be discussed in another paper

to follow.

19

In hashed scheme, structural data(HVECT, HPAIR, HAMT and
HCAT), are uniqﬁely represented by making use of hashing.
Equality checks for H-type data can be made very fast by pointer
equality checking because of their uniqueness. In LISP, each
literal atom 1is ~uniquely represented by making use of "OBLIST"
mechanism, thereby enabling the equality check of two atoms to be
made with the fast pointer comparison function "eg". On the
other hand "equal", which is the structural equality checking
function for ordered n-tuples, become quite cumbersome and time
consuming. Further, that for mathematical sets{unordered
n-tuple) would become even more time consuming. We describe in 2
that by wvirtue of H-type the equality checks for structural
data(ordered n-tuple and unordered n-tuple) can be reduced to the
fast pointer equality checking. H-type data are also termed
GID(Generalized 1IDentifier), . since they can be used in the same
way as identifiers in LISP: flag or property list functions
become applicable to GIDs 1in our "hashed" system. The data
types, AMTs and CATs, which respectively represent unordered
tuples and content addressed table, are introduced as basic
building blocks for associative data structures and associative
capabilities. The operations on AMTs or CATs, called AMT OPs or
CAT OPs, are also constructed on the unique representation of
GIDs. In 2, we describe H-type data, AMTs, CATs and the basic
operations on them.

In 3, we-give programming examples involving basic AMT and
CAT OPs, h-OPs and GIDs placing emphasis on the best speed and
time complexity. The first few are for "word count”", "collated

word count" and "bookkeeping of athletic clubs" having business

-4-

192

and data base management flavors. The last few are for
polynomial manipulation. 1In spite of their apparent differences
in flavors, the programs would turn out to be strikingly alike.
They would also turn out to be fast and clean, thereby showing
the importance and appropriateness of concepts and OPs relating

to AMTs and CATs.

Since the clarification of concept, speed and time
complexity results are the main theme of thisrpaper, the details
of the language design and implementational aspects of FLATS will
not be treated.

Comparisons of data types, basic OPs and programming concept
formulated in this paper with those in other languages, such as

LISP, PASCAL, LEAP and SETL are discussed in 4.

193

2. Built-in Data Types and Basic OPs

In this section, we describe data types and basic OPs which
form the basis for associative computations. Table 1 shows
built-in data types of FLATS, which are classified into three

types; LISP-, ROM- and H-types.
2.1 Uniquely Represented Data Types (H-type).

We introduce B-type data with the following

characteristics:

(Bl) Arbitrarily nested trees, 1lists(ordered tuples) and sets
(unordered tuples) can be transformed into H-type; only'bne
internal representative is created for each H-type datum.

(H2) Equality of two H-type data can be checked very fast{0(1)
time) by the pointer checking function "eg".

Although these characteristics are realized by making use of
hashing to improve time complexity, the hashing mechanism is
designed to be invisible to users. Hence, a slow(O{(n)) but
operationally equivalent LISP simulator of H-type data is shown
in the main text and a fast O(1l) hash implementation is given in
the Appendix.

Let h(x) be a function " which turns LISP
datum(S-expression), x, into a unique form so thét

(H3) The pointer equality eq(h(x),h(y)) = T holds iff the
equality equal{x,y) = T holds.

This can be simulated in LISP by constructing a "*HOBLIST". The

"*HOBLIST" 1is the 1list (hm,hm_ ,...,hl) of all data which have

1

-6-

194

been subjected to the function h. Namely, the "*HOBLIST" is to
be seen only from the LISP system (hereinafter, "*" prefixed
literal atom is for system use only). "h(x)" is executed in the
following way:
(H4) if x ATOM then h(x)=x.
Otherwise, "*HOBLIST" is searched with the structural
equality checking function "equal™: |
if k matches, say, with hi' then h(x)=hi,
if no match, a copy of x, h, ,;=copy(x) is added to the
"*HOBLIST" and h(x)=hm+1.
(H5) h(x) in a LISP simulator is defined as:
hix]=prog[ly];
[atom[x] =-> returni{x]}]; ~
yY:=*hoblist;
A: [nullly] -> go[B]};
equal[x,car[y]} -> return|carlylll:
y:=cdrlyl;
go[A];
B: x:=copylx];
*hoblist:=cons[x;*hoblist];
returnix]]

For example, let x,y and z be lists as:

x:=1list[A;B;C] =(A B C)
y:=list[A;B;C] . =(A B C)
2:=1ist[A;B;D] =(A B D)

For x,y and 2z, the pointer equality checking by "eg" is:
eqlx;yl=eq[x;z]=eqly;z]=NIL

and the equality by "equal" is:

-7-

195

equal{x;y]l=T

equal[x;z]=equally;z]=NIL.
Eq takes 0O(l1) time but it fails in the étructural'equality
checking. Equal can check the sffﬁctural equality but it takes
O(n) time for lists of length n.

For H-type lists, hx,hy and hz:

hx:=h[x] =(A,B,C)
hy:=hlyl] : =(A,B,C)
hz:=h[z] =(AIBID)

the structural equality can be checked with fast 0O(1l) time:
eq[hx;hy]=T |
eq[hx;hz]l=eqlhy;hz]=NIL

A considerable speed up can be achieved by using H-type when

equality checks are made heavily.

2.2 AMT(Associative Membership Table)- A Generalization

of the LISP Flag Scheme.

The notion of sets, a very important concept 1in pure
mathematics, has been introduced into é_number ofrprogramming
languages ‘such as LEAP[6]},SETL[{7] and PASCAL{[8]. Historically,
LISP was the first to incorporate set operations. Namely, the
LISP flag scheme can be regarded as set opé:ations. For example,
let atom A be flagged with(have the ‘following flags on its
property list) TOM, DICK and HARRY; atom B be flagged with JAPAN,
UK and USA. This can be interpreted as: a set {TOM DICK HARRY}
with a global name A; a set {JAPAN UK USA} with a global name B.

In this regard the flag functions, flagp, flag and remflag, can

..8_

136

be regarded as operations of membership test, element insertion
and deletion, respectively. |

V Experiences in using the flag scheme, however, have revealed
the following disadvantages:

(F1) Slow speed of operation. Because list processing is used in
the implementation, 0O(n) time is needed for flag operatiqn
when n flags(set with n elements) are involved.

(F2) The global nature of the name of a set often causes name
crashes and inconveniences in garbage collection.

(F3) Only 1literal atoms can be used as set elements(i.e., flags
in LISP terminology).

The data type "AMT", which has the following characteristcs,
was devised to overcome these disadvantages.

(A1) AMT OPs are fast O(1) time by making use of h;shing.

(A2) An AMT bas no global name. Note that global naming of
array in Lisp 1.5 also has the same diéadvantage. In
Standard LISP, vectors without global names have been
devised to overcome this disadvantage.

(A3) Any GID can be used as an AMT element which éorresponds to

a flag in the flag scheme. The H-type data as defined in

(H1) , (H2) and (H3), i.e., the unique forms of

S-expressions, are GIDs. HAMT and HCATrto be defined

latgr are also GIDs.

We define an AMT as the table having a current member set.

We use the set notation: -

{ g3 9% ... g*}
as the preferred standard external representation for the

abstract data type AMT, where g; is the external notation for a

e

137

GID. Another external notation :

* AM * g* __., g¥*

(*AMT g¥ g3 g%)
will be wused for a LISP simulator reflecting the specific data
structure.

The basic OPs on an AMT are defined as follows where a AMT

and meGID:
a:=mkamt(): make a new AMT, initially an empty set.
getamt{a,m)=[meal :member ship test.
putamt(a,m)={a:=av{m}] :insertion.
remamt (a,m)=[a:=a-{m}] :deletion.

The following is a LISP simulator for the AMT OPs.

(A4) For a AMT, m GID,
mkamt []=cons|[*AMT;NIL]
getamt[a;m] =member[a;cdr[a]]
putamta;m]=[getamt[a;m}] -> a; T -> nconcla;list[m]]}]
remamt[a;m]=[null[cdrlal] -> NIL;
equal{cadrla);m:] -> rplacdl[a;cddrlall:;

T —-> remamt[cdrla]l,m]]

2.2.1 HAMT or B-type AMT.

An HAMT is the unique representation of an AMT. Equality of
two AMTs corresponds to that of sets. Let h(x) be the function

which gives the HAMT corresponding to AMT x.

(HAl) "h™ can be simulated in LISP by enlisting HAMTs on
"*HOBLI-IST" similarly as in (H4) and (BH5). The change to be
made in (H5) is to use "seteqg" instead of "equal™ whenever

the first list argument of x is *AMT.

10

198

seteglx;yl=[({xcCy) A (Yycx)]
xCy=[null{x]->T;
car[xley -> cdrx]C yi

T -> NIL]

For example, 1let x be an AMT, {B A C}{or (*AMT B A C) in the

specific LISP simulator data structure), and y be {A B C}(or

(*AMT A B C)). Suppose AMTs.x and y are created as::

Program - Value in the LISP simulator
x:=mkamt|] =(*AMT)
x:=putamt |[x;B] =(*AMT B)
x:=putamt[x;A] =(*AMT B A)
x:=putamt|[x;C] =(*AMT B A C)
similarly,
y:=mkamt[] =(*AMT)
y:=putamt|y;C] =(*AMT A B C)

For these x and vy,

eq[x;yl=equal[x;y]=NIL

seteqg[x;yl=T

hx:=h[x] =(*AMT,B,A,C)

hy:=h[y] =(*AMT,B,A,C)

eq[hx,hy]=T
Equality checks of two sets by the list processing function
"seteg” 1s a time consuming operation(o(nz) time for sets with
n-elements), because the same set can be represented in many
different ways such as {A B C}={B C A}= A hashing method

for a fast(0(1)) equality checking of sets was first given in

...ll_

199

[9].

2.3 CAT(Content Addressed Table) - A Generalization

of the LISP Property List Scheme.

Content . addressed table operations have been implemented in
LEAP, PASCAL and 1in some recent data base management systems.
Historically, LISP was the first to incorporate such operations.
A LISP property list can be regarded as a content addressed
table. Namely, let atom A have indicators APVAL, EXPR and PNAME
with respective ©properties 137, (LAMBDA(X)...) and A. This can
be interpreted as: a content addressed table with a global name A
which maps contents (symbolic addresses) APVAL, EXPR and PNAME
into 137, (LAMBDA(X)...) and A, respectively.

The LISP property list scheme, however, has exactly the same
disadvantages (Fl),(F2) and (F3) of flags. The data type "CAT"
was devised to overcome these disadvantages by imparting the same
characteristics (Al), (A2) and (A3) of AMTs. Moreover, in order
to overcome an inconvenience of the property list scheme when the
indicator(content) 1is missing, an "excise value" convention has
been introduced: each content addressed table has each "excise
value"™ which is used at content missing.

We éefine a CAT as a system of an excise value, e¢GID, and a
mapping, M, from a set of distinct GIDs, a={gf .o gg}, into any
HLISP data, vi,vﬁ, ce . ,vg, of any type. ‘We use

(e {gi:v* g;:v; ee. g*:V%})

1 n n
as the standard @ external notstion for a CAT. Another notation

for a CAT

-12-

200

*CAT e *. * -k. * .o e ‘ *. *
((91 Vi) (92 v2) (gn vn))

will be also used for a LISP simulator.

The basic CAT OPs are defined as follows:

for ceCAT, meGID, e(excise value)eGID and a={gI...g*},
n

c:=mkcat(e):

getcat(c,m) :

putcat(c,m,v):

remcat (c,m) :

make a new CAT with excise value

ec¢GID

1
if v=e and m=g*ca then remcat(c,m)
1

if m=g{ea then v+, else e

if v=e and m=g*da then no change
occurs in c.

if v#e and m=g*ca then change the

i
mapping (g*.v*) into (gX*.v¥*).
i 1 .

else add the mapping (m*.v*) to c.
remove the mapping entry (m*.,v¥*)

from c.

We now show a LISP simulator for CAT OPs:

mkcat[e]=1list[*CAT;e]

getcat[c;m]l=prog|[x];

x:=assoc[m;cddr(cl];

[null{x} -> return{cadric]];

putcat[c;m;v]=prog|[x];

T -> return[cdr[x]]]}

x:=assoc[m;cddr{c]l];
[v=eAx -> remcat{c;m];
v=epnot[x] =-> NIL;
v=eAx -> rplacd[x;v];

v=epAnot[x] -> nconc|c;list[cons[m;v]]]];

-13~

201

returniv]]
remcat[c;m]=[null[cddr[c]] -> NIL;
equal[caaddrc];m] -> rplacdc;cdddr[c]];

T —-> remcat[cdr[c];m]]
2.3.1 HCAT or H-type CAT.

An HCAT 1is the unique representation of a CAT. Two CATs,
c=(e {g{:v; cee g;:v;} and c'=(e’ {gf':gf' cee q:':%:'}), are
defined to be equal 1if the two excise values are equal, i.e.,
eqg(e,e')=T (note e,e'eGID so that "eg" can be used consistently)
and the two mappings are identical, i.e., the two sets of pairs

M= {(gI.vI) (g;.v;) cee (g;.g;)} and

M'={(g}'.v¥") (g3'.v3') ... (g'.vx")]}
are the same set. Let h(x) be the function which gives the HCAT
corresponding to CAT Xx. ‘“h“ can be simulated in LISP by
enlisting HCATs on "*HOBLIST" similarly as in (H4), (HS5) and
(HAl) . The changes to be made in (H5) is to use "equal® for
checking equality of excise values and "seteq" in (HAl) for that
of mappings instead of "equal" whenever the first argument of
list x, is‘ *CAT. For example,let x be a CAT, (0 {A:1 B:2}) or

(*cAT 0 (A.1) (B.2)), and y be (0 {B:2 A:1}) or (*CAT 0 (B.2)

(A.1)). Suppose CATs, x and y, are created as:

Program Value in the LISP simulator
x:=mkcat[0] =(*CAT 0)

x:=putcat[x;A;1]‘ =(*CAT 0 (A.1))
x:=putcat[x;B;2] =(*CAT 0 (A.l) (B.2))

y:=mkcat[0] =(*CAT 0)

202

y:=putcat|[y;B;2] =(*CAT 0 (B.2))
y:=putcat{y;3a;1] =(*CAT 0 (B.2) (A.l))

For these x and y,

hx:=h[x] =(*CAT,0,(A.1),(B.2))
hy:=h[y] ' =(*CAT,0,(A.1), (B.2))
eq[x;yl=equal(x;y]=NIL
eqlcadrx],cadrly]]=T
equalcddr[x];cddrly]]=NIL
seteg[cddr{x];cddr[y]]=T

eq{hx;hy]=T
2.4 HINTeger.

Equality checks on 1long integers(multiprecision) would be

also important when they are used as ID(identification) numbers.

In HLISP, long integers can be also transformed into H-type by'

the function "h".

203

3. Applications.

While AMT OPs realize set operations, CAT OPs realize a
mechanism for associating values to GIDs. 1In this section, wve

give several examples which make use of GIDs, AMTs and CATs OPs.
3.1 Sweep OP or Forall OP.

We define ‘"sweep" or "foreach"™ OP such as "(foreach M in X
(<body>)y". This OP is the heart of programming examples in this

section. The syntax of "foreach" is:

(foreach <FORMAL> in <ID> (<body>))

The semantics is "let X be an AMT, X={qf cee %:}, or a CAT,
X={gi:vi‘... g;:v;]. Execute the <body> n-times with changing
the formal M in the <body> as M=g;, i=1,2,...,n upon each
execution”. This can be defined in a LISP simulator as follows:
(foreach m in x (<body>))=
[car[x]=*AMT -> mapclcdr([x];
X (ml;prog((]; <body>]11;
car[x)=*CAT -> mapclcddr|[x];
Allml;prog([]; m:=car[m];
' <body>1111
We now give some functions with foreach. We shall use type
declaration with syntax "type(x€CAT)" so as to improve readability
of the program. Moreover, when x is type declared to be a CAT we

shall use simply write "x(m)" instead of T"getcat(x,m)" and

204

"x(m):=v" instead of "putcat(x,m,v)".

SiZE(X)::=(begin' »
comment D is a dummy formal;
type (X € (AMTUHAMTUCATUHCAT)) ;
N:=0;
(foreach D in X (N:=N+1));:
return(N);

end)

CATCOPY(X,E)::=

(begin
type (X € (CATUHCAT) ; CECAT) ;

C:=mkcat (E);
(foreach M in X (C(M):=X(M)));
return(C);

end)

CATADD(X, Y)::=
(begin
type(x,Ye(CATUHCAT);C€CAT);
C:= CATCOPY(X,0);
(foreach M in Y (C(M):=C(M)+¥Y(M)));
return (C);

end)

CATSUB(X,Y)::=

(replace "+" in CATADD by "-")

205

SIZE gives the size(cardinality) of X(AMT or CAT). Hereinafter
for showing time complexities(for the fast hash method but not
for the LISP interpreter), tﬁe size of data are denoted by
corresponding lower case letters and specially the average length
of pertinent data, by k. CATCOPY gives a new CAT with excise

value E and takes O(x) time.
3.2 A "Deposits into Accounts” example.

CATADD can be wused for this purpose. Namely, with
X={TOM:10 JIM:20} meaning the account of TOM and JIM, and with
Y={BOB:5 TOM:6} meaning deposits by BOB and TOM,

"CATADD(X,Y)={TOM:16 JIM:20 BOB:5}"
would update the accounts. Similarly, CATSUB can be used as a
"draws from accounts" function. Since any GID can be used as an

account identifier, account numbers(HINT) can be used instead of

names (HSTR) as well.
3.3 A "Word(GID) Count" example.

Let file, T, be the record of a beginner typing exercise,
supposed to be ten repetitions of "THE QUICK BROWN FOX JUMPS OVER
A LAZY DOG". The following program would make word counts in
CAT(0), C with O(t) time: |

"C:=mkcat(0);
-type (C&CAT) ;

(foreach M in T (C(M):=C(M)+1));"

206

"foreach" is also applicable to a file (upon each loop, M takes
on an "h-ed" value of each file item). Let paa(for print with
actual arguments) be a print function and lexsort be a
lexicographic sortihg function.
Now, "paa(C);" would print

"C={THE:8 QUICK:10 ... }"
and "paa(lexsort(X));" would print

"lexsort(X)=((A,10), (BROWN,10) ,(DOG,8),(F0OX,10),

(HTE,2) ,...,(S0G,2),(THE,8))"

showing mistouch habits in "HTE" and "SOG". It would be more
convenient, however, to print those words which do not- appear in
another file, D called the dictionary("THE QUICK BROWN FOX JUMPS

OVER A LAZY DOG" is the content of D in this case).
3.3 A "Collated word (GID) Count™ example.

A:= mkamt();
C:= mkcat(0).;
type (AEAMT; CECAT) ;
(foreach M in D (putamt(A,M));
(fofeach.M in T
(if M A then C(M):=C(M)+1 £i));
rpaa(léxsort(C)); |
would print out

"lexsort(x)=((HTE,2),(SOG,Z))“‘

3.4 An example of "Bookkeeping of Clubs".

207

Suppose that two CATS, S and D have been created for the
bookkeeping of a swimming c¢lub and a diving club. For
registering TOM in the swimming club with fee 5, one would
execute

"S{"TOM") :=5"
with 1linear time O(k), where k is the number of characters, k=3
in this case. For terminating JIM's membership in the diving
club, one would execute

"D("JIM"):=0"
with linear time O(k), (k=3). Suppose on December 31 we need to
make the frozen records of the clubs, we would execute

"S12:=h(8);

D12:=h(D);"
on that data with 1linear time O(s) and 0(d). Suppose
s1,s2,...,S11 and D1,D2,...,D11 are the frozen records for each-
month. The identity of membership now be checked with O(l) time.
For example, in case there were no changes during December,
"paa(eq(S12,S11));" would print "eq(S12,S11) = T". 1If a great
number of similar questions have to be answered, the use of
"h"-ed form(HCAT) would be quite advantageous, since O(k*s) time
or even more,rinstead of 0(1), would be needed in other identity

check methods. An individual may be members of both clubs. For

summing up the fees,

"T12:=h(CATADD(S12,D12));

paa(lexsort(T12));"

208

would print
"((BOB,5),(JIM,20),(TOM,16))"

with times 0(s12+d12) for CATADD, O(tl2) for "h".
3.5 A "Polynomial Adder®™ example.

Let us consider polynomials P:
n .
» P =izlci'ri,
said to be ST(for Sum of Term) polynomials,.whereéci HINT are
called coefficients and TieGID, term identifiers. Assuming né
duplication among Ti's, P can be represented as an HCAT,
P=ST(P)={(T; ,C;) |1<in},
callgd the ST HCAT form, e.g.,
P=ST(2A + 35 + 4CQ)
={A:2 B:3 C:4}.
The same polynomial can be expressed in many different ways as
2A + 3B + 4C = 3B + 2A + 4C =
due to the commutativity of addition. Nevertheless, the HCAT,
P=ST(P) 1is a,unique representation, thereby enabling the identity
check of two polynomials P=ST(P) and Q=ST(Q) to be made in O(1)
time by an eqhality check of pointers, eq(P,Q). The CAT(0)},
P'=CATCOPY(ST(P),0) will be <called the ST CAT form of P. The
function CATADD readily proviées as édder fof two polynomials
given in ST HCAT/CAT forms. Namely, "R':=CATADD(P,Q)}" giﬁes the
result R' in the ST CAT form with linear time O(p+tqg). Extra
linear time O(r') without fully using of hashing would be needed

for "h"-ing R' into the SP HCAT . Hence the h-op will be used

only when it is needed.

209

As the special case, when each term identifier T has the
form
T = VElVEz...VEn
1 2 n
with VjéGID and Ej being positive integers for 1<j<n; T; is said
to be a multivariate term and P =) C,T, is said to be an SP(for
Sum of Products) polynomial. Ti may be represented in different
ways as in
r.=a%p?ct =p?a’cl=...
due to the commutativity of multiplication. Nevertheless, the
HCAT {A:3 B:2 C:1} gives a unique representation. Hence, SP
polynomials can be represented uniquely by doubly nested HCATs,
to be called SP HCAT forms, as in .
SP(5EB B C + 6x*+ 7)
={{A:3,B:2,C:1}:5,{X:1}:6,{}:7}
using the term of 3.2, One may say "HCATs", Ti(TiéHCATCGID) are

to be used as account identifiers in SP polynomial additions".

3.6 A "Polynomial Multiplication" example.

We nbw défine a function CATMUL(P,Q) for multiplying two
polynomials P and Q given in SP HCAT/CAT forms. Note that the
multiplication of two term identifiers can be made with the
function CATADD, e.g., for A
T =A2B3, T,=AlC4 and T| T, =B B!, we get

h(CATADD({A:2 B:3},{A:1l C:4})
={A:3,B:3,C:4}.

Hence we readily have(the result is in the SP CAT form):

210

CATMUL(P,Q) ::=
(begin
type (C,P,Q€(CATUHCAT) ; TEHCAT) ;
C:= mkcat(0);
(foreach TP in P
(foreach TQ in Q
(T:= h(CATADD(TP,TQ));
C(T):=C(T)+P(TP)*Q(TQ)))):
return (C);
end) ’

which runs with O(th'i* thli)glven in [10],[11].

211

4. Concluding Remarks.

We described the associative data types built in FLATS,
basic OPs on the data types and their applications.

The associative data types and capabilities are constructed
by GIDs, AMTs, CATs and h-OP. The concept of GID is the basis of
them. AMT OPs can realize fast set operations and CAT OPs can
realize the associative tabulation for symbolic and/or integer
arguments(GIDs). The h-OP is regarded as the generalization of
LISP "intern"-0OP for 1literal atoms and it 1is extended for
arbitrarily nestable ordered and unordered tuples.’

Equality check on long integer, ordered and unordered tuples
are important for many programs, so we would propose GID and h-OP
for fast identity checks when they are heavily used.

AMTs, CATs and their OPs based on "single-hit" association
is siﬁple and flexible to build up any associative data
structures. In LEAP based on "A,0,V","multi-hit association” is
constructed by elaborate data structures consisting of hash table
and 1linked 1list. The CAT OPs may be regarded as a special
subclass of LEAP OPs with data type interpretations, A CAT, O GID
and V ANY. The LEAP OPs which are not needed in many cases, can
be constructed by CATs and PAIRs(brdered tuple).

The concept of "hashed sets" and their OPs were reported in
[9] and their applications to formula manipulation were in [10];
especially equality check for sets was improved(its time
complexity is O(l)). 1In SETL, hashing is also used for identity
check. However, it would take a long time(at least linear time)

when two sets are equal. The "bit vector"™ feature in PASCAL

212

provides 0(l) set OPs. ‘It has restrictions, however,that the

universe of set must be known at the compile time. The "record"
concept in PASCAL is similar to FCAT". However, the structure of
"record" must be also given at the compile time, while that of
"CAT" is given dynamically at run time. Since the
structures(AMTs and CATs) in the examples given in 3 have to be
constructed dynamically at run time, the PASCAL "bit vector"™ and
"record" features are not applicable.

The conciseness and clarity of programs in 3 owe much to
sweep(foreach) OP on GIDs(i.e., the unique representative of
arbitrarily nested ordered and uhordered tuples).

The FLATS machine is now under development at the Institute
of Physical and Chemical Research. With hardware for parallel
hashing, FLATS could execute fast h-OP, AMT OPs and CAT OPs.

Then, these OPs would be fully applied to formula manipulation.

213

Reference.

[1) Goto,E., Ida,T., Hiraki,K., Suzuki,M. and Inada,N., FLATS, A
Machine for Numerical and Symbolic and Associative
Computing, Proc. of the 6th Annual Symp. on Computer
Architecture, (April 1979), 102-110

{2] Kanada,Y., Implementation of HLISP and Algebraic
Manipulation Language REDUCE 2, Tech. Rep. of Info. Science,
75-01, Univ. of Tokyo (1975)

{3] Ida,T. and Goto,E., Performance of a Parallel Hashing
Hardware with Key Deletion, Proc. IFIP Congress 77,
North-Holland (1977)

[4] Ida,T. and Goto,E., Analysis of Parallel Hashing Algorithms
with Key Deletion, Jour. Info. Proc. vol 1. No 1 (1978)

[5)] Marti,J.B., Hearn,A.C., Griss,M.L and Griss,C., Standard
LISP Report, UUCS-78-101, Univ. of Utah, (1978)

[6] Feldman,J.A. and Rovner,P.D., An Algol-Based Associative
Language, CACM, 12,(1969)

[7] Schwartz,J.T., On Programming, an Interim Report of the SETL
Project, Courant Inst. of Math. Sciences, New York Univ.
(1973)

[8] Wirth,N., The Programming Language Pascal, Acta Informatica
1 (1971)

[9] sassa,M. and Goto,E., A Hashing Method for Fast Set
Operations, Info. Letters, 5 (1976) 31-35

[10] Goto,E. and Kanada,Y., Hashing Lemmas on‘Time'Complexitieé
| with Application to Formula Manipulation, Proc. ACM SYMSAC
76, York Town Heights NY (1976)

{11] Goto,E., Sassa,M. and Kanada,Y, Algorithms and Programming

214 | f

with CAM(Content Addressable Memories), Tech. Rept. of Info.

Science, 78-04, Univ. of Tokyo (1978).

2135

- Appendix. A hash method for faster data handling.

The operations on the "*HOBLIST" in the LISP simulator
for the H-type data outlined in the main text can be replaced
by a hash table to be called HOBTABLE in order to increase
the speed. Each éntry of the hash table HOBTABLE consists
of a key(hash code) and a pointer to.the pertinent H-type
data structure. An H-type datum is represented as a pointer
to this HOBTABLE entry, and a hash code function, Hc (this
is different from hash sequence function to be used for
célculating the hash address) is used to generate an integer
hash code for given datum x, Qhere 0<Hc(x)<M(maximum iﬁteger
which fits 1into a single word of the machine). The
function, h, defined in.2, Searches, insefts or deletes an
H-type datum by using thié hash code as the key to determine
‘hash address sequence in the hash process. The hash code
function, Hc, 1is constructed from the following three
specific functions, Hp, Ha and Hs. Note that GIDs are
constructed by starting from integers and literal atoﬁs and
by recursivgly nesting ordered and unordered tuples.

For integers ahd literal atoms, any mapping with a
suitable pseudo random shuffling property, from integers or
bit patterns of literal atoms into the interval [0,M] would{
do for "Hp“;

Let gi,gg,...,g; be GIDs with hash code hi=Hc(g;). The
hash code of a dot-end list,

t=(g* ... * .g*)
gl gn—l gn

216

is given in terms of an asymmetric function Hé:
Hc(t)=Ha(hy,Ha(..... Ha(h _y.,h;)))...)

~where O0<Ba(hj;,h;)<M and generally Ha(h ,h2)=Ha(h2,bl). The

hash code for AMT(unordered tuple),

a={g* ... g* g*}
1l n-1 n
is given in terms of a symmetric (commutative) function Hs,

so as to comply with the "unordered” nature of the sets:
Hc(a)=Hs(hl,h2,h3,...hn)
=HS(h2,h3,h1,...I“h)

=Hs(h3,hl,h2 r---hn)

The speed of basic operations on AMTs, getamt, putamt

and remamt can also be improved to average O(l) by using a

hash table for set elements of each AMT[9].

LISP TYPE ROM TYPE HASHED TYPE
ATOM
STRing RSTR HSTR
NUMber
INTeger HINT
FLOATing HFLOAT
FUNCtion pointer RFUNC
PAIR RPAIR HPAIR
VECTor " RVECT HVECT
AMT RAMT HAMT
CAT RCAT HCAT
Table 1. Data Types in HLISP

