或る直交変換群について

山形大 理 内田伏一

We give an example of an orthogonal transformation group of (8k-1)-sphere with codimension two principal orbits. This action possesses just two isolated singular orbits (cf.[1],p.214; [4]). This example shows that a theorem of Hsiang and Lawson ([2], Theorem 6) should be properly modified.

Let \mathcal{V}_m , \mathcal{V}_n be the standard representation of $S_p(m)$ and Sp(n) on H^m and H^n respectively. Here H^m , H^n are the right quaternionic vector spaces. Let $(H^n)^*$ denote the dual vector space of H^n . $(H^n)^*$ is a left quaternionic vector space. It is well known that $H^m \bigotimes (H^n)^*$ is a real 4mn-dimensional vector space and $\mathcal{V}_m \bigotimes_H \mathcal{V}_n^*$ is a real representation of $Sp(m) \times Sp(n)$ on $R^{4mn} = H^m \bigotimes_H (H^n)^*$.

This representation can be regard as follows. Let M(m,n;H) denote the set of all $m \times n$ quaternionic matrices. For an $m \times n$ quaternionic matrix X, let X^* denote the transpose of the conjugate of X. Then

$$Sp(m) = \left\{ A \in M(m,m;H) : A*A = I \text{ the unit matrix } \right\}$$

the representation space $H^{m} \otimes (H^{n})^{*}$ is identified with M(m,n;H), and the representation $\psi = \mathcal{V}_{m} \otimes \mathcal{V}_{n}^{*}$ can be expressed by

$$\psi$$
((A,B))·X = AXB* ; A \in Sp(m),B \in Sp(n),X \in M(m,n;H).

Put

$$\langle X,Y \rangle$$
 = trace X*Y, Re $\langle X,Y \rangle$ = real part of $\langle X,Y \rangle$

for $X,Y \in M(m,n;H)$. Re $\langle X,Y \rangle$ is an $Sp(m) \times Sp(n)$ -invariant inner product of the real vector space M(m,n;H). For an $m \times n$ quaternionic matrix X, let rank X be the maximum number of linearly independent column vectors of X as the right quaternionic vectors.

Example. We shall consider a real 8k-dimensional representation $\psi_k = \mathcal{V}_k \otimes (\mathcal{V}_2^*|\operatorname{Sp}(1) \times \operatorname{Sp}(1))$ of the group $\operatorname{Sp}(k) \times \operatorname{Sp}(1) \times \operatorname{Sp}(1)$ on $\operatorname{M}(k,2;H)$. Suppose $k \geqslant 2$ in the following. For a $k \times 2$ quaternionic matrix X, let X_1 , X_2 denote the first and the second column vector of X respectively. Then the representation ψ_k can be expressed by

$$\psi_{k}((A,q_1,q_2)) \cdot (X_1,X_2) = (AX_1\overline{q}_1,AX_2\overline{q}_2)$$

for $A \in Sp(k)$, $q_i \in Sp(1)$, $X = (X_1, X_2) \in M(k, 2; H)$. Straightforward computations show the following:

(i) Suppose that rank X=2 and $\langle X_1,X_2 \rangle \neq 0$ for $X=(X_1,X_2)$. Then the isotropy group at X is conjugate to

$$\left\{ \left(\begin{array}{c|c} q & 0 & 0 \\ 0 & q & 0 \\ \hline 0 & * \end{array} \right), q, q) : q \in Sp(1) \right\},$$

and the orbit through X is (8k-3)-dimensional, which is diffeomorphic to $Sp(k)/Sp(k-2) \times s^3$.

(ii) Suppose that rank X=2 and $\langle X_1, X_2 \rangle = 0$ for $X=(X_1, X_2)$. Then the isotropy group at X is conjugate to

$$\left\{ \left(\begin{array}{c|c} q_{1} & 0 & 0 \\ 0 & q_{2} & * \\ \hline 0 & * \end{array} \right), q_{1}, q_{2} \right) : q_{1} \in Sp(1) \right\},$$

and the orbit through X is (8k-6)-dimensional, which is diffeomorphic to Sp(k)/Sp(k-2).

(iii) Suppose that rank X=1 and $\langle X_1, X_2 \rangle \neq 0$ for $X=(X_1,X_2)$. Then the isotropy group at X is conjugate to

$$\left\{ \left(\begin{pmatrix} q & 0 \\ 0 & \star \end{pmatrix}, q, q \right) : q \in Sp(1) \right\} ,$$

and the orbit through X is (4k+2)-dimensional, which is diffeomorphic to $s^{4k-1} \times s^3$.

(iv) Suppose that rank X=1 and $\langle X_1, X_2 \rangle = 0$ for $X=(X_1, X_2)$. Then the isotropy group at X is conjugate to

$$\left\{ \left(\begin{pmatrix} q_1 & 0 \\ 0 & \star \end{pmatrix}, q_1, q_2 \right) : q_i \in Sp(1) \right\} \quad \text{for } X_1 \neq 0$$

or

$$\left\{ \left(\begin{pmatrix} q_2 & 0 \\ 0 & \star \end{pmatrix}, q_1, q_2 \right) : q_i \in Sp(1) \right\} \quad \text{for } X_2 \neq 0,$$

and the orbit through X is a (4k-1)-sphere.

Remark. (a) The representation ψ_k induces an action of $\mathrm{Sp}(k) \times \mathrm{Sp}(1) \times \mathrm{Sp}(1)$ on a sphere S^{8k-1} . The principal orbits of this action are of codimension two, and this action possesses just two isolated singular orbits which are diffeomorphic to a (4k-1)-sphere. (b) The representation ψ_k is an example of a reducible compact linear group of cohomogeneity three (in the sense of Hsiang and Lawson [2]). This example shows that a theorem of Hsiang and Lawson ([2], Theorem 6) should be properly modified.

References

- [1] G.E.Bredon: Introduction to Compact Transformation Groups,
 Academic Press, 1972.
- [2] W.Y.Hsiang and H.B.Lawson: Minimal submanifolds of low cohomogeneity, J.Diff.Geometry 5(1971),1-38.
- [3] F.Uchida: An orthogonal transformation group of (8k-1)-sphere, to appear.
- [4] F.Uchida and T.Watabe: A note on compact connected transformation groups on spheres with codimension two principal orbits, Sci.Rep.Niigata Univ.Ser.A,16(1979),1-14.

注. この報告は[3]の一部分を紹介したものである.