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Abstract

Two 1linear-time constant-workspace algorithms are
presented for copying an arbitrarily linked list
structure. Apart from a fixed number of program
variables, copying can be done without auxiliary
storage, - such as a stack. The first algorithm, assuming
one mark bit in each cell, demonstrates its efficient
list traversal technique which embeds the processing
order 1into the structure being built. The second
algorithm, delivered from the first, needs no mark bits
and makes a copy into a block of contiguous areas of
memory. It is shown to be faster than Clark's algorithm,
the fastest previous linear-time algorithm for the same
problem.
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1. Introduction

The problem considered here is the creation of a copy of an
arbitrary Lisp-style list structure under the constraint of constant
workspace. This constraint requires that copying can be done in constant
working storage without the use of a stack or any other working storage
whose size depends on the size or complexity of the list to be copied.
The only storage available is that occupied by both the original list
structure and the copy being created, separate from a fixed number of
program variables. Copying requires that the original structure may not
be permanently destroyed, unlike the task of moving a list[1, 2].

Algorithms for copying list structure using constant workspace have
been given by Lindstrom[8], Fisher[6], Robson{10], and Clark{3, 5].
Lindstrom showed that arbitrary n-cell structure can be copied in time
0(n2) if there are no mark bits and in time O(nlogn) if a mark bit is
available in éach cell. Robson's algorithm uses only linear time and no
mark bits. Both Lindstrom's and Robson's algorithms can copy into an
arbitrary free-list. Although Fisher's algorithm runs faster than
Robson's, it depends on the restriction that copy cells must be
allocated into a block of contiguous storage of locations as his
free-list to gain speed instead of generality. Clark's algorithm 1is
faster than Fisher'é and has the same free-lis@ restriction.

This paper reports two new algorithms} called ListCopy1 and
~ListCopy2, for copying an arbitrary Lisp-style list structure in liﬁear
time - using constant workspace. Both algofithhs run under the same
strategy, but their assumptions are different; The first algorithm,
ListCopy1l, assumes a mark bit in both original and copy cells and is

much faster than Robson's algorithm. The second algorithm, ListCopy2, is
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faster than Clark's and has the same free-list restriction. While
Clark's algorithm requires slightly more than two full passes, depending
on the degree of sharing in the structure to be copied, ListCopy2
requires just two passes for any 1list structures. In addition, the
second pass here is more efficient than in Clark's algorithm, especially
in case of a full £inary tree where all leaf cells consist of cyclic

pointers.

2. Copying List with a Mark Bit : ListCopy1
2.1 Outline of List Copying

Consider a list or list structure composed of lié? cells containing
two pointers called car and cdr, which may point to any list cell or to
nonlist objects called atom[9]. Atom themselves are not copied, so atom
pointers dq not. change when copied. The list structure€ to be copied will
be called the old or original list; its copy will be calléd the new list
or the copy.

The process of copying a list structure typically entails 2 passes.
Pass1 consists of the followings: the original list is traversed to find
unprocessed éells; new cell for each unprocessed original cell is
allocated; and that cell is 1linked to its copy. Figure 1(a) shows a
typical list structure about to be copied, and Figure ’1(b) shows  the
stage at the end of Passi1. In Pass2, the pair of the original cell and
the corresponding copy cell is decomposed by traversing the 1list
consisting of these pairs. The old car and old cdr are stored to the car
and cdr part of the original cell respectively, so the original list
will be restored. At the same time, the values of the copy car and copy

cdr are the copy cells corresponding to the original celis pointed by
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the old car and old cdr, respectively, if these are the 1list pointers.
Thus these values are stored to the car and cdr part of the copy cell as

shown in Figure 1(c).

2.2 Pointer Types and List Cell Types
~ListCopy1 will perform two traversals of the list structure. Passi
does a preorder traversal which will visit list cells in tﬁe following
order: rooﬁ, then car (if an unvisited 1list), and then cdr (if an
unvisited list). Traversing the original list, a marﬁ bit denoted as
mark which 1is initially zero will be changed to 1. This means that the
cell has already been visibed:
procedure Marked (listcell) : return mark(listcell) = 1
Because list cells are marked in preorder, a mark bit .  in the original
cells would clearly permit the orderly traversal of possibly cyeclic
structufes and pre?ent the creafioh of supurious copies of cells that
are pointed to more than once, such as (B . C) in Figure 1. ’
After finding the unvisited original cell, the new copy cell will
be allocated for it from the avail-list. A forwarding 1link will be
installed in car of each original cell in order to link that cell to its
copy. The simple —function ’Flink, below, will be used to extract a

forwarding link from an old cell.
procedure Flink(listcell) : return car(listcell)

While some of original cars displaced by forwarding links need be saved
in the copy cell, some of them need not. This reason will be described

in detail in Section 2.4.
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The preorder traversal in Pass1 defines a spanning tree of the list
structure to be copied. Pointers that are in the original 1list but are
omitted from this spanning tree are those that point to a cell visited
earlier in the traversal. Following Robson[10], we call 1list pointers
included - in the spanning tree forward pointers and all other ones
omitted back pointers. Figure 2 illustrates the spanning tree: forward
pointers are solid; back pointers dotted.

Each list cell belongs to one of nine types, depending on the three
possible types of its car and c¢dr: atom, forward pointer, or back
pointer. Cell types will be represented as AA, AF, AB, BA, and so on,
following Clark[5]. The computation of these types during Pass1 will be
accomplished by the procedure CellTypel.
procedure CellTypei(oldear, oldedr)

begin
return
_if not(atom(oldcar)) or not(Marked(oldcar)) then -
if atom(oldcdr) then FA
else if Marked(oldedr) then FB else FF
else

Aif not(atom(oldedr)) or not(Marked(oldedr)) then
if atom(oldcar) then AF else BF

else AA&AB&BA&BB
end '

In traversing the original list, two visits are required to a cell
of type FF which has two forward pointers and no other ﬁypes require a
second visit. But there appears one complication in classifying a cell
as type FF. Consider the case where some chain of forward pointers
starting with car eventually reaches the cdr cell, illustrated as the
rodf cell in Figure 2. It is observed that the cdr cell has already been
visited when the entire car structure of that cell has been traversed. A
cell originally class;fied to be FF will then reveals to be FB. We will

call such cells inscrutable.
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2.3 List Traversal in Pass]

There are éeveral methods to traverse the list structure.
Lindstrom's algorithm[8] wuses his link permutation technique; Robson's
algorithm[10] uses the Deutsch-Schorr-Waite link reversal techniquel7,
1] Fishef's algorithm{6] uées Cheney's method[1],- sequentially
scanning the copy for forward-pointing cdrs.

In ListCopy1, however, the traversal of the original list will be
accomplished by the wusual sort of a stack, just the same as Clark's
algorithms{3, 5]. A stack can be implemented without violating the
constant workspace constraint by linking stacked cells together through
their own cdrs in the copy cells. The familiar procedure Push and Pop
can be implemented thus:
procedure Push(cell, stack)

begin
T cdrlcell) <-- stack ;
stack <--.cell

end

procedure Pop(stack)
begin pointer t ;

t <-- stack ;
stack <-- cdr(stack) ;
return t

end

The two other stack-referencing procedures Initialize and Empty are

obviously implemented as follows:

procédure Initialize(stack) : stack <-- NIL
procedure Empty(stack) : return stack = NIL

On the first visit to a cell of type FF or an inscrutable cell
ofiginally observed to be FF, its copy will be pushed onto a stack. When

the traversal of the original list has reached at one of the cells of
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type AA, AB, BA, or BB (leaves of the spanning tree), the stack will be
popped and the cdr of the popped cell, which is the original cdr of the
most recently visited type FF cell, will be returned, provided that the
cell 1is not inscrutable. But the possible presence of inscrutable cells
on the stack needs the procedure Popl to determine if the‘popped cell is
inscrutable or not. Popped cells found to be inscrutable will cause Popl
to pop up the stack several times until the type FF cell Qiil be found.
Inscrutable cells must, of course, get the type FB treatment to be
described in Section 2.5. Similiary, a pointer to the \hext copy cell
will be saved to the cdr of the popped copy cell of type FF.

procedure Popl(stack)

until Empty(stack) do
begin pointer newcell, oldedr ;

newcell <-- Pop(stack) ;
oldedr <-- car(newcell) ;

if Marked(oldedr) then - newcell is the copy of an
cdr(newcell) <-- FAddr(oldedr) - inscrutable cell.
else
begin - newcell is the copy of cell
cdr(newcell) <-- avail ; - still type FF.
return oldedr - oldedr is about to be
end - copied into next free cell
end ;
return NIL - only if stack is empty.

end

2.4 Reverse Preorder Chain

In PéssZ, forwarding links are removed by the orderly traversal of
the list structure. At the same time, the original contents of each old
cells are restored and final values of new pointers are stored to the
copy cells, if they have not been stored in Pass?.

The value of a pointer in the copy depends upon its type: atom,
back pointer; or forward pointer. By definition, atom themselves are not

copied, so the new value of an atom pointer is always the same as its
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old value. New values of 1list pointers are, of course, giyen» by
forwarding links. But now that the 1list is orderly traversed in PassZ2,
it sometimes happens that a forwarding link has already been removed
before it is needed. Then whether or not the necessary forwarding link
is available in Pass2 depends crucially upon its traversal order of the
list. Thus the new value of a list pointer which points to a cell
without a forwarding link in Pass2 must be saved during the traversal in
Pass1.

Now, our approach is based on the observation that new values of
back pointers need not be saved in Pass1, provided that forwardiﬁg links
are - removed in reverse preorder during the traversal in Pass2, like
Robson's algorithm[10]. A chain of original cells called a reverse
preorder chain is prepared in Pass1 in order to guide the reverse
preorder traversal in Pass2. Then in Pass2, forwarding 1links will be
removed along with the reverse preorder chain.

A reverse preorder chain will be constructed as follows: each time
the preorder travérsal in Pass1 reaches an unvisited original cell, a
pointer to its cell will be added to the front of it. Namely, the
history that forwarding links are installed in Pass1 1is preserved in
reverse preorder as a reverse preorder chain. Therefore, every pair of
old and new cells are able to be visited and decomposed by traversing
the 1list along with the reverse preorder chain in Pass2. A reverse
preorder chain is clearly a stack. So it can bée implemented by linking
the visited cells together thréugh their own cdfs in the original cells
by the procedure Push defined in Section 2.3. Also, procedure Initialize
and Pop will be used to initialize and pop-up a reverse preorder chain,

respectively, in Pass?1 and Pass2.
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Thus so far we have discussed that forwarding links are installed
in preorder during Pass1 and they are removed in reverse preorder during
Pass2 by the guidance of tﬁe reverse preorder chain. But note <that a
forward pointer points to a cell without a forwarding link in Pass2,
while it points to a cell with one in Pass1. A forwarding 1link is not
available for a forward pointer in Pass2. Consider, for example, a type
FF cell which needs to save both old and new forward pointers for each
car  and cdr at the end of Passi. It is not difficult to see that
ListCopy1's storage requirements are most stringent at thé end of Passi,
because a forwarding link and a reverse preorder chain ocgupy a originai
cell, that is, two of a cell's four available locations (old and new car
and cdr). Then we can use only two locations in a copy to save necessary
items at the end of Passi.

How do we solve this problem? There is fortunately a way to compute
both o0ld and new forward pointers, although a forwarding 1link is not
available for a forward pointer in Pass2. Pass1 performs a preorder
traversal, depending upon the spanning tree consisted of forward
pointers. On the contrary, Pass2 does a reverse preorder traversal,
depending upon the same spanning tree according to the reverse preorder
chain. Thus, in Pass2, the old and new forward pointer point to the old
and copy cell which have already been processed, respectively. 1n
particular, forward pointers of type AF, BF, FA and FB cells and those
of car of a type FF cell point to a cell processed Jjust before during
Pass2. ListCopy1, therefore, need not save during Passi1 both old and new
values of forward pointers, except those of part of a type FF cell,
because cdr is traversed before car in Pass2.

Now that atom themselves are not copied, new values of ‘atoms need
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not be saved. And also new values of back pointers need not be saved at
the end of Pass1, because new values of all back pointers can be given
by forwarding links during Pass2. 1

- Consequently, the number of items that must be stored at. the end of
Pass1 1is managed to become less than two, except forwarding links and a
reverse preorder chain. Pointers for each cell type at the end Qf Passi
are shown 1in Figure 3. Depending wupon it, the procedure gellTypeZ,

below, will be used to compute these types during Pass2.

procedure CellType2{newcell)
begin - newcell is copy of oldcell.
return
if atom(car(newcell)) then
if atom(cdr(newcell)) then AA
else if cdr(newcell) = copyson then AF else AB
else
if atom(edr(newcell)) then
if car(newcell) = copyson then FA else BA
else ‘
if cdr(newcell) = copyson then BF
else if Marked(cdr(newcell)) then BB else FB&FF

end
CellTypeZ closely relies on the process information during the
traversal of Pass2, because it uses a pointer which points to a cell

processed just before to recompute a cell's type. In CellType2, copyson

means a pointer to a copy cell just processed before.

2.5 The Algorithm : ListCopy1
The procedure ListCopyl is given in full detail below. Auxiliary

procedures are defined in the previous sections so far.

procedure ListCopy1(root)
begin pointer x, y, copy, copyson ;

- Pass 1
Initialize(Stack) ; Initialize(Chain) ;
X <-- root ; copy <-- avail ; - global variable avail points to

- first free cell



until x = N

IL do

begin pointer oldcar, oldedr
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?

mark(x) <-— 1 ; oldecar <-- car(x) ; oldedr <-- cdr(x) ;
car(x) <--y

y {-=- a

vail ;

avail <-- cdr(avail) ; ,
case CellTypel(oldcar, oldedr) of

AA&AB&BA&BB :
AF : car(y)
BF : car(y)
FA : car(y)
FB : car(y)
FF : car(y)
endcase
£nd ;
- Pass 2
copyson <-- NIL ;

until Empty(Chain) do

s Push(x, Chain) ; - avail is the forwarding
: - address of cell x

car(y) <-- oldecar ; cdr(y) <-- oldecdr ;

x <-- Pop1(Stack) ;
{~=- oldcar ; cdr(y) <-- avail ; x <-- oldedr ;
{--oldcar ; cdr(y) <-- avail ; x <-- oldcdr ;

Cmm

avail

edr(y) <--oldedr ; x <-- oldecar ;

{-- oldedr ; cdr(y) <-- FAddr(oldedr) ; x <-- oldcar ;

<-- oldedr ; Push(y, Stack) ; x <-- oldecar ;

begin pointer oldcar, oldedr, son ;

x <-- Pop(Chain) ; y <-~ FAddr(x) ;
case CellType2(y) of

AA : car(x)

AB : oldecdr

car(x)

AF : car(x)

BA : oldecar

car(x)

BB : oldecar

car(y)

car(x)

BF : oldecar

car(x)

FA : car(x)
FB&FF :
endcase ;

(e
o
{mm
Kmm
{mm
{mm
e
{mm
e
(o
mm
e

car(y)
edr(y)
car(y)
car(y)
car(y)
oldecar
car(y)

.
?
.
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.
?
.
b
’
.
?
.
s

cdr(x) <-- cdr(y) ;

edr(y) <-- FAddr(oldedr) ;
edr(x) <-- oldedr ;

edr(x) <-- son ;

; car(y) <-- FAddr(oldcar) ;

edr(x) <-- edr(y) ;
oldedr <-- cdr(y) ;

FAddr(oldecar) ; cdr(y) <-- FAddr(oldedr) ;

oldcar
car(y)
oldear

. we we

cedr(x) <-- oldedr ;
car(y) <-- FAddr(oldcar) ;
edr(x) <-- son ;

son ; cdr(x) <-- cdr(y) ;

car(x) <-- son

son <-- x ; copyson <-- Yy

end ;
return copy

end

edr(x) <-- car(y) ; car(y) <-- copyson ;

- X now points to the root of the
- original list structure.

- ¥y now points to the root of the
- copy.

After initializing the stack and the reverse preorder chain denoted

as Chain, pointing x at the list to be copied (root), and saving the

location of the copy in the variable copy, Passl1 does the following for

each cell encountered during the traversal :

1. sets a mark bit of it to 1

.
H

2. saves its original car and cdr in oldcar and oldecdr ;
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3. points y at avail, which is the head of free list ;

4. plants its forwarding link y in its car ;

5. pushes it to the revefse preorder chain ;

6. performs a sequence of operations that depend on its type, ~including
calculation of its successor in the traversal ; and

7. loops.

Consider a type FB cell x, for example. The required type-specific
operations are these : oldedr is saved in car(y); as oldedr 1is a back
pointer and its new value FLink(oldedr) can be given by a forwarding
link in Pass2, so its new value is not necessahy to be saved, but
storage constraints permit it to be saved. And oldcar, being the only
forward pointer in x; becomes the successor of x in the traversal.

Operations required for a type FF cell are these : because the list
will be traversed in reverse»preorder in Pass2, oldcdr must be saved in
car(y); copy cell is pushed onto the stack, as discussed in Section 2.3.
Then a forward pointer oldcar becomes the successér of x to continue the
preorder traversal.

In type AF, new Vélues oldcar and avail are written to ﬁhe car and
edr in the copy. They are final values for the copy and will not be
changed for ever. |

When one of the leaves of the spanning tree, a cell of type AA, AB,
BA, or BB, becomes the current cell, the procedure Popil defined in
Section 2.3 is called to find the next cell to visit. Once the popped
cell appears to be inscrutable? it must, of course, get the type FB
treatment. And the stack is popped up to find a type FF ‘cell. On the
other hand, when a popped cell is found to be still type FF, avail,

which is the next copy cell to be visited and is a new value of the cdr,
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is stored to the cdr of the copy cell. It is because both old and new
cdr pointer of a type FF cell must be saved, as discussed in Section
2.4, And the cdr of the popped cell will then be returned. Notice that
both cells of type FB and FF have the same new values in their copy
cells, an oldedr in the car, and a new value of the original cdr in the
cdr at the end of Passit. The reason is that, becéuse forwarding links
will be removed during the reverse preorder traversal of Pass2, a type
FB cell which might Be an inscrutable cell must get the same treatment
as type FF. Figure 4 illustrates the state of the list structure shown
in Figure 2 at the end of Pass1.

Now that all original cells are pushed onto the reverse preorder
chain during the preorder trgversal of Passl, all cells are processed
only once by popping it up in.PaSSZ.

Continuing to the execution of the first pass of ListCopy1, Pass2
does the folldwing for each cell encountered during‘the reverse preorder
traversal : |
1. pops an original cell x off the reverse preorder chain;

2. points y at\its copy cell;

3. performs a sequence of operations that depend on its type;

4, points son and éépyédn at x and vy, respectively§ énd

5. loops.

Because in Pass2 the lisﬁ is travefsed in reverse preorder, - x becomes
son, i.e., left son (in'the case that x is type FA, FB, or FF) or right
son (in the case x-is type AF or BF); at the mnext loop. Y also does
copyson, i.e., léfﬁ‘cobfson or right one.

Consider again cells of type FB and FF which get the same treatment

in Pass2 : car(x) is recovered by son, that is, a pointer to an original
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cell just processed before; cdr(x) is restored from car(y), where the
original cdr was saved; and car(y), a forward pointer, gets the new

value by copyson.



236

3. Copying List to Contiguous Storage of Locations : ListCopy2

While the algorithm ListCopyl1 needs a mark bit to copy an arbitrary
list structure, the algorithm ListCopy2, described in this section,
needs no mark bits but depends on the restriction that copy‘must be made
to contiguous storage of locations. Since ListCopy2 works under the same

strategy as ListCopyl, only the differences between them are described

-
here.

In the first pass of ListCopy2, the original list is traversed in
preorder, and a forwarding link is written in car of each original cell
in order to liﬁk that cell to its copy, and then each original cell is
pushed onto the reverse preorder chain with saving the necessary
information in its copy. Now that new 1list region 1is a block of
contiguous storage locations, whether a forwarding link has been planted
in car of an original cell can simply be detected by comparing the
pointer found in car of an original cell with the address boundaries of
the region. Thus, instead of a mark bit used in ListCopy1, we introduce
the predicate new(x). The predicate new(x) will be true if and only if x
points to a cell in the new list area.

Pointers for each cell type at the end of Pass? are shown in Figure
5. Original gells are occupied by both forwarding links and the reverse
preorder chain. As discussed in Section 2.4, the necessary information
that must be saved at the end of Pass1 is as follows : because the new
value of an atom is always the same as its old value and that of a back
pointer can be given by a forwarding link during the traversal of Pass2,
the new values of atoms and back pointers need not be saved.

Forward pointers of type AF, BF, FA and FB cells and that of car of



237

copy cell located
[ Cell Type ] original cell

AA

at address n

‘ - TATA

AB | A\\/

( A [n+1

[ X )

AF

BA : !

(¢

FA - / nei | A

FBo: L 71 -4--

(except an inscrutable cell)

I/,——‘-—ih
FF . { 4 ///ﬁ'\ stack area

(including an inscrutable

cell) 4} pop off the stack
( / =l

Fig. 5. State of each cell type at the end of Passl of ListCopy2.
Atoms are denoted as A; original pointers are solid; copy pointers
are dotted. A reverse preorder chain omitted is located in cdr of

each original cell.



238

a type FF cell are not necessary to be saved, since old and new values
of their forward pointers can be recovered by the reverse preorder
traversal of Passé.

Note that because new cells are contiguous, the new value of a
forward pointer except that of cdr of a type FF celi is always the
address of the following cell in the copy area. Then the nqx value of
them located in ceLl n is n+1. Thus the variable copyson used in
ListCopy1 does not appear in ListCopy2.

On the other hand, both old and new cdr pointers of a type FF cell
point to a cell already processed during Pass2, because cdr is traversed
before car. And also, those of a type FB cell that might be inscrutable
do so. Thus these values must be saved at the end of Passi.

Consequently, forwarding links are removed in reverse preorder in
Pass2, popping up the reverse preorder chain. The procedure ListCopy2

will be shown in Appendix with all auxiliary procedures.
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4, Analysis and Comparison of the Algorithms

Clark[3,5] compared his linear algorithm with Fisher's linear one
by looking at how much computational work is done per cell rathér than
at the number of cell visits. We also compare our two linear algorithms,
ListCopy1l and ListCopy2, with Clark's algorithm, following to his
analysis method. His analysis uses as its measure the number of times a
list cell must be read or written by each algorithm.‘This leads to a
considerable simplification in the analysis and the comparison task by
ignoring such things as arithmetic operations, instruction fetches, and
the time required by LiSpkprimitives such as atom(x). TFor systems in
which reading or writing a 1list cell is expensive relative to, say,
fetching an instruction --—kfor example, a system where the copying
algorithm is microprogrammed or resides in a cache --- the analysis done
here realistically measures.the computational effort involved. In other
systems the work measured here is just part of the total.

It is assumed that car and cdr are contained in a single word of
memory. It 1is also assumed that a certain amount of straightforward
optimization with respect to this measure, e.g., if car(x) and cdr(x)
are both read (written) in a single iteration of an algorithm, we will
say that one memory read (write) has téken place. For a given n-cell
list structure, let a be the fraction of cars that point to lists; let d
be the fraction of cds that do so. Let f be the fraction of type AA
cells; let b be the fraction of type BB cells. Let k4 be the fraction of
cells that go on the stack during Pass1; let k. be.the fraction of type
FF cells.

The analysis of the first pass of ListCopyl is as follows : each
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cell of the original structure is read once for every pointer to it. The
first bf these reads occurs when the trace first encounters that cell;
the rest occur in order to obtain the forwarding link stored there. The
number of list pointers, and therefore the number of reads ofx original
cells, is an+dn+1 (the 1 comes from the pointer root). When new list
cells are got from the free-list, more n reads will occur. Then because
cells pushed onto the stack will be popped up, another k1n ;éads will
occur. Write operations occur when each’of forwarding 1link is written
(another n), and when popped cells have their contents altered (kyn
writes). Thus the totals are an+dn+k4n+1 reads and 2n+k1n writes.

In Pass2, n reads of original cells will occur by foilowing the
reverse preorder chain. And also copy cells will be read at that time.
Another reads of original cells will occur when each type of cells
except AA, AF and FA is read in order to classify thei; cell types and
to retrieve the forwarding links. Then n+an+dn+k,n+1 reads will occur
during Pass2. Since original cells will have their original cars and
cdrs restored, n writes will occur for this purpose. Because copy cells
of type AA, AF and FA have their final values at the end of Passfi,
writes to the cells except them will occur. Thus an+dn-gn+kzn+1 write
operations will occur dur-ing Pass2.

The grand totals for the algorithm ListCopy1 are

fo= (4+3a+3d-b+2ky+2k,)n+3
memory operations on list cells to copy an n-cell structure.

Similiarly, Pass? of ListCopy2 will execute (2+a+d+2kq)n+1 reads
and writes of 1list cells. And Pass2 will execute (2+a+d-f+2k,)n+2 memory
accesses. Thus the sum of ListCopy2 will execute |

T 5= (B+2a+2d-f+2k+2k,)n+3
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reads and writes of list cells to copy n-cell structure.
Clark's algorithm [5] will execute
TC = (5+23+d+3b+2k1+2k7_)n+1
memory operations on list cells to copy an n-cell structure.

Since ListCop2 and Clark's algorithm run under the same
restriction, we Qill compare them. Then it can be easily shown that T o
is always less than T, . Because the non-negative parameters d, b and f
~are always less than 1, then

TL2< T.,
neglecting constants for large n.

Both Passls of ListCopy2 and Clark's algorithm have the same speed.
But the difference of the traversal order in Pass2 of each algorithm
greatly affect their speed. Clark's algorithm needs the 'special phase
between Pass1 and Pass2 to treét the type BB cell. And a type FF cell is
accessed twice, because it is pushed onto the stack and popped according
to the same traversal order as in Pssl. In contrast with Clark's
algorithm, the second pass of ListCopy2 will execute only one access for
every cell, because list is traversed in reverse preorder by the reverse
preorder chain.

Table I shows the number of 1list cell references that each

algorithm‘ make for a variety of n-cell list structure.. (The constant in

each algorithm have been discarded.)



242

list—cell references
Clark’ T
r Py . » c
List Structure ListCopyl L:LstCopy.Algorithm —
(a) List of atoms
a_s = - - = - B
¢ f A=, 0)0[ 1 In 6n én 1
A F~AlF> - - - > -
(b) Balanced binary tree
"-’d=f=.’g-r=1@z=a!;$=o
v 9n '7.5n 8.5n 1.13
C.pa sl
(c) Worst case for
Clark's algorithm
a=d=1, 6=R=R=0t, f=0
E‘I 1150 | 10n 11.5n | 1.15
(d) Worst case for
Fisher's algorithm
a=d=1, B= fu=k,=f3=0
Eﬂrgiy’.- <{azi;§éi;_ 10n 8n 8n 1
(e) Typical Lisp case[4]
=0.333, d=09t, t=a00/t|  8.13n| 6.89n| 7.3n | 1.06
£=0./47, B.=0.23, f,-0213

Table I. Comparison of ListCopyl, ListCopy2 and Clark's algorithm.
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Appendix

An algorithm, called ListCopy2, which copys list structure into a
block of contiguous storage of locations appears below.

procedure ListCopy(root)
begin pointer x, copy ;

- Pass 1
Initialize(Stack) ; Initialize(Chain) ; )
x <== root ; copy <--n ; - global variable n points to

- first free cell
until x = NIL do_ !
begin pointer oldecar, oldedr ;
oldear <-~ car(x) ; oldedr <-- cdr(x) ;
car(x) <-~ n ; Push(x, Chain) ; - n is the forwardlng link
- of cell x

case CellTypel(oldear, oldcdr) of
AAXAB&BA&BB : car(n) <-- oldecar ; cdr(n) <-- oldedr ;
x <-- Pop1(Stack) ;
AF : car(n) <--~ oldecar ; cdr(n) <-- n + 1 ; x <=- oldedr ;

BF : car(n) <-= FAddr(oldcar) ; cdr(n) <-- oldcar ; x <-- oldcdr ;

FA : car{(n) <-=n + 1 ; edr(n) <--oldedr ; x <-- oldecar ;

FB : car(n) <-- oldedr ; cdr(n) <-- FAddr(oldedr) ; x <-- oldcar ;

FF : car(n) <-- oldedr ; Push(n, Stack) ; x <-- oldcar ;
endcase ; :
n<--n+ 1
£nd ;
- Pass 2
until Empty(Chain) do_
begin pointer oldcar, oldedr, son ;
X <{--= Pop(Chain) ; n<-=n - 1 ;
_case CellType2(n) of
T AA : car(x) <-- car(n)
AB : oldedr <-~ cdr(n)
car(x) <-- car(n)
AF : car(x) <-- car(n)
BA : oldcar <-~ car(n) car(n) <-- FAddr(oldcar) ;
car(x) <-- oldear ; cdr(x) <-- cdr(n) ;
BB : oldcar <-- car(n) oldedr <-~ cdr(n) ;
‘car(n) <-- FAddr(oldcar) ; cedr(n) <-- FAddr(oldedr) ;
car(x) <-- oldear ; cdr(x) <-- oldecdr ;
BF : car(x) <-- cdr(n) ; cdr(x) <-- son ; cdr(n) <--n + 1 ;
FA : car(x) <-- son ; edr(x) <-- cdr(n) ;
FB&FF : car(x) <-- son ; cdr(x) <-- car{n) ; car(n) <--n + 1 ;

edr(x) <-- cdr(n) ;

edr(n) <-- FAddr(oldecdr) ;
cdr(x) <-- oldedr ;

cdr(x) <-- son ;

“e we we we we we

endcase_ ;
son <-- X
end ;
return copy - X now points to the root of the
- original 1list structure.
end - n now points to the root of the

- copy. ( n = copy )

procedure FAddr(listcell) : return car(listcell)

3

’
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procedure Already Visited(listecell) : return new(FAddr(listcell))
procedure Initialize(stack) : stack <-- NIL
procedure Empty{stack) : return stack = NIL

procedure Push(cell, stack)

begin
cdr(cell) <-- stack ;

stack <-- cell
end

procedure Pop(stack)
begin pointer t ;

t <-- stack ;
stack <-- cdr(stack) ;
return t

end

procedure Pop1(stack)
begin
until Empty(stack) do_
begin pointer newcell, oldedr ;
newcell <-- Pop(stack) ;
oldedr <-- car(newcell) ;

if Already_Visited(oldedr) then - newcell is the copy of an
‘ cdr{newcell) <-- FAddr(oldedr) - inscrutable cell.
else
begin , - newcell is the copy of cell
cdr(newcell) <-=-n + 1 ; - still type FF.
return oldedr - o0ldedr is about to be
end - copied into cell n + 1
end ;
return NIL -~ only if stack is empty.

end

procedure CellTypeil(oldecar, oldedr)
begin
return
Af not(atom(oldcar)) or not(Already_Visited(oldear)) then
if atom(oldecdr) _then FA
else if Already Visited(oldedr) then FB else FF
else
if not(atom(oldedr)) or not(Already Visited(oldedr)) then
if atom(oldcar) then AF else BF
else AA&AB&BA&BB
end

procedure CellType2(newcell)
begin - newcell is copy of oldcell.
return '
if atom(car(newcell)) then
if atom(ecdr(newcell)) then AA
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else if cdr(newcell) = newcell + 1 then AF else AB
else
Af atom(edr(newcell)) then
if car(newcell) = newcell + 1 then FA else BA
else
_if new(car(newcell)) then BF
else if new(cdr(newcell)) then FB&FF else BB

end

- 22 -



