1

On parabolicity of a Riemann surface

Makoto Ohtsuka

Hiroshima University (now Gakushuin University)

1. On the occasion of the Colloquium held at Joensuu in August, 1978, Professor Grunsky asked the author personally the following question.

Let a_1 , a_2 , ... be a sequence of positive numbers decreasing to zero, and denote the points -1 + ia_k and 1 + ia_k in the w-plane by α_k and β_k respectively. Let s_k be the segment $\alpha_k\beta_k$. Let α = -1 and β = 1, and s_o be the segment $\alpha\beta$. Consider an extended plane P slit along s_o , s_1 , s_2 , ..., and an extended plane P_k slit only along s_k for k = 1, 2, Connect P_k crosswise with P through s_k . Let Q_1 , Q_2 , ... be extended planes slit along s_o , and identify the upper shore of Q_1 with the lower shore of P_1 , the upper shore of P_2 with the lower shore of P_3 , and so on. Denote by R the resulting simply connected Riemann surface $P \cup P_1 \cup P_2 \cup \cdots \cup Q_1 \cup Q_2 \cup \cdots$. The question is as to whether R is of parabolic type.

2. Later the author asked Professor Grunsky for the motivation of the problem. He replied: "The problem occurred to me in connecting with a problem which I treated in a paper presented at the conference in Jyväskylä in 1970: "Analytische Fortsetzung über offene Randkomponenten einer barandeten Riemannschen Fläche" (Lecture Notes in Math. No. 419, Springer,

1974, pp. 143-155). In 1.4. (p.148), case B), I needed an ad hoc hypothesis, which also occurs in the summary of the results, pp. 154-155, δ). If my remembrance of my former endeavours is correct, I can dispense with this assumption on the basis of the theorem you just have proved. I do not know when, or whether at all, I shall come back to this field which I do not appreciate so much any more; on the other hand it would, most likely, not be too difficult and timeconsuming to give the finishing touch to this work, and so I am very glad to have the solution of our problem. But just now, I am too busy with other things (univalent functions)."

The author is thankful to him for all.

3. Theorem. R is of parabolic type.

Proof. It will be sufficient to show that the family Γ of curves starting from a closed disk Δ in P and tending to the ideal boundary of R has infinite extremal length. We may assume that Δ lies above s_1 . Denote by P^+ (P^- resp.) the upper (lower resp.) half of P.

Divide Γ into four families. The first family Γ_1 consists of curves c of Γ such that some terminal part of c is contained in $P^- \cup Q_1 \cup Q_2 \cup \cdots$. The second (third resp.) family Γ_2 (Γ_3 resp.) consists of curves of Γ each of which contains a sequence of points of P^+ converging to α (β resp.). The fourth family Γ_4 consists of curves of Γ - Γ_2 - Γ_3 each of which contains a sequence of points of P^+ converging to a point of Γ_3 - Γ_4 converging to a point of Γ_4 converging to Γ_4 converging to a point of Γ_4 converging to Γ_4 converging to a point of Γ_4 converging to Γ_4 converging to a point of Γ_4 converging to Γ_4 converging to a point of Γ_4 converging to Γ_4

Since $\mathbf{Q}_1 \cup \mathbf{Q}_2 \cup \cdots$ forms a "half" of a logarithmic surface, the extremal length $\lambda(\Gamma_1) = \infty$. To prove $\lambda(\Gamma_2) = \infty$, map the part R' of R lying above the left half plane Re w < 0 conformally onto the left half plane $Re\ z < 0$, and denote by w = f(z) the composition of the inverse mapping onto R' and the projection into the w-plane. Take any $c \in \Gamma_2$ and let $\{w_n\}$ be a sequence of points of $c \cap P^+$ which converges to α and whose image sequence converges to \mathbf{z}_o on the imaginary axis. For any $\mathbf{c'} \in \boldsymbol{\Gamma}_2$ we can find a sequence $\{\gamma_n\}$ of arcs in \textbf{P}^+ such that γ_n connects \textbf{w}_n and c' for each n and its length tends to 0 as n $\rightarrow \infty$. By applying Koebe's theorem to f(z) in Re z < 0 we see that $f^{-1}(\gamma_n)$ tends to z_0 as $n \to \infty$. Thus the image of c' $\cap R$ ' contains a sequence of points tending to z_0 . By symmetry R is mapped conformally outside a point or a segment on the imaginary axis. The image of c' and hence the image of every curve of Γ_2 contains a sequence of points tending to z_0 . It follows that $\lambda(\Gamma_2) = \infty$. Similarly $\lambda(\Gamma_3) = \infty$.

Finally let Λ_n ($n \geq 2$) be the subfamily of Γ_4 such that the cluster set of the part in P of each curve of Λ_n is contained in $(-1+1/n,\ 1-1/n) \in S_0$. Evidently $\Gamma_4 = \cup_n \Lambda_n$. To prove $\lambda(\Lambda_n) = \infty$, denote by $\alpha_k^{(n)}$ and $\beta_k^{(n)}$ the points $-1+1/n+ia_k$ and $1-1/n+ia_k$ respectively, and map P_k conformally onto a rectangle D_k of height one so that the end segments $\alpha_k \alpha_k^{(n)}$ and $\beta_k^{(n)} \beta_k$ correspond to the sides of length one; observe that D_1 , D_2 , ... have the same shape. Given a curve of Λ_n , its image in D_k connects opposite sides if k is large. Define a density ρ_k in P_k by means

of the constant density 1/k in D_k , and let ρ be the density on R equal to ρ_k in P_k for $k=1, 2, \ldots$ and to 0 elsewhere. Then $\int_C \rho ds = \infty \text{ for every } c \in \Lambda_n \text{ and } \iint \rho^2 dxdy < \infty. \text{ Hence } \lambda(\Lambda_n) = \infty$

for every n so that $\lambda(\Gamma_4) = \infty$. Thus $\lambda(\Gamma) = \infty$.