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Remarks on the Wiener's compactification

with applications to the classification theoty

MASAHIKO TANIGUCHI

(Department of Math. Kyoto University)

Introduction.

Strictly speaking, the notion of the border of a Riemann
surface can make sense either when we deal with a bordered
Riemann surface, or when we consider the fuchsian group asso-
ciated with a Riemann surface (, where the group must be of thé
second kind and the border corresponds to so-called free boun-
daries of the group). But a point on the border also can be
characterized by the existence of a halfdisk-like neighbourhood
on the bordered Riemann surface. Namely, a point on the border
has a neighbourhood V such that VAR is simply connected and
2(VAR) 1is a simple open curve, where R is the interior ot the
bordered surface.

Now utilizing this characterization, we may define the border-
like ideal boundary points on any compactification of a given
Riemann surféce. However we must then choose carefully the com-
pactification which we will use. For example, the notion of the
borderlike parivon~the chosen compactification should be a mnatural
modification of that of the usual border, and some conditions we
impose on the borderlike part should have close connections with

certain properties of the fuchsian group associated with the surface.
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Taking these things into account, we will use the Wiener's com-
pactification.
Almost all proofs are omitted, and the details will appear

in [8].

§ 1. Borderlike ideal boundary points.

First we'recall the definition of the Wiener's compactifica—
tion.(cf. [2] and [7]). Let R be an open Riemann surface. Then
we denote by W(R) the space of all real continuous bounded Wiener
functions on R. If R belongs to the class OG’ then W(R) is co-
incident with the space of all real continuous bounded functions

on R. And if not, we can decompose W(R) as follows;
W(R) = HB(R) + W, (R),

where HB(R) is the space of all real bounded harmonic functions
on R, and WO(R) is the space of all real continuous bounded Wiener

potentials on R, or equivalently,

WO(R) = {;g: real continuous bounded function on R
such that there is a potential p satis-

fying the condition |gl<p on R \.

Then there exists the unique compact Hausdorff space, say Rﬁ,

satisfying the following conditions;
1) R is dense open in'Rﬁ,
2) every f in W(R) can be continuously extended to R,

3) after such extensions, W(R) separates points in Rﬁ.
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We call this space Rﬁ the Wiener's compactification of R.

Next if R does not belong to O,, then set

TW(R) = {p GR":,-R : g(p) = 0 for every géWQ(R)T{.

And if R belongs to O., then we assume that T;(R) = ¢. This set

G,
Y”W(R) is called the harmonic boundary of R. -Recall that the

harmonic boundary is the support of the harmonic measure.’
Now we call a point p in r%(RJ a borderlike point, or simply
a b—goint of R if p has an opén neighbourhood V in Rﬁ satisfying’
1) V=TAR"-3VAR",
where and hereafter X" means the closure of X in Rﬁ and 93X meéns
the relative boundary of X in R,
2) VAR is simply connected,
3) 3(VAR) is a simple (open) curve.

And set
dwR = {pe,r%(R): p is a b-point of R‘ .

Then it is obvious that dwR is open in (;(R), and it can be éeen
that every point of dwR has vanishing harmonic measure.
“Using this set qu, we can define the following three classes

of Riemann surfaces.

S0;, = {R&OG: d R = T“W(R)‘]

S0y = {RQOG: d R is‘dense in Vw(R)jl
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0y = {r: aR =47,

Remarks. 1) R belongs to O, if and only if T”W(R)=¢, sa the

G
classes Owand sow are mutually disjoint.
2) By the definition;, it is clear that SOw iz’ contained in
SO&.
| 3) OHB is contained in OW’ for if R beloﬁgs,to~OHB,vthen r;(R)
consists of at most a single point of positive harmonic measure.
4) Because dwR is open, the harmonic measure of dwR equals

to that of HWRW, hence we can define the class SO& as follows;

SOW = {I{i(%f T;(R)-dwR has vanishing harmonic

measure'}_

Example 1. SOw is a proper subset of SOW. In fact, let U be
the unit disc, E = {exp[—%+ .(—/1%(] : néZ+, kez} and R = U-E. Then

we can see that R belongs to SO!, but not to SOW.

Proposition 1. Let D be a subregion of a Riemann surface R

such that 3D consists of a countable number of disjoint simple
curves not accumulating to any point of R. If D is of type'SOHB,

then D belongs to SOW as a Riemann surface.

Of course, a subregion of type SOHB does not necessarily belong
to SOW as a Riemann surface without additional conditions on the

relative boundary as in Proposition 1.

Now for the class SOW, we note the following
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Proposition 2. Let R be of finite genus g. Then R belongs.

to SO, if ‘and only if R can be considered as a subregion on a
compact Riemann surface, say S;,of the same genus g such that oR
consists of |

1) a finite set.B of analytic simple cldsed curves, and

2) a relatively closed polar set E on the surface R-B such

that EAB is a finite set of points.

Here the closure is taken in S.

Roughly speaking, in case of finite genus, SOW can be considered

as the class of Riemann surfaces which are almost compact bordered.

§ 2. On the type of fuchsian models.

Hereafter we restrict ourselves on Riemann surfaces which have
the hyperbolic universal covering surface. We may take the unit
disc U as the universal covering surface, and denote by G = G(R)

a fuchsian group associated with R on U. We call R is bf type I and
of type II, respectively, according as G is of the first kind and

of the second kind (cf. [3] and [6]). Also, if the limit set L(G)
of G has vanishing linear measure, we call R is of typeIIO. It is
well-known that if R is of type II, then R does not belong to OG'

Now we can characterize the classes OW and SO& by means of
properties of fuchsian groups. First recall that if R does not
belong to OG’ then the covering‘projection from U onto R can be

extended to a continuous mapping, say P, from U%* onto R*, and the

W W
identical automorphism of U can be extended to a continuous mapping,
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say I, from Uﬁ onto U, the usual closure of U in ©. Next let E =
JU-L(G), then E is empty or consists of a countable number of open
. .% .—
arcs on U, which we denote by {I ki ui . Set E' =\UT_, the union
: n n=1 w=) N
of the closures of In in €. Then the crucial fact for our consi-

deration is the following
Lemma 1. ECI(P (4 R) CE.
From this lemma, the .following Proposition can be shown.

Proposition 3. R belongs tO'Ow if and only if R is of type I.

Here recall that we assume that R has the hyperbolic universal
covering surface.

Also we can show the following

Theorem 1. SOW is coincident with the set of all ‘Riemann

surfaces of type IIO.

Corollary 1. The class OW is quasiconformally invariant.

Corollary 2. Let D be as in Proposition 1. Then D is of type

SOHB if and only if D belongs to SO* as a Riemann surface.

Remark. It is well-known that the limit set of every non-

elementary fuchsian group has positive capacity (cf. [5]).

Example 2. Using the Ahlfors-Beurling's celebrated example
([11y, we can show that the clasSvSOW is not quasiconformally

invariant. In fact, let f be a quasiconformal automorphism of U
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such that there is a compact set F on U with zero linear measure
whose image f(F) has positive linear measure. And let F' be the
union of F and a suitably chosen countable set on 39U, and E be a
countable set of points on U such that En3U = F'. Then R = U-E
and R' = U-£f(E) are quasiconformélly equivalent, and we can con-

clude that R belong. to SOy, but R' does not.

"Remarks. 1) The quasiconformal non-invariance of the class
SO& implies that the limit set of certain fuchsian group with
zero linear measure can be mapped by a quasiconfdrmal automdrphiém
of U.on the'limit set of a fuchsian group with positive linear
measure. - And it may be interesting to construct an explacit
example of such a mapping. |
2) It is still an open problem what happens on the structure

of the Wiener's compactification, especially on the harmonic boun-

dary, under quasiconformal mappings of Riemann surfaces.

§ 3. The classification of the double.

For a Riemann surface.R of type II, we can consider the double

A .
of R, which we denote by R. And set
‘DO = {R' R is of type II and!;i\{GO ’][
X hd p X >
where X is G or HB or AB. Then first we have the following

Theorem 2. The following system of strict inclusion relations
holds; |
4
DOy = SO —> DO, p-

-7-



81

In fact, we can show Theorem 2 by ﬁsing Corollary 2 and

Theorem 1.

Moreover we have the following

Proposition 4. Let R belong to SOW and consider R as a sub-

region of R. And let {In} :;1 be components of 3R, then we have

o € 30 G
w ) C gR - I .

w21 1N

Also note the following

Lemma 2. If R belongs to SOy» then the number of components

of 9R is finite in number.

Now by using Proposition 3 and Lemma 2, we can easily show the

following

Theorem 3. SOW is a proper subset of DOG.

And using Theorem.3, we can show the following

Theorem 4. The class SOW is quasiconformally invariant.

(Outline of the proof) Let R belong to 80,, and another R' be
: N
‘quasiconformal equivalent to R. Then we can see that R' belongs

to OG' Hence using Lemma 2 we can conclude the assertion.
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