Deformations of C*-Seifert fibrations

By Tatsuo Suwa*

We describe deformations of E*-Seifert fibrations and make a remark on the relationship between deformations of an isolated singularity (X,p) with E* action and deformations of the E*-Seifert fiber space X-p. For the torus Seifert fibering case, we refer to [8]. Details of this note will appear elsewhere.

§1. C*-Seifert fibrations.

Following Conner-Raymond [2], we construct C*-Seifert fiberings as follows. Let W be a complex manifold and let N be a group acting analytically and properly discontinuously on W from the left. The quotient space V=N\W has a natural structure of complex space and the projection $v:W \to V$ is holomorphic. We assume that V is compact hereafter. Consider the exponential sequence

$$(1.1) 0 \rightarrow Z^{\frac{1}{2}} \xrightarrow{\mathbb{C}} \mathbb{C}^* \rightarrow 1,$$

 $(\epsilon(z)=\exp\ 2\pi iz)$. Contrary to the torus case, we let N act trivially on each of the groups in (1.1). By taking the sheaf of germs of holomorphic maps from W into each of the groups

^{*} Partially supported by NSF and Sakkokai Foundation.

in (1.1), we get the exact sequence of sheaves over W

$$(1.2) 0 \rightarrow \mathcal{J} \rightarrow \mathcal{O}_{W} \rightarrow \mathcal{O}_{W}^{*} \rightarrow 1.$$

If $\mathcal A$ is one of the sheaves in (1.2), we define, for each $\alpha \in \mathbb N$ and an open set U in W,

$$\alpha:\Gamma(U,\mathcal{S})\longrightarrow\Gamma(\alpha U,\mathcal{S})$$

by $(\alpha\sigma)(w)=\sigma(\alpha^{-1}w)$, $\sigma\in\Gamma(U,\mathcal{S})$, $w\in\alpha U$. Then we have a structure of N-sheaf on $\mathcal{S}([2],[3],[8])$. From (1.2), we get the cohomology exact sequence

$$(1.3) \qquad \cdots \xrightarrow{1*} H^{1}(N, \mathcal{O}_{M}) \xrightarrow{\epsilon*} H^{1}(N, \mathcal{O}_{M}^{*}) \xrightarrow{c} H^{2}(N, 3) \xrightarrow{\cdots} \cdots$$

We call Kerc the Picard group of the action (N,W) and denote it by Pic(N,W). Each element m in the group $H^1(N,\mathcal{O}_W^*)$ defines a principal C*-bundle $\varpi:B\to W$ and an action (N,B) covering (N,W) as follows. First, if we take a suitable open covering $\{W_\lambda\}_{\lambda\in\Lambda}$ of W, m is represented by a collection $\{m^{\lambda\mu}(w;\alpha)\}$, where for each $(\lambda,\mu)\in\Lambda^2$ and $\alpha\in N$, $m^{\lambda\mu}(\alpha)$ is a non-vanishing holomorphic function on $W_\lambda\cap W_\mu$. The collection satisfies the cocycle condition

$$(1.4) m^{\lambda \nu}(w; \alpha \beta) = m^{\lambda \mu}(w; \alpha) m^{\mu \nu}(\alpha^{-1}w; \beta),$$

 $(\lambda,\mu,\nu)\in\Lambda^3$, $(\alpha,\beta)\in\mathbb{N}^2$. In particular, if we set $\alpha=\beta=e$ (the identity of N), we get

$$m^{\lambda\nu}(w;e) = m^{\lambda\mu}(w;e)m^{\mu\nu}(w;e).$$

Thus the collection $\{m^{\lambda\mu}(w;e)\}$ defines a principal C*-bundle $\varpi:B\to W$ with $\varpi^{-1}(W_{\lambda})\simeq W_{\lambda}\times C^*$. We let N act on $W_{\lambda}\times C^*$ by

(1.5)
$$\alpha(w,t^{\lambda}) = (\alpha w, m^{\lambda \lambda}(\alpha w; \alpha)t^{\lambda}),$$

 $\alpha \in \mathbb{N}$, $(\mathbf{w}, \mathbf{t}^{\lambda}) \in \mathbb{W}_{\lambda} \times \mathbf{r}^{*}$. Then we get an action of N on $\widetilde{\omega}^{-1}(\mathbb{W}_{\lambda})$. The cocycle condition (1.4) shows that the actions $(\mathbb{N}, \widetilde{\omega}^{-1}(\mathbb{W}_{\lambda}))$ and $(\mathbb{N}, \overline{\omega}^{-1}(\mathbb{W}_{\mu}))$ coincide on $\widetilde{\omega}^{-1}(\mathbb{W}_{\lambda} \cap \mathbb{W}_{\mu})$ and we get a global action (\mathbb{N}, \mathbb{B}) covering (\mathbb{N}, \mathbb{W}) . Clearly the action is properly discontinuous. It is fixed point free if and only if the isotropy subgroup $\mathbb{N}_{\mathbf{w}}$ has no fixed points on the fiber $\widetilde{\omega}^{-1}(\mathbb{W}) (\cong \mathbb{C}^{*})$, i.e. if $\mathbb{C}(\mathbb{M})$ is a Bieberbach class ([2]). Thus if $\mathbb{C}(\mathbb{M})$ is a Bieberbach class, the quotient $\mathbb{M}=\mathbb{N}\setminus\mathbb{B}$ is a complex manifold. Since the action (\mathbb{N},\mathbb{B}) is compatible with the canonical right action of \mathbb{C}^{*} on \mathbb{B} , \mathbb{M} admits a \mathbb{C}^{*} -action and we have the diagram

$$(N,B,\mathbb{C}^*) \xrightarrow{\mu} (M,\mathbb{C}^*) = (N\backslash B,\mathbb{C}^*)$$

$$(1.6) \qquad \qquad \downarrow \pi$$

$$(N,W) \xrightarrow{\nu} V = N\backslash W = M/\mathbb{C}^*.$$

We call M $\xrightarrow{\pi}$ V the $\tilde{\mathbf{w}}^*$ -Seifert fibration determined by m. The fiber $\pi^{-1}(\nu(\mathbf{w}))$ over a point $\nu(\mathbf{w}) \in V$ is given by $\pi^{-1}(\nu(\mathbf{w})) = N_{\mathbf{w}} \setminus \widetilde{\omega}^{-1}(\mathbf{w})$ $\cong N_{\mathbf{w}} \setminus \mathbb{C}^*$. When $N_{\mathbf{w}} \neq \{e\}$, we call the fiber a (multiple) singular fiber of M \rightarrow V. It is not difficult to show

Lemma 1. 1. Given a principal \mathfrak{C}^* -bundle $\mathfrak{V}: B \to W$ and properly discontinuous actions of N on B and W so that \mathfrak{V} is equivariant. Assume that the action (N,B) is compatible with the canonical \mathfrak{C}^* action. Then there is an element m in $H^1(N, \mathcal{C}^*_W)$ such that (N,B) is equivalent to the one constructed from m as above.

§2. Deformations of C*-Seifert fibrations. Definition 2. 1. Let

$$\begin{array}{ccc} B & \longrightarrow M \\ \downarrow & & \downarrow \\ W & \longrightarrow V \end{array}$$

be a C*-Seifert fibration as constructed in §1. A deformation of it consists of

- (I) A deformation $(B \xrightarrow{\Pi} W \xrightarrow{\omega} S)$ of the principal C^* -bundle $\widehat{w}: B \to W$ ([4] Definition 1.8) (we let $o \in S$ be the specific point so that $\omega^{-1}(o) = W_o \cong W$, $\Pi^{-1}(W_o) = B_o \cong B$ and $\Pi \mid B_o \cong \widehat{\omega}$),
- (II) Properly discontinuous actions (N, $\mathcal B$) and (N, $\mathcal W$) such that
 - (a) II and ω are equivariant (we let N act trivially on S),
 - (b) $(N,B_0) \simeq (N,B)$ and $(N,W_0) \simeq (N,W)$,
 - (c) (N, B) is compatible with the canonical \mathbb{C}^* action on B.

If we set $W_s = \omega^{-1}(s)$ and $B_s = \Pi^{-1}(W_s)$ for each $s \in S$, Lemma 1.1 shows that (N,B_s) is equivalent to the one constructed from a cohomology class $m(s) \in H^1(N,\mathcal{O}_W^*)$. Since m(s) depends "holomorphically" on s, if c(m) is a Bieberbach class so is c(m(s)) for every sufficiently small s. Therefore if S is "small", the quotient $\mathcal{M} = N \backslash S$ is a complex manifold. We have the diagram

where $m \to V$ is a deformation of $M \to V$ over S. Given a deformation as in Definition 2.1, then we have, from (I), the Kodaira-Spencer fundamental sheaf diagram ([4] (4.2)_p)

If we denote by \mathbb{T}_X the holomorphic tangent bundle of a complex manifold, we have $\Theta_W = \mathcal{O}_W(\mathbb{T}_W)$, $\Sigma_W = \mathcal{O}_W(\mathbb{T}_B/\mathbb{E}^*)$ and $\mathbb{T}_W = \mathbb{W} \times \mathbb{T}_{S,o}$ ($\mathbb{T}_{S,o}$ =the holomorphic tangent space of S at o). Moreover, if we denote by $\mathbb{T}_{B/W}$, the bundle of tangent vectors of B which are tangential to the fibers of \mathbb{G} , we have $\mathbb{E}_W = \mathcal{O}_W(\mathbb{T}_{B/W}/\mathbb{E}^*)$. Note that each sheaf in (2.1) has a natural structure of N-sheaf. From the second row we get the connecting homomorphism $\delta: \mathbb{H}^0(\mathbb{N}, \mathbb{T}_W) \to \mathbb{H}^1(\mathbb{N}, \Sigma_W)$. Since N acts trivially on S, we have $\mathbb{H}^0(\mathbb{N}, \mathbb{T}_W) = \mathbb{T}_{S,o}^N = \mathbb{T}_{S,o}$. Thus we get the infinitesimal deformation map

$$n: T_{S,o} \longrightarrow H^1(N,\Sigma_W).$$

It is not difficult show that $H^1(N,\Sigma_W)$ is the set of isomorphism classes of first order infinitesimal deformations of the \mathbb{C}^* -Seifert fibration $M \to V$. Noting that $\Xi_W \cong {}^{\mathbb{C}}_W$, we have, from the first column of (2.1), the cohomology exact sequence

$$\cdots \longrightarrow H^{0}(N, \Sigma_{W}) \xrightarrow{\psi^{0}} H^{0}(N, \Theta_{W}) \xrightarrow{\delta^{0}} H^{1}(N, \mathcal{O}_{W})$$
$$\xrightarrow{\phi^{1}} H^{1}(N, \Sigma_{W}) \xrightarrow{\psi^{1}} H^{1}(N, \Theta_{W}) \xrightarrow{\delta^{1}} H^{2}(N, \mathcal{O}_{W}) \longrightarrow \cdots$$

If we set C=Ker ψ^1 =Im ϕ^1 , F=Ker δ^1 =Im ψ^1 , we get a decomposition

of $H^1(N, \Sigma_W)$ into vector groups

$$(2.2) 0 \longrightarrow C \longrightarrow H^{1}(N, \Sigma_{W}) \longrightarrow F \longrightarrow 0.$$

As in [8] §4, we can show that C represents the Picard deformations of M \rightarrow V and that none of elements in C is obstructed. The group $H^1(N,\Theta_W)$ is the set of isomorphism classes of first order infinitesimal deformations of the action (N,W) and the map δ^1 gives the first obstruction to constructing a deformation of M \rightarrow V from the given deformation of (N,W). Thus we may say that F represents the "base deformations" of M \rightarrow V.

§3. $\dim_{\mathbb{C}} W = 1$.

When W is one dimensional, the groups C and F are computed as follows. We may assume that W is simply connected without loss of generality. Let g denote the genus of the compact Riemann surface V=N\W. The image of the set $\{w \in W \mid N_w \neq \{e\}\}$ by the map v consists of a finite number of points p_1, \dots, p_r on V. Let d denote the divisor $\sum_{i=1}^r p_i$ on V and let $\theta_{V\mid d}$ denote the sheaf of germs of holomorphic vector fields on V which vanish on d. By [8] Lemma 2.1 and Proposition 3.4, we have

$$H^{p}(N, \Theta_{W}) = H^{p}(V, \Theta_{V|d}) \text{ for } p \geq 0.$$

Theorem 3. 1.

$$\dim C = \begin{cases} 0 & \cdots & g = 1, r = 0 \text{ and } \psi^0 = 0 \\ g & \cdots & \text{otherwise.} \end{cases}$$

If g=l and r=0, then W=C, N=Z^2 and V is a complex torus. We give a condition for ψ^0 to be zero in this case. First, if W=C, then B=W×C* and H^1(N, $(\mathcal{O}_W^*) \cong H^1(N, H^0(W, \mathcal{O}_W^*))$. Therefore, the element m defining (N,B) can be also represented by a crossed homomorphism m:N \Rightarrow H^0(W, (\mathcal{O}_W^*)). Set m(w;\alpha)=m(\alpha)(w) and M(w,\alpha)=\frac{1}{2\pi 1} log m(w;\alpha). Then for each \alpha \in N, \frac{\dM}{dw}(w;\alpha) is a single valued holomorphic function on W. The map \frac{dM}{dw} which assigns \frac{dM}{dw}(w;\alpha) to each \alpha is a crossed homomorphism from N into H^0(W, \mathcal{O}_W).

Proposition 3. 2. When g=1 and r=0, ψ^0 is non-zero if and only if $\frac{dM}{dw}$ is a principal crossed homomorphism. Using

Lemma 3. 3. $H^p(N, \mathcal{O}_{\widetilde{W}})=0$ when $p\geq 2$, we get

Theorem 3. 4.

$$\dim F = \dim H^{1}(V, \theta_{V|d}) = \begin{cases} 0 & \cdots & g = 0 \text{ and } r \leq 3, \\ 1 & \cdots & g = 1 \text{ and } r = 0, \\ 3g-3+r & \cdots & \text{otherwise.} \end{cases}$$

§5. Deformations of isolated singularities with C* action.

Let X be an affine algebraic variety over $\mathbb C$ with an isolated singular point p and a $\mathbb C^*$ action. In this section we consider the relationship between deformations of (X,p) and deformations of the $\mathbb C^*$ -Seifert fibration $X-p\to X-p/\mathbb C^*$. For simplicity, we assume that X is a homogeneous cone with vertex p. Thus for

a suitable embedding $(X,p) \subset (\mathbb{Z}^{n+1},0)$, the action (\mathbb{Z}^*,X) is given by $t(z_0,z_1,\cdots,z_n) = (tz_0,tz_1,\cdots,tz_n)$. Also we assume that p is a normal point of X and that dim $X \geq 2$. Let I be the ideal of X and let $N_X = \mathcal{H}_{r_{Q_X}}(I/I^2,Q_X)$ be the normal sheaf of X in \mathbb{Z}^{n+1} . The isomorphism classes of first order deformations of (X,p) is given by the Schlessinger's T_X^1 , which is defined by the exact sequence ([1],[6],[7])

$$(4.1) H0(X, \Theta_{\mathbb{C}^{n+1}|_X}) \rightarrow H0(X, N_X) \rightarrow T_X^{1} \rightarrow 0.$$

Setting B=X-p, we get the diagram

$$B \in \mathbb{C}^{n+1} - 0$$

$$\widetilde{\omega} \downarrow \qquad \qquad p$$

$$W \in \mathbb{P}^n$$

where W is defined by I in \mathbb{P}^n , p is the projection of the universal \mathbb{C}^* -bundle and $\widetilde{\omega}$ is the restriction of p to B. Note that

$$H^{0}(X,\Theta_{X}) \simeq H^{0}(B,\Theta_{B}), H^{0}(X,\Theta_{\underline{\pi}^{n+1}}|_{X}) \simeq H^{0}(B,\Theta_{\underline{\pi}^{n+1}}|_{B})$$
 and

$$H^0(X,N_X) \simeq H^0(B,N_B)$$

([6],[7]). If we denote by N_W the normal sheaf of W in \mathbb{P}^n , we get $N_B = \widetilde{\omega} * N_W$. Hence we have $H^0(B,N_B) = H^0(B,\widetilde{\omega} * N_W) = \sum_{v=-\infty}^{\infty} H^0(W,N_W(v))$. Also from $\Theta_{\mathbb{C}} n+1 \mid_B \cong \widetilde{\omega} * \mathcal{O}_W(1)^{n+1}$, we get $H^0(B,\Theta_{\mathbb{C}} n+1 \mid_B) = \sum_{v=-\infty}^{\infty} H^0(W,\mathcal{O}_W(v+1))^{n+1}$. Thus we get a grading $T_X^1 = \sum_{v=-\infty}^{\infty} T_X^1(v)$ ([5],[6],[7]). $T_X^1(0)$ is defined by the exact sequence

$$(4.2) H0(W, \mathcal{O}_{W}(1))^{n+1} \rightarrow H0(W, N_{W}) \rightarrow T_{W}^{1}(0) \rightarrow 0.$$

On the other hand, dividing the sheaf exact sequence

$$0 \to \theta_{\rm B} \to \theta_{\rm mn+1}|_{\rm B} \to N_{\rm B} \to 0$$

over B by C*, we get the sheaf exact sequence

$$0 \to \Sigma_{W} \to \mathcal{O}_{W}(1)^{n+1} \to N_{W} \to 0$$

over W. From this we get the exact sequence

$$(4.3) \cdots \to H^{0}(W, \mathcal{O}_{W}(1))^{n+1} \to H^{0}(W, N_{W}) \to H^{1}(W, \Sigma_{W})$$

$$\to H^{1}(W, \mathcal{O}_{W}(1))^{n+1} \to \cdots.$$

Comparing (4.2) and (4.3), we get

$$T_X^1(0) = H^1(W, \Sigma_W),$$

if $H^1(W, \mathcal{O}_W(1))=0$. In this case, the set of first order infinitesimal deformations of $B \to W$ coincides with the set of first order infinitesimal deformations of (X,p) in which the \mathbb{E}^* action on X is stable (extendible). The condition is satisfied, for example, if W is a complete intersection of dimension greater than one or if W is a plane curve of degree less than four.

The non-homogeneous case can be dealt with by taking a suitable covering of X.

References

- [1] M. Artin, Lectures on Deformations of Singularities, Tata Inst. 1976.
- [2] P. E. Conner and F. Raymond, Holomorphic Seifert fiberings, Proc. of the second Conference on Compact Transformation Groups, Part II, Lecture Notes in Mathematics, 299, Springer-Verlag (1972), 124-204.
- [3] A. Grothendieck, Sur quelques points d'algèbre homologique, Tôhoku Math. Jour. 9 (1957), 119-227.
- [4] K. Kodaira and D. C. Spencer, On deformations of complex analytic structures, I, II, Ann. of Math. 67 (2) (1958), 328-466.
- [5] H. Pinkham, Deformations of algebraic varieties with \mathfrak{g}^{m} action, Astérisque 20, Société Mathématique de France, 1974.
- [6] M. Schlessinger, Rigidity of quotient singularities, Invent. Math. 14 (1971), 17-26.
- [7] M. Schlessinger, On rigid singularities, Rice University Studies, Vol. 59 No. 1 (1973), 147-162.
- [8] T. Suwa, Deformations of Holomorphic Seifert Fiber Spaces, to appear.

Department of Mathematics
Hokkaido University
Sapporo, Japan