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Deformations of I¥-Seifert fibrations

By Tatsuo Suwa¥*

We describe deformations of L*-Seifert fibrations and make a
remark on the relationship between deformations of an isolated
singularity (X,p) with &% action and deformations of the
m*aSeifért fiber spaée X~-p. For the torus Seifert fibgring case,

we refer to [8]. Details of this note will appear elsewhere.

§1l. C*.Seifert fibrations.

Following Conner-Raymond [2], we construct C¥-Seifert fiberings
as follows. Let W be a compiex manifold and let N be a group
acting analytically and properly discontinuously on W from the
left. The quotient space V=N\W hés a natural structure of
complex space and the pfojection v:W » V is holomorphic. We
assume that V is compact hereafter. Consider the exponential

~ sequence
(1.1) 0— z-1y ©-E C*— 1,
(e(z)=exp 2wiz). Contrary to the torus case, we let N act

trivially on each of the groups in (1.1). By taking the sheaf

of germs of holpmofphic maps from W into each of the groups
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in (1.1), we get the exact sequence of sheaves over W
2 q %
(1.2) 0—->3——>(9w-—>(9w—? 1.

If f is one of the sheaves in (1.2), we define, for each aeN

and an open set U in W,
a:T(U,8)—> r(al,f)

by (ao)(W)=o(a~1w), o € F(U,Z), w ¢ aU. Then we have a structure
of N-sheaf on .4 ([2],[31,[8]). From (1.2), we'géf the cohomology

exact sequence

(1.3) cee e ENN,G) 5 HE(N,08) S5 HO(N,Z) —> +ee.
We call Kerc the Picard group of the action (N,W) and denote
it by Pic(N,W). Each element m in the group Hl(N,Gﬁ) defines
a principal C¥-bundle @:B » W and an action (N,B) covering
(N,W) as follows. First, if we take a suitable open covering
{WA}XEA of W, m is represented by a collection {mlu(w;a)},

D

where for each (A,p)eA” and aeN, mxu( ;0) is a non-vanishing
holomorphic function on wx n wu. The collection satisfies

the cocycle condition

(1.4) mxv(w;as) = mlu(w;a)muv(a—lw;B),

(k,u,v)eA3, (a,B)eNz. In particular, if we set a=B=e (the

identity of N), we get
mkv(w;e) = mxu(w;e)muv(w;e).

Thus the collection {mxu(w;e)} defines a principal C¥-bundle

@:B » W with @ '(W,) = W, xT*. We let N act on W,xL* by

(1.5) a(w,t) = (aw,m™ (aw;a)t?),



7?

aeN, (w,tA)eWAxE*. Then we get an action of N on E_l(wx). The
cocycle condition (1.4) shows that the actions (N,m"l(wx)) and
(N,m—l(wu)) coincide on m'l(wxnwu) and we get a global action

(N,B) covering (N,W). Clearly the action is properly discontinuous.
It is fixed point free if and only if the isotropy subgroup

N has no fixed points on the fiber z;")l,(w)(f— T*), i.e. if c(m)

is a Bieberbach class ([2]). Thus if ¢(m) is a Bieberbach class,
the quotient M=N\B is‘arcbmpléx'manifold, Siﬁce thé action (N,B)

is compatible with the canonical right‘acfion of C*¥ on B, M

admits a T*-action and we have the diagram

(N,B,I* ) (M,T%) = (N\B,I*)

(1.6) , ml - lﬂ
' (N,W) Ny oy = N\W = M/TF.

We call M -™ V the @¥-Seifert fibration determined by m. The

- - -1
fiver 7« 1(v(w)) over a point v(w)eV is given by 7 l(v(w))=Nw\ﬁ

(w)
= NWVPR When NW#{e}, we call the fiber a (multiple) singular

fiber of M - V. It is not difficult to show

Lemma 1. 1. Given a principal T¥-bundle ®:B + W and
properly discontinuous actions of N on B and W so that @ is
equivariant. Assume that the action (N,B) is compatible with
the canonical €¥ action. Then there is an element m in Hl(N,(&ﬁ)
such that (N,B) is equivalent to the one constructed from m

as above.

§2. Deformations of C¥-Seifert fibrations.

Definition 2. 1. Let
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be a C¥-Seifert fibration as constructed in §1. A deformation of

it consists of

(I) A deformation B3-1>7% ¥ S of the principal T¥*-bundle
®:B > W ([4] Definition 1.8) (we let o0eS be the specific.

. M "l -ty ™ -"1 — :_ :l_ ~
point so that w (o)—wo— W, 0 (WO)—-BO B and H)BO @),
(ITI) Properly discontinuous actions (N,£3) and (N,W) such that

(a) I and w are equivariant (we let N act trivially on S),
{(b) (N’BO).: (N:B) and (N’WO) = (N,W),
(¢) (N, ) is compatible with the canonical T¥* action

on .

If we set ws=w'l(s) and BS=H—1(WS) for each seS,‘Lemma 1.1
shows that (N,Bs) is equivalent to the oﬁe constructed from
a cohomology class m(s)sHl(N,(}ﬁ ). Since m(s) depends
"holomorphically” on s, if c(m) is a Bieberbach class so is
c(m(s)) for every sufficiently small s. Therefore if S is

"small", the quotient ?n=NW3 is a complex manifold. We have

the diagram

N8 = m
\L NW =V
S & '

where ™M -— U is a deformation of M—> V over S. Given g
deformation as in Definition 2.1, then we have, from (I), the

Kodaira-Spencer fundamental sheaf diagram (f4] (4.2)P)
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0

:

0 ~—e-@ —

T

0
[
L —> 0
T

(2.1) ‘ 0 — 1z, —>T,
I
i
0

W —> 0

T

w

>

4

7
TW
K

(1)

O‘ 7

O_——%

If we denote by'U the holomorphic tangent bundle of a complex

manifold, we have 0= @'(Ug), Iy 8 (Uh/m*) and T, —WXH'

(Ué O=the holomorphic tangent space of S at o). Moreover, if

3

we denote byTIB/W the bundle of tangent vectors of B which are
3 B .
. T = %
tangential to the fibers of @, we have E, (}W(UB/W/E ). Note
that each sheaf in (2.1) has a natural structure of N-sheaf.
From the second row we get the connecting homomorphism 5:HO(N,TW)'

> H'(N,3,). Since N acts trivially on S, we have HO(N,T)=T§ =T ..
11 ,O )O
Thus we get the infinitesimal deformation map
n T . — HY(N,z,).
*¥S,0 , 2w
It is not difficult show that Hl(N,Zw) is the set of isomorphism

classes of first order infinitesimal deformations of the E*—Seifert

fibration M + V. Noting that Ew: ‘9W’ we have, from the first

column of (2.1), the cohomology exact sequence

. ‘ 0 -0

1pl 1

t 1 8t 2
—> H(N,8) — H (N, ) —> **

o 1
—> H (N,zw)

If we set C=Ker ¢l=Im ¢1, F=Ker 51=Im ¢1, we get a decomposition
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of Hl(N,zw) into vector groups
(2.2) | 0 — ¢ —>u (N,5,) —> F —> 0.

As in [8] 84, we can show that C represents the Picard deformationsg
of M - V and that none of elements in C is obstructed. The group
Hl(N,@ ) is the set of isomorphism classes of first order
infinitesimal deformaﬁions of the action (N,W) and the map st
gives the first obstruction to constructing a deformation of

M >V from the given deformation of (N,W). Thus we may say

that F'fépresents-thé”"bése‘defOrmations" of M ~ V.

§3.  dimp W = 1.

When W is one dimensional, the groups Cvand F are computed
as follqws. We may assume that W is simply connected without
loss of genérality. Let g denote the genus of the compact
Riemann surface V=N\W. The image of the set {wewle#{e}} by
the map v consists of a finite number of points Pys>°°"> P, On

r
V. Let d denote the divisor ) py on V and let GV]d denote
i=1 '

the sheaf of germs of holomorphic vector fields on V which

vanish on d. By [8] Lemma 2.1 and Proposition 3.4, we have

HP(N,6,.) = HP(V,0,;.) for p > O.

v]d

Theorem 3. 1.

(0 eee g =1, » = 0 and wo =0
dim C = 1

g »e+ Otherwise.



81

If g=1 and r=0, then W=C, N=22 and V is a complex torus.
We give a condition for wO to be zero in this case. First,
if W=D, then B=WxT* and HY(N, o) ~ gl (w, 0#)). Therefore,
the element m defining (N,B) can be also represented by a crossed
homomorphism m:N - Ho(w, Gﬁ). Set m(w;o)=m(a)(w) and
M(w,u)=§%f log m(w3a). Then for each aeN, %%(w;a) is a single
aMm

valued holomorphic function on W. The map 3w which assigns

aM

a-W(w;m) to each a is a crossed homomorphism from N into HO(W, @w).

Proposition 3. 2. When g=1 and r=0, wO is non-zero if and

only if g% is a principal crossed homomorphism.

Using

Lemma 3. 3. HP(N, G;;)=0 when p>2,

we get

Theorem 3. 4.

gO *** g=0and r £ 3,
dim F = dim Hl(v,evld) ='\1 v+ g=landr =0,

3g-3+r .-+ otherwise.

§5. Deformations of isolated singularities with T¥ action.

Let X be an affine algebraic variety over T with an isolated
singular point p and a ¥ action. In this section we consider
the relationship between deformations of (X,p) and deformations
of the T¥*-Seifert fibration X — p = X — p/C¥. For simplicity,

we assume that X is a homogeneous cone with vertex p. Thus for
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n+l,0), the action (L¥,X) is given

a suitable embedding (X,p)c(E
by t(zo,zl,-'-, zn)=(tzo,tzl,---, tzn). Also we assume that

p is a normal point of X and that dim X>2. Let I be the ideal

of X and let NX=;K;tk(I/I2,(}X) be the normal sheaf of X in En+1.

The isomorphism classes of first order deformations of (X,p) is
given by the Schlessinger's Ti, which is defined by the exact

sequence ([1],[61,[71)
(4.1) HO(X’GEn+1|X) — BO(X,N,) —> Ty —> 0.

Setting B=X-p, we get the diagram

c mn+l -0

&

n
W c s

B
{u\;

where W is defined by I in Pn, p is the projection of the
universal Tf-bundle and @ is the restriction of p to B. Note

that

) = 5%(B,0 )

0 0 0
H (X,0,) = H (B,0_), H (X,0
>Yx APsYp/o > g+l g

© and

0 ~ ;0
H (X,NX) = H (B,NB)
([6],[7]1). If we denote by N, the normal sheaf of W in P", we

[~} .
get NB=m*Nw. Hence we have HO(B,N )=HO(B,$*NW)= ) HO(W,N (v)).

V==

Also from ©
_ mn+l‘B

) HO(W, @W(v+l))n+l. Thus we get a grading T§= ) Ti(v)

V=0

_— n+l 0
=~ w*C%w(l) , we get H (B,Gmn+1,B)=

\):—w

(C[51,061,071). T;(O) is defined by the exact sequence



h.2) 10w, 6, 1)™ —u0ar,N) — Th(0) — 0.
On the other hand, dividing the sheaf exact sequence

—> 0 —+ N, —> 0

0 —>0
, » mn+l B B

B

over B by L¥, we get the sheaf exact sequence

. + "

over W. From this we get the exact sequence

(4.3) cor = HOw, @, (1))

— 10,8, — B (0,5)
> HW, BA™ > e
Comparing (4.2) and (4.3), we get
T(0) = HN(W,I),

if Hl(w, Gw(l))=0. In this case, the set of first order
infinitesimal deformations of B + W coincides with the éet of
first order infinitesimal deformationsvof (X,p) in which the
C* action on X 15 stable (extendible). The coﬁdition is
~satisfied, for example, if W is a complete intersection of
dimension greater than one or if W is a plane curve of degree
less than four.

The non-homogeneous case can be dealt with by taking

a suitable covering of X.
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