1 On parabolicity of a Riemann surface ## Makoto Ohtsuka ## Hiroshima University (now Gakushuin University) 1. On the occasion of the Colloquium held at Joensuu in August, 1978, Professor Grunsky asked the author personally the following question. Let $a_1$ , $a_2$ , ... be a sequence of positive numbers decreasing to zero, and denote the points -1 + $ia_k$ and 1 + $ia_k$ in the w-plane by $\alpha_k$ and $\beta_k$ respectively. Let $s_k$ be the segment $\alpha_k\beta_k$ . Let $\alpha$ = -1 and $\beta$ = 1, and $s_o$ be the segment $\alpha\beta$ . Consider an extended plane P slit along $s_o$ , $s_1$ , $s_2$ , ..., and an extended plane $P_k$ slit only along $s_k$ for k = 1, 2, .... Connect $P_k$ crosswise with P through $s_k$ . Let $Q_1$ , $Q_2$ , ... be extended planes slit along $s_o$ , and identify the upper shore of $Q_1$ with the lower shore of $P_1$ , the upper shore of $P_2$ with the lower shore of $P_3$ , and so on. Denote by R the resulting simply connected Riemann surface $P \cup P_1 \cup P_2 \cup \cdots \cup Q_1 \cup Q_2 \cup \cdots$ . The question is as to whether R is of parabolic type. 2. Later the author asked Professor Grunsky for the motivation of the problem. He replied: "The problem occurred to me in connecting with a problem which I treated in a paper presented at the conference in Jyväskylä in 1970: "Analytische Fortsetzung über offene Randkomponenten einer barandeten Riemannschen Fläche" (Lecture Notes in Math. No. 419, Springer, 1974, pp. 143-155). In 1.4. (p.148), case B), I needed an ad hoc hypothesis, which also occurs in the summary of the results, pp. 154-155, δ). If my remembrance of my former endeavours is correct, I can dispense with this assumption on the basis of the theorem you just have proved. I do not know when, or whether at all, I shall come back to this field which I do not appreciate so much any more; on the other hand it would, most likely, not be too difficult and timeconsuming to give the finishing touch to this work, and so I am very glad to have the solution of our problem. But just now, I am too busy with other things (univalent functions)." The author is thankful to him for all. 3. Theorem. R is of parabolic type. Proof. It will be sufficient to show that the family $\Gamma$ of curves starting from a closed disk $\Delta$ in P and tending to the ideal boundary of R has infinite extremal length. We may assume that $\Delta$ lies above $s_1$ . Denote by $P^+$ ( $P^-$ resp.) the upper (lower resp.) half of P. Divide $\Gamma$ into four families. The first family $\Gamma_1$ consists of curves c of $\Gamma$ such that some terminal part of c is contained in $P^- \cup Q_1 \cup Q_2 \cup \cdots$ . The second (third resp.) family $\Gamma_2$ ( $\Gamma_3$ resp.) consists of curves of $\Gamma$ each of which contains a sequence of points of $P^+$ converging to $\alpha$ ( $\beta$ resp.). The fourth family $\Gamma_4$ consists of curves of $\Gamma$ - $\Gamma_2$ - $\Gamma_3$ each of which contains a sequence of points of $P^+$ converging to a point of $\Gamma_3$ - $\Gamma_4$ converging to a point of $\Gamma_4$ converging to $\Gamma_4$ converging to a point of $\Gamma_4$ converging to $\Gamma_4$ converging to a point of $\Gamma_4$ converging to $\Gamma_4$ converging to a point of $\Gamma_4$ converging to $\Gamma_4$ converging to a point of $\Gamma_4$ converging to Since $\mathbf{Q}_1 \cup \mathbf{Q}_2 \cup \cdots$ forms a "half" of a logarithmic surface, the extremal length $\lambda(\Gamma_1) = \infty$ . To prove $\lambda(\Gamma_2) = \infty$ , map the part R' of R lying above the left half plane Re w < 0 conformally onto the left half plane $Re\ z < 0$ , and denote by w = f(z) the composition of the inverse mapping onto R' and the projection into the w-plane. Take any $c \in \Gamma_2$ and let $\{w_n\}$ be a sequence of points of $c \cap P^+$ which converges to $\alpha$ and whose image sequence converges to $\mathbf{z}_o$ on the imaginary axis. For any $\mathbf{c'} \in \boldsymbol{\Gamma}_2$ we can find a sequence $\{\gamma_n\}$ of arcs in $\textbf{P}^+$ such that $\gamma_n$ connects $\textbf{w}_n$ and c' for each n and its length tends to 0 as n $\rightarrow \infty$ . By applying Koebe's theorem to f(z) in Re z < 0 we see that $f^{-1}(\gamma_n)$ tends to $z_0$ as $n \to \infty$ . Thus the image of c' $\cap R$ ' contains a sequence of points tending to $z_0$ . By symmetry R is mapped conformally outside a point or a segment on the imaginary axis. The image of c' and hence the image of every curve of $\Gamma_2$ contains a sequence of points tending to $z_0$ . It follows that $\lambda(\Gamma_2) = \infty$ . Similarly $\lambda(\Gamma_3) = \infty$ . Finally let $\Lambda_n$ ( $n \geq 2$ ) be the subfamily of $\Gamma_4$ such that the cluster set of the part in P of each curve of $\Lambda_n$ is contained in $(-1+1/n,\ 1-1/n) \in S_0$ . Evidently $\Gamma_4 = \cup_n \Lambda_n$ . To prove $\lambda(\Lambda_n) = \infty$ , denote by $\alpha_k^{(n)}$ and $\beta_k^{(n)}$ the points $-1+1/n+ia_k$ and $1-1/n+ia_k$ respectively, and map $P_k$ conformally onto a rectangle $D_k$ of height one so that the end segments $\alpha_k \alpha_k^{(n)}$ and $\beta_k^{(n)} \beta_k$ correspond to the sides of length one; observe that $D_1$ , $D_2$ , ... have the same shape. Given a curve of $\Lambda_n$ , its image in $D_k$ connects opposite sides if k is large. Define a density $\rho_k$ in $P_k$ by means of the constant density 1/k in $D_k$ , and let $\rho$ be the density on R equal to $\rho_k$ in $P_k$ for $k=1, 2, \ldots$ and to 0 elsewhere. Then $\int_C \rho ds = \infty \text{ for every } c \in \Lambda_n \text{ and } \iint \rho^2 dxdy < \infty. \text{ Hence } \lambda(\Lambda_n) = \infty$ for every n so that $\lambda(\Gamma_4) = \infty$ . Thus $\lambda(\Gamma) = \infty$ .