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§1. Linear system representations

A pair H= (fh,,H2> of complex linear spaees H; , Hé is
called a linear system if a duality <&, n> is defined between ﬁ;
and ‘H,. Namely, <&, n> is a complex bilinear form on H; XHZI
with the property {& ,H;> =0 only if £=0 and <H;, n) =0 only‘
if n=0. In thlS paper we consider H,, H, as locally convex
ﬁausdorff topological vector spaces with o(H)ftopOlogy, that is,
the topology generated by all functionels g~ﬁ><£ ;N on Hp, and
by all functionals n-—)(ﬁt,n>> on H, respectively. ‘

Let X be a topological group or a topological algebra over
the complex number field €. A linear system representation (LSR,
for short) of X means a pair T=¥ {T; , T,y of a representation T;
of X on H; and an antirepresentation T, of X on H, such that
LT1(x)E ,ny = <E,T2(x)n> for all xeX, £€H;, and neH,, and
that the C€C-valued functions x ——a(ﬁl(x)g, n) on X are continuous
for ail E€H:, n€H,.

Two LSR’s T= {T; ,T,» on H= {H; ,Hy,> and T'= T}, T



on H' = <H; ,Hs>» are called equivalent if there exists a pair ¢ =
L3y, %2> of linear isomorphisms él of H, onto H; and éi of H»
onto H, such that <&,(I) ,®,(n)> = <& ,n> for all £€H;, neHs

and that ¢;T) (x)07 =Ti(x), 0,T, (x)03 =T} (x) for all x €X.

| ALSR T= <Ty ,T:> of'X on H= <{H, , Hy,>» 1is called irre-
ducible if every T;-invariant non-trivial subspace of H; 1is o (H)-
dense in H;, or equiyalently, if every T,-invariant non-trivial
subspace of H, is o (H)-dense in Hj.

| Let G be a locally compact unimodular group, and L(G) the
algebra of all continuous functions on G with compact supports,
with multiplication defined by convolution. For every compact
subset C of G, denote by LC(G) the normed space of‘all continuous
functions on G whose supports are contained in C with su?remum
noxmm. - Théh L(G) is, as the inductivevlimit of {LC(G) ;: C is a
compact subset of G} , a topological algebra. A LSR T= £T; , T,>»
of Gon H= <H; ,H;> 1is called integrable with respect to L(G)
if, fof every function f €L(G), there exist linear operators T; (f)

on H; and T, (f) on H, such that
j <T1(x)E, nY £(x)dx= <T1(£)E,n>= <&, T2(£)n>
G 3

for all £€H;, n&€H,, where dx denotes a Haar measure on G. For
a compact subgroup K of G, it is called integrable with respect to
L(K) if the restriction of T on K is integrable with respect to

L(K).

o
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§2. Decomposability of LSR’s

Let °J be a measure space with a o-finite measure yu.
Suppose there is given, for almost every T e ®J, a linear system

T

T with its values (1), ¢ (1) in Fi

rl = <Ff ’ F§> . Two functions ¢, ', defined for almost all Te
T (i=1 or 2), are identified
if z(1) =¢' (1) for almost all Te°T. Let F, be a vector space
of functions (or, strictly speaking, equivalence classes of
functions with respect to this identification) £ on 9% with its
values £(tT) in FF{, and F,, similarly, a vector space of functions
n on ° with its values n{t) in Fg When we consider each
element £&F; as an equivalence class, we shall denote by g a
representative function in E£. Similarly we shall denote by n a
representative function in n e‘Fz. For a such pair F,, F,, we

give the following three definitions.

DEFINITION 1. A pair F;, F, will be called summable if T —
<g(1) ,n(1t)Y is a €-valued summable function on ?J for every e

Fi, n€F,.

DEFINITION 2. A pair F;, F, will be called regular if, for
every function ¢eL°°(‘:T , W), £E€F, implies ¢£ &€F,;, and ne&F,

implies ¢n€ F,, where ¢&(1) =¢(T)E(T), ¢n(T) =¢(TIn(T).

DEFINITION 3. A pair F;, F, will be called saturating if,

for arbitrary complete systems of representative functions {E ; E
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€ F,} and {n ;ne€F2} , the set {é(T) i £ €F1} is 6(F')-dense in

Fl'and {n(1) ;neF,} is o(F')-dense in F; for almost all T € 7.

LEMMA 1. Let F;, F, be a regular and saturating pair, then
there exist £,& F; and no € F2 such that £,(t1) #0 and no (1) # 0 for

almost all T €°J.

Let Fi, F» be a regular saturating summable pair. Then the

bilihear fbrm
g, n> = L_T<€(T) yn(T)> du(1)

gives a duality between F; and F,. We shall call the linear
system F= <F; ,F,> with this duality a direct integral of FT,

and denote it by

F=<F, ,Fz>‘ = J-'ZI<F¥ ,F;f>du(”r).

DEFINITION 4. Let X be a topological group or a topological
algebra. A LSR U= <U; ,U,;> of X on a linear system E= {E; , E,>
is called decomposable if the following three conditions are
satisfied.

'(l) The linear system E= <E; , E,> 1is isomorphic to a direct
integral F= <F; , F,> = 57<F§ , Fi>du(t).

(2) For almost all T1€%, irreducible LSR’'s vl = <VE ’ V}?
are defined on F'=<F] ,F;>.

(3) Denote by Vi1 (x)E&, V2(x)n the functions defined by
[Vi(x)E] (1) =vE(x)E(T), [V2(x)n) (1) =Vi(x)n(1). Then £€F;, ne

F, implies V3 (x)£ €F;, Va(x)ne€PF, for all x ¢€X, and there exists
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an isomorphism ¢ = <&; , > of E onto F such that
Vi(x) = 0101 (x)8), V(%) =@,Up (x) 03
for all x €X.
The LSR U= <U; , Upy>» is called finite-dimensionally decom-
<

posable if, in addition, F = <Ff , F;_[> are finite-dimensional

for almost all te€ 9T.
§3. Spherical LSR’'s of L°(8§) and canonical LSR’s of G

Let G be a locally compact unimodular group, K a compact
subgroup of G, and § an equivalence class of irreducible repre-
sentations of K. The normalized trace of 8§ will be denoted by
X7 and the normalized Haar measure on K will be denoted by du.

For a LSR T= <T; ,T,> of Gon H= £H; , H;> which is
integrable with respect to L(G) and L(K), we define cohtinuous

projections P;(8), P,(S8) on H;, H, respectively by

[ <miwe, > T @aun= <pr(8), n>= <&, P2 (80>,
K .

Put H; (68) =P1(8)Hy, Hy(8) =P, (8)H,, then H(S) = <H;(8) , Ha(8)>
is a linear system with the duality < , > restricted from H.
qu every function f e L(S) =')'("6*L(G)*Yé, the space H;(§) is in-
variant under T, (f), and H; (6) is invariant under T, (f). Hence
we obtain a LSR T= <Ty, T,> of L(8) on H(S) = <H,(8) , Hy(8)>
where T, (f) =T, (£f) |H:(8) and T,(f) =T, (£f) |H2(8) for each f eL($).
If T is irreducible, then T is also irreducible.

- Now we fix a unitary matricial representation u-— D(u) of K

which belongs to 6. We shall denote by d its degree and by
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dj;(u) the (i,j)-coefficient of D(u). Let P1(8), P7(8) be the

continuous projections on H;, H, respectively defined by
di< KTy (WE, n>d;; @du= <pH(E)E, ny = <&, PEE)nY.

Put H7(8) =PT(8)H;, H7(8) =P3(8)H,, then the pairs H(§) =
<H%(6) ,H%(S)) are linear systems with the dualities restricted
from H. Since H%(é) and H%(é) are invariant under T; (f) and

T, (f) respectively for all functions f €L°(§) = {£° ; fGIJS)},
wheré f°(x)==§ f(uxu*)du, we obtain d LSR’s of the algebra L°(S§)
K ‘

on Y (6) = <ui(s) ,Hi(6)> for i=1,---,d. These LSR’'s are
mutually equivalent. A LSR U= <U; ,U,> of L°(8) will be called
a spherical LSR corresponding to T= {T; , T,> if it is equivalent
to these LSR’s of L°($§).

For a linear system E = <E1‘fE2> ;, we shall denote by E? the

vector space of all column vectors & = gl with Eie-El, and by Eg

ta
the vector space of all column vectors m whose components are in

d

E,. Then E = (E? ,E§:> is a linear system with the duality

| 4 |
<g,m> =-Zi<£i"ni>'
l=

LEMMA 2. Let U= <U; ,U,> be a LSR of L°(8) on E= <{E; , E>
which satisfies one of the following conditions,

(a) U is a spherical LSR corresponding to a LSR of G,

(b) U is irreducible and finite-dimensional.

d d

Then there exists a unique LSR U= €U, , U,> of L(§) on E = {Ei,
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Eé) such that

U1 (e ¥ £)E =D(X) [Ur (£) ;) , T2 (e ¥ )m="D(k) [Uz2(E)n;

UL (£)Ey U2 (£)ng

for all k€K and £ €L°(§), where e, % £(x) = £(K'x) and ‘D(k) is
the transposed matrix of D(k), and right hand sides are formal

products of matricies.

Let U= <U; ,U,> be a finite-dimensional irreducible LSR of
L°(8) on a linear system E= <{E; , E»> , and U= <U; , U,> the LSR

d_ (E(;1 , E(21> which is given in Lemma 2. Then it is

of L(§) on E
not difficult to show that U= < U, ,bf12> is irreducible. Choose
non zero vectors &, eE? and mo EE(Q:i arbitrarily, and put

Wi ={£€L(G) ;01 (X g *E+X)E =0 for all geL(G)],

W, = §g € L(G) ; 0, (R xg % £ XXy)mo =0 for all £eL(G)).

Then W, is a closed maximal left ideal and M, is a closed

maximal right ideal in L(G). Now put

Hi =L(Gym1 , Hp = mﬁ(G) )

Dehoting by [f]l; the coset in H; which contains £ and by [g]. the
coset in Hz which contains g, the pair H= <{H; , H,)> 1is a linear
system with the duality
CLEl: s [912> = <UL (XGRIXE*XHEo0 , o> -
Then the LSR T= T, , T,> of G on H= <H, ,.H2> , defined by
L Ta(x) [£], = [Ex*f]lr Ty (x) [gl2 = [9’*€X]'2,
is irreducible, and is called a canonical LSR of G corresponding

to U. Of course it depends on the choice of &, and n,, but it is
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unique up to equivalence.
§4. Decomposability of a homogeneous LSR of G

Let G , K, and 8§ be the same as in §3. Let T=<T; , T,>
be a LSR of G on a linear system H= <H; , H,> . Under the condi-
tion of integrability with respect to L(K), it is called G—hémo—
geneous with respect to § if every Tl-invariant subspace of H;
containing H;(8§) is o (H)-dense in H;, and if every T,-invariant
subspace of H, containing H,(8) is o (H)-dense in H,.

Suppose there exist o (H)-dense T;- or T,-invariant subspaces
Hy, H, of H;, H, respectively, then H' = <H; ,H,> is a linear
system with the duality restricted from H. We shall call the
ISR T'=¢T;,T,>, where T; =T,|H; and T, =T,\|H;, a dense

contraction of T on H' .

THEOREM. Assume that G is second countabie. Let T?=QP1, Ty>
be a LSR of G on H= <H; , H,> , which is integrable with respect
to L(G), L(K), and is G—homogeneous with respect to 6. Suppose
the corresponding spherical LSR of L°(§) is fihite-dimensionally
decomposable, then there exists a decomposable dense contraction
T' of T.on H' = <{Hi , H;)> which is integrable with respect to L(G)

and L(K) and satisfies H1(8) =H;(8), H,(8) =H,(38).

Let’s sketch the outline of the proof. Let U= <U; , Uy>
be the corresponding spherical LSR of L°(8) on a linear system

E= {E; ,E>> . For simplicity we consider as follows.
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(1) E= <E1, Exp = f,I(E? , Ez >du(1) .

(2) Fo‘r almost all 7€, finite-dimensional irreducible
LSR’s U’ = <ut , U;) of L°(8) are defined on E' = ZET , Eg> .

(3) For every £ €E:, we have [U;(f)&] (1) =Ui(f)E(1), and for
every n €E,, we have [Up(£)n] (1) =Us(£)n(1).

Consider the algebras A =L°°("]' , W) @CL(G) and A(8) =
L7(% , W) ®L(8). Let U= <8, ,T,» be the LSR of L(8) which is
given in Lemma 2 for U. For every element o = Z ¢i®fi € /4.(6) ’

i

we define

mi(a)E = Zﬁl(fi)cpig, v2<oc)nn=Zi,ﬁz(fi>¢im
i
(& EE?, neEg). By Lemma 1, there exist £, € E; and ng e E» such
that £o(T) #0 andv no(t) #0 for almost all T €% . We put
Eo= [Eo € EC} ' Mo = [no| € E(z1
: ;
0 | 0

Then, using the second countability of G, we can prove the

following

LEMMA 3. The subspace (’nl(oa)go ;0 € A—(G)} is G(Ed)—dense in

E?, and {m,(o)mo ; a € ,‘4(6)7; is G(Ed)—dense in Eg

Let B( , ) be a bilinear form on A(G’) X A(G) defined by
B(a, B) = iZj\QJl (X ok 93 %5 X ) 0580 , VimoD

for a=Z¢i®fi and B=ij®gj. Now we put
i j

{e € 4(e) ;B(a,B) =0 for all 8 e 4(a)},
{B €J4«(G) ;B(a,B) =0 for all o EA(G)}.

'ml
o,
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Then the pair f,l= <ﬁ1 ' ﬁ2> ' ﬁl = A(%l, ﬁz = ,m\’gf(G), ié a
linear system with the duality
{laly, [Bl2> =B(a,B).

Now we construct a LSR S= S, ,S,> of Gon Hi= <f,, f,> by

S1(x) [al1 = e % al, S2(x)[Bl2=[B*e,l,
for every x €G.

Since the LSR U= €U, ,U,> of L(S§) on Ed= <EC11 , E?} is
equivalent to T= {T,, T,> on H(S§) = <H;(8) , H,(8)> , there exists
an isomorphism ¥= <v¥;, ¥,> of £9 onto H(§) such that T,(f) =

v, 0, (E) ¥, To(f) =v,0,(£) V¥ for all £ €L(8). For every element

o= Z ¢i®fi GA(G), we put
1
S0 (lal) = 2L Ti(£) ¥1(0;80), 02 (Lalz) = & To(£,) ¥, (o5mo) -
1 i .

Then ¢ = <d, , ,> is a homomorphism of $i= {fa,, 5)32‘7 into H =
< H, ,H,>, and, by Lemma 3, the images H; = &, () , Hy = 0, (fa,)
are o(H)-dense T;- or T,-invariant subspaces of H;, H, respectively.
The dense contraction T'= T}, T3> of T on H' = {H;, Hy> is
integrable with respect to L(G), L(K), and satisfies H;(§) =H,;(S§),
Hy(8) =H,(6). Moreover it is equivalent to S= <S;, S,> .
| On the other hand, using vectors E,(1) & (Ef)d, mo (T) e(EE)d,
we caﬁ construct the canonical LSR T' = <T¥ ’ TE) of G bn a linear
system H' = <H} , H;> corresponding to U with

<IE17, [912 = LU1(Xg g ¥ EXXHE(T) , mo (1) >,

TI(xX) [£1T=[e,*x£11, Ta(x)[glz=I[gxe];.

LEMMA 4. For every function f &€ L(§), we have

<G (H)E , n> = Sor@ﬂf)am ,n(0>duln)  (E€ES, meES) .
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It follows from Lemma 4 that, for every a= 2, ¢, @F; € Ay,
i

p=2 . ®q, € AG),
3 J ]
{laly, [B]2> = LI <§ w-imfiﬂ, %:wjmgj]bdum.

This means that every [o]; € .ﬁl can be seen as a function
[al1(T) = 2 lo;(T)E,0]
i
on 7, and that every [Bl, € fiz can be seen as a function

[Bl2(1) = 24 [wj.(r)g.]i.
5 J

Then it is easy to verify that the pair ., 52, is regular, -
summable, and saturating. Thus the LSR S= <{S; ,S8,> of G on

fi= <%, R,> is decomposable in the following way ;
SJE = <‘ﬁl v ﬁ2> = j\d]<H’1r 7 H’2[—>dU(T) ’
s1(x) [aly, (812> = Lf<T¥(x) [al1 (1) , [B12(T)> du(1) .

Since, as is remarked above, S is equivalent to T', the theorem

follows.
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