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A METHOD OF CLASSIFYING EXPANSIVE SINGULARITIES

By Hideki Omori

Introduction

To stuay singularities is in a sense to study the classification
of germs of varieties. It is therefore important to give a method of.
classification. The purpose of this paper is to show the classification
of a class of germs of varieties, which will be called expansive

singularities in this paper, is included in that of Lie algebras of

formal vector fields. As a matter of course, the classification of the
latter does not seem easy.»However, note that such a Lie algéﬁra is
given by an inverse limit of finite dimensiénal Lie algebras of poly¥
_homial vector fields truncated at the order k, k2 0. Therefore such

Lie algebras CAn be understood by step by step method in the order k.

Let €% be the Cartesian product of n copies of complex numbers
€ with natural coordinate system (xl,---,xn). By (& , we mean the
ring of all convergent power series in Xyrec Xy centered at the

P at 0, and J(V)

origin 0. Let V be a germ of variety in ~C
the ideal of V in O ( cf.[2] pp86~7 for the definitions). Two

germs V, V' are called bi-holomorphically equivalent if there is a

~germ of holomorphic diffeomorphism § such that §(0) =0 and a2l
= V' ‘
Let X be the Lie algebfa of all germs of holomorphic vector
fields at 0, and ¥ (V) the subalgebra defined by
20 = fueX; uwdwmcImi.
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¥ (V) is then an & -module. If tl:xere are 'vl,-n,\.rs, linearly indepgnd-‘
~ent at 0, then Corollary 3,4 of [9] shows ‘that V is bi-holomorphically
equivalent to the direct product cSx W, where W C Cn—s. Thus, for the
structure of .Singulé\ritiee/ \;ve have only to consider the germ W.

Taking this fact into account; we may restrict our concern to the

varieties such that all u € ¥ (V) vanishes at 0, which we assume

throughout this papér, i.e. ¥ (V)(0) = {0% .

u € X(v) (u(0) = 0 ) is called a semi-simple expansive vector

field, if after a suitable bi-holomorphic change of variables at 0,

u can be written in the form
n :

! A
(1) u = ,; }Llyl 9/3571 ’
where 'ﬁl,z..., ﬁn lie in the same open half-plane in € about the

origin. ( See also §2.A for a justification of this definition.) The

origin 0 .is called to be an expansive singularlity, if Fw contains

a semi-simple expansive vector field. If V is given by‘ the iocus
of zeros of a wéighted homogeneous polynomial, then V has an‘ expansive
"'siﬁgularlity at ‘0. Thé advantage of existence of such a vector field
“u is that one can éktend through exp tu a gefm V to ;31 subvariety
'{7) in ¢™. In this paper we restrict bur concern to the germs of
varieties with expansive_ siﬁgularities at the origin.

For such ¥(V), we set ’,fk(v) = {u e ¥ ; jku = 0'} , where

%4 is the k-th jet at 0. Since ¥(V) = X, v, X, (V) is a finite
codimensional ideal of X (V) - such that [xk(V) X, (N1 C %k+,€ () |
and F\Ik (V) = {03 We denote by g(v) the inverse limit of

i Xwy/ ;‘Ck(V) 75 Xzo ~-with t}:e inverse limit topology. Since

',f(V)/SCk (V) is finite dimensional, %S (v) is a Frechet space such

that the Lie bracket product [ , 1.: fg(V) X OC_S(V) —> GC-S(V) is
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continuous. Namely, %(V) is a Frechet-Lie algebra. It is obvious

that (g(v) is a Lie algebra of formal Vector fields, where a formal
: n

vector field wu is a vector field u = Z ui’a/'a X such that each
=4 .

u, is a formal power series in XyreotiXy without constant terms.

The statement to be proved in this paper is as follows :

Theorem I Let V, V' be germs of varieties with expansive singularitieg

——

. . v
at the origins of Cn, c” respectively. Notations and assumptions

being as above, V and V' are bi-holomorphically equivalent, if and

only if g(v) and g(v') are isomorphic as topological Lie algebras.

By the above result, we see especially that any isomorphism & of
(V) onto K (V') preserves orders, that is, é%k(v) = Og-k(vn) for
every k. Hence, to classify g(v) is to classify the inverse system
1xX (V) / xk(v)} kzo°® Note that :)E(V)/[){,k (V) is an extension of
x(v)/xk_l (V) with an abelian kernel xk—-l (V)/L{k (V). Such extensions

can be classified by representations and second cohomologies (cf.[6]).

The proof of the above theorem is devided into several steps as
follows :
Step 1. We define the concept of Cartan subalgebras and prove the

conjugacy of Cartan subalgebras.

Step 2. Using the assumption that.' V ( resp. V') has an expansive
singularity at 0, we prove that there is a Cartan subalgebra g of
g(V) such that *g C (V) ( resp. E,C X(V')). By a sui_table bi-

holomorphic change of variables, every element of g ( resp. '5,) can
be changed simultaneously into a normal form, which is a polynomial

vector field. Moreover, every“eigenvector with respect to ad('g ) is

a polynomial vector field.



105

Step 3. Now, suppose there is an isomorphism & of g(V) onto %(V').
Then, by definition é (g,) is~a Cartan subalgebra of g;(V'). Hence

by Steps 1, 2 we may assume that: @ (5 YC X (V'). Thus, considering
the eigenspace decomposition of SXV), g(v') with respect to ad(%}
ad(gf) respectively, we see that é induces an isomorphism of 63 onto
&’ , where 5) ( resp. @’) is the totality of u ¢ g(v) ( resp. g- (v*))
which can be expressed as a polynomial vector field with respect to the

4
local coordinate system which normalizes % ( resp. S, ).

Step 4. From isomorphism CP H 6) — @, , we conclude by the same
procedure as in [5] that there is a bi-holomorphic diffeomorphism § of
c¢® onto €® such that (0) =0 and 4% P = ®7 . The main idea of
making such 3’ is'roughly in the fact that every maximal subalgebra of
§ corresponts to a point. However, since §(0) = 10}, the situation
is much more difficult than that of [1]. Existence of expansive vector

field playé’an important role at this step as well as in the above

steps.

Step 5. Recapturing V from the Lie algebra § , we can conclude

(V) =V'.

The theorem is proved by this way. Note that the converse is

trivial.
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§1 Conjugacy of Cartan subalgebras

We denpte a formal power series f in a form f = Z‘T«\zoa"‘xd .
where ay€C, o« = (o -, ,0n), |¢l=o4+ «+o + o and x% = X‘;{_"X;z.?- X;’“.,

We denote by F the Lie algebra of all formal vector fields and 3]{ .

the subalgebra
£ %Y
- — “ ’
{ué&,u~ZZa x9/2)xi}

=t Wi>k 1%

J is then regarded: as the inverse limit of the system {3/ gk ; pkg,
where Py ¢ 5/8 k1 T S/Jk is the natural projection. We dex_lote
by ‘f’k the projection of J onto J/&k. p, and 5k are sometimes
called forgetful mappings. Since 5"/3']< is a finite dimensional
vector space over C, 55 is a Frechet space, and the Lie bracket
product is continuous.
Let g be a closed Lie subalgebra of 5" » and gk = gk(\%r'

The closedness of g implies that g is the inverse limit of the
system {‘5/‘3’» H pk} k20" In this paper, we restrict our concern to

a closed subalgebra g of 650. For any subalgebra ,Qg of % ,v‘we'
denote by TC(Z)) the normalizer of XX , l.e.. 'rc(d) = {u e"g ;

[u, ,28 1C x’g} , .and by 2((0) (,é{) the 0O-eigenspace of ad(gg ), i.e.
g‘(o) (28) is the totality of v € g satisfying that there are non-
negative integers m k2 0, (depending on v) such that ad(S)mk_v € g'k
for all s € 28 and for all k20, where ad(u)v = [u,v]. If ,é is
‘nilpotent, then G (F) > w(§). mheretore, it F () = F , then
TL(;QX) = ;z? . The converse is also true if dim %((o) (28) <60 (cf.[6]).

A subalgebra g of g is called a Cartan subalgebra of g , if

the following conditions are sitisfied :

(g $ 1) ‘5 is a closed subalgebra of g such that Pk% is a nilpotent
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subalgebra of %/gk for every k=20,

(5.2 §= 99 %).

Note that if dim g<oo above % is a usual Cartan subalgebra. The

statement to be proved in this chapter is as follows :

Proposition A Let J be a closed subalgebra of 50' Then, there

. A
exists a Cartan subalgebra g of g . For Cartan subalgebras S ,S

A
of g  there is an inner automorphism A of g such that Ag =g .

1.A. Automorphisms of 'g

Let J be a closed Lie subalgebra of 30, and gk = 3’(\ Ek.
For every u Gg the adjoint action ad{u) 1leaves each Sk invariant,

hence ad(u) induces a linear mapping ak(u) of ‘g/gk into itself.

ad(u) is then regarded as the inverse limit of the system {ak(u)g kzo

etoad {(u)

Define a linear mapping K (g —> g by the inverse limit of

t-a,; (u) . . ; . t-ad(u) .
{e k } k20" Since ad(u) is a derivation of g , € is a
one parameter family of automorphisms of g . The group OL(S)

generated by iead(u); u 632 is called the group of inner auto-

morphisms of g . The purpose of this section is to investigate the

structure of OL(%) .
i

and

-~

Let O’ .be the ring of all formal power series ‘;Roa“ x%
RN =

A A AA
. . - of . ..
Gk the ideal given by Gk { Z':a“gk“_.‘a,x b'< } 6/(}k is then a finite

dimensional algebra over €. We denote by T\:k, Kk the projections
N

A A A A A A
6 —=0/06 K’ 6/6 k1 9/@ x respectively. Everir ue 30 acts
A A
naturally on ¢ as a derivation such that u@®, C Gk for every k.
'Conversely, u € 30 can be characterised by the above property.

(k)

Every u € 30 induces, therefore, a derivation u of the algebra

P A
@/@k and u(k) is canonically identified with 'f)ku. Conversely,
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~ A ”~ A ”~ \
for every derivation § of O/, such that Y 0,/ 0y C 0,/ Gy there
. . v :
is an element u ¢ go such /t\hat AS = pku.

Since a derivation u : O -3 O can be regarded as an inverse

~ ”~ A
(S/IGk'"> @/Gk§ , we define an auto-

.

limit of derivations {'f)’ku
. S . Pru
morphism exp u of (& by an inverse limit of ze k ‘g We de_note by
G' the group generated by iexp u; u € ‘5'; .
' Define an automorphism Ad(exp u) of J by
~
(2) (Ad (exp u)v)f = (exp u)v(exp-u)f, fe ® .

Since (d/dt)t=o(exp tu)f = uf, we see easily that

(3) -g—E Ad(exp tu)v = [ u, Ad(exp tu)v J].
t.ad(u) . o . . -,
On the other hand, e satisfies the same differential egquation.

Thus, by unigqueness, we obtain

(4) Ad(exp u) = ead () .

Especially, if % is a closed Lie subalgebra of-: 30, then

Ad(exp W) = Y for every u € @ . Since

ead(u)eald V) Ad (exp urexp Vv),

we obtain that Ol(g) = {Ad(g) ; g“e G' S .

(x)

)
Let G be the group generated by {epku ; u € g‘s Since

(x)

A A
@/ﬁk is finite dimensional, G is a Lie group with Lie algebra

%/gk . For every integer & such that & =2k, the group G(k)‘ leaves

31/31( invariant. Hence {G(k)ﬁ forms an inverse system. We

kzo
denote by G the inverse limit. Obviously, G' is a subgroup of G.

However, note that if a sequence (uo,ul,---,un,-'--) satisfies u, € ‘3&

for every &4 z 0, then exp u,-exp u
e oK)

l...--exp un e is an element

of G. Since is a Lie group, G 1is a topological group under
the inverse limit topology. Thg purpose of the remainder of this

section is to show G = G' and that G is a Frechet-lLie group with
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.Lie algebra‘ %‘ .

~
Let G](_k), kZ 1, be the group generated by {epku ; u € ZS'&, and

(x)

G the inverse limit of {Gl §k2_1'

1
1.1 Lemma exp is a bijective mapping of ¥, onto G-
Proof. Let expy be the exponegtlal mapping of 95,/ gk into G

i.e. expu = epku; Since exp : 051»—9 G

(k)
l 14

1 is defined by the inverse
limit of {egp_k’{ , we have only to show that exp, : ‘gl/gk*-%G{k) is
bijective. Since %l/"gk = 51‘31 is a nilpotent Lie algebra, we see
that expy is regular and surjective (cf. [3] p 229). However, the
derivation "I\Sku : 6 /é " ard é/é\k is expressed by a triangular matrix
with zeros in the diagonal. Therefore, one can define 1log(l + N) by
gi\ (~—1)n-1Nn/n, which gives the inverse of exp, . Thus exp, is
bijective.

1.2 Corollary G' = G.

Proof. We,l'.llave onlyA to show G'DG. Since G(l) = G/G1 is generated
by {'f:lu ; ue€ %% , every g€G can be written in the form g =

exp u

1*€XP u,---+ exp u +h, where Ug,meegu € g and h€ G, - Thus, the

above lemma shows G CG"'.

We next prove that G is a Frechet~Lie group. Although such a
structure of G has no direct relevance to bur present purpose, there
is an advantage of making analogies easy from the theory of finite
dimensional Lie groups.

Let G : 51% — 'g be a linear mapping such that §1¢ i=13
for '{'165105 . It is not hard to see that E(u) = exp(ﬁlﬁ~exp(u—c‘§lu)
gives a homeomorphism of an open neighborhood U of 0 of g onto an
open neighborhood ¥ of the identity e of G. Since G is a topo-

logical group, there is an open neighborhood V of 0 of g, such that

~8-
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vyt = EW), EWZCEW. We set M(u,v) = T(EWEW)) and
i(u) = E“l(g(u)—l) for u, v € V. We Ehave next to prove the differ-
entiability of M and i . However, the differentiability is defined
by inverse limits of differentiable mappings, hence that of " and
i are trivial in our case. Thus, we get the following:

1.3 Lemma G is a Frechet-Lie group with Lie algebra %.

1.B. Simultaneous normalization and eigenspace decomposition

x) . &,/ 8,5
For any u € 30' the linear mapping u 9/ Gk —> @/ Gk

(k)
s

splits uniquely into a sum of semi-simple part u and nilpotent part

0,09 g,

u(k) such that [u Using eigenspace decomposition of

N
~ ~ ) P A
4 , we see that u(k) is also a derivation of O/@® hence so
k s k
. (k) (k+1) (k+1) (k+1)., _ (k+1)
is uy . For u , we have that [pkus r P Uy ] =0, Puy

(k+1)

is nilpotent, and that pkus

is semi-simple by considering eigen--

(k+1) _ (k)

and
s s

~ A :
space decomposition of G/ Gk+l' Therefore, Ppu

pkulékJrl) = uI\(Tk) . Hence, taking inverse limit, we get formal vector

fields u v which will be called the semi-simple part and the

N
nilpotent part of wu respectively. A formal vector field is called

to be semi-simple if it has no nilpotent part.

Let ;&k be a nilpotent subalgebra of 30/ S:k for an arbitrarily
fixed k. Set /é]; = {us(k) ; u(k) € ;&kls , and denote by pf:' ‘the
. . . Y
fvorgetful projection of 30/ gk onto 30/ 32’ that is, -py

. 1 4k . . ‘
Since pkﬁg is a nilpotent subalgebra of 5‘0/31 ,
(1)

1 '  '"n

PePoy1 " Py-1*

there is a basis ( f of 60/ 61 such that every

u(l) € pi;&k is represented by an upper triangular matrix. Let
(,Uk1 (u(l)),..., }An(u(l))) be the diagonal part. }*j is then a linear

mapping of p}t;&k into € for every 3j, which one may regard as a
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linear mapping of ,q%k into €. Since us(l) is the semi-simple part
of u(l) , it must satisfy
(1) (1) (1), - (1)
5 u £. = . (u £.00 0
(5) s J fLJ ) J
B . . (x) (k)
y a simple linear algebra, we see that there are fl ,---,fn €
~ A
Oo/ Gk such that
(k) - (k) k), (k) ¢ (k) (%) .
5 £ = . f. £. = f, 1£35n
(5) ug 5 )’LJ (u ) j o’ T 3 3 ( J )

k k L
()6,5 , where TCk

”~ A A A . {
0./ 0y onto SO/GL, that is, Ty = T T Ty,

for every u is the forgetful projection of

. (k) 2 A (k) . .
Since fj € ®o/®k' fj is expressed in the form

(7) fgk) = Z a x% .

J o<ixisk JrX

=4

x® . Since f{l),“-,f;l)

Set yj = are linearly indepen-

(k)
s

a.
s<kisk Jr%

dent, these give a formal change of variables and every u can be

written in the form

(8) us(k) = 7 }ki(u(k))yi’a/Qyi-

i=1
Since [/8]; ,;f)k] = 0, because ,Q%k is nilpotent, every k) e yjk
should be written in the form

(9) 1K)

»

- o
- ;' Zu.ﬂ>=ﬂaai:“ Y 9/2yi

0<tla|Sh

where <u, pp= °<1 /il + ece 4+ o(n ,u.n. It should be noted that the semi-
u(k)

simple part uék) of has been changed into a linear diagonal

vector field such as (8).
Let 28“1 be another nilpotent subalgebra of Jo/gk_'_l such
k+1 k k+1 (k+1) (k+1) k+1
that pk!ZS Cﬂ , and let ’és = zus ;o € S [

. + k-
Since p}h_l ,ék 1 C p]i r the equality (5) holds also for every

+ »
ut) € p]i+l ﬁk 1 and the equality (6) does for every pkko'l_ By a
k+1 k+1
f{ )'...’f( ) e

. “
simple linear algebra, we see that there are n

~

N\
Go/Gk+1 such that

-10-
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(k+1) _(k+1) k1) o (k1) {(k+1) (k)
10 u f. = . (u £. ™ £ = £ .
(10) s ) /'LJ( ) 5 ’ xt4 5
Note that f§k+1) = fgk) + Z a. x¥ . Hence by putting
-3 J wi=ket Jr™
(11) , = a. ¥
Y3 o<idlgket JrX

instead of (7), we get the same equations as (8) and (9) with respect

to ,g&k. Moreover we have

1z oD - Z, ps @ g 95y,

(k+1) o
(13) u = e,p>em % ¥ 9/3yi
o<\l sk

(1) € ZSk.Fl. Especially we obtain the following :

for every u
1.4 Lemma Notations and assumptions being as above, the forgetful

k+1
s

projection p, : A ,_928}; is injective.

Let {zgk§ k> 1 be a series of nilpotent subalgeb:as ,ék of
30/3k such that pkzgk+lc /ék for every k21. We denote by 28 ’
the inverse limit, and set Qfs = {us ; u € 28 S . Note that dim;g]; £ n
for every k=21. Thus, there is an inte\\ger ko such that Py ¢ 2§§+1
—> 25}; is bijective for every kbz ko' By a method of inverse limit,
we see that there is a formal change of variables

(14) yj = fj(xl,...,xn) 1<jsn, fj€ éo

such that (8) and (9) hold for every u(k) € -Rﬁk (k21), and

(15) u, = {j My )y, Dy,

v
(16) u = a
; %}}‘3“/“;
for every u € ;J .

o
i« Y979y

Now, let g be a closed subalgebra of 30, and suppose the above
dk's are subalgebras of ‘}j/gk respectively. Hence, the inverse
limit 23 is a closed subalgebra of O& . We next consider the eigen-—~

space decomposition of g with respect to ad (RX). Since

-11~
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ad (u) : C'}(o —> 5’:0 leaves ‘5 -invariant for every u € Zg, and
[ad(u), ad(u )] = 0, we see that ~ad(u) : f > F  is the semi-
simple part of ad(u) and hence a'd(us) fg OJ . Therefore, we have
only to consider the eigenspace decomposition with respect to ad(ggs) .
. . ~ . . a? *
For a linear mapping X of plgs into €, i.e. )\é(pngs) ’

we denote by {, the subspace

n

{v e Fiu=22 a; o ¥Y¥9/2y; 5

. Note that JA {0} for allmost all A€ (pllqg )* except countably many
A's. By ’“‘(;8) we denote the set of all A€ (plggs)* such that 3)\
# 10} . If §l,£s = 10}, then we set T\'(gg) = 0 , because all ﬂj‘s
are zeros.

1.5 Lemma If By gf = 0, then g¢f) = .

Proof. By (16), every u € )z'g can be written in the form u = u, + u

1 2
such that
w-1i VS
o i > [
u, = a. 2/3 u, = . a. 2/3v. .
1 Zﬂ sz s 2/0Y; . 2 % s 2i, Y 2/0%;

The reason for the shape of u is that the linear part of u is an

1

upper triangular matrix. Therefore, for every k21, there is an
. ) ' my } .
integer my such that ad (u) 8 o C 3k for every u € 28 . This

means = (O)( } by definition.
3= 4

Now, we set g(k) (};8) = g(\ SA for every _)\'C—.\T(KX).

1.6 Lemma Every u € g can be rearranged in the form

u = Z)\G“‘-(Rg)u}s 14 u)\e 3)\

Moreover, every u, is contained in g(%) (;,S).

Proof. Since the first assertion is trivial, we have only to show the
second one. Since 'ﬁ‘(g) is a countable set, there is v, € (g

such that (v(l)) £ X (V(l))
(k)

for any A, A\ € ﬂ”(,(g) such that X #
X. For every k, let u be the truncation of u ¢ g at the

-12~
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order k. u(k) is canonically identified with I'Sku. u(k) can be
rearranged in the form u®) = Z““(mzuik)’ where each u(,{{) is the

truncation of wu, at the order k. Since J/ %k is finite dimension-
s s . 2
al, only finite number of ug\k) 's do not vanish. . Apply ad (Vék)) to
k .
u( ). Since ad(Qgs)‘gC% , we have

k)& (x e (x
R SRR CHEE 728

Hence, considering Vandermonde's matrix, we get u(;f) € %-/%k. Thus,

taking inverse limit, we get wu, ¢ %( , hence the desired result.

1.7 Corollary iik 05(0) (K%) is the zero-eigenspace of ad (ﬁkgg) :

8/%y > B/ Dy

Proof. It is trivial that §k05(°) (,3) is contained in the zero-eigen-
space of ad (§k528), for [XSS, (g(o) ($)1 = 1ol . Thus, we have only

to show the converse. The zero-eigenspace of ad (ﬁkyﬁ) is equal to
that of ad(f)kqgs), that is, the space of all v(k)e %/%k such

that [5k25)s'v(k)]' = {0} . Thus, v should be written in the form
(9). Let Vv € % be an glement such that sgch that ffk v = v(k) , and
let v = ZAeIr(‘DV% be the decomposition in accordance with the above

A ~ _ (k) . (o) , ¢
lemma. Then it is clear that PV, =V . Since Voe % (A ), we

get the desired result.

1.C Existence and conjugacy of Cartan subalgebras

Let g be a closed subalgebra of 5-’0. If g/‘gl =10{ , then
Cg/gk is nilpotent for every k21, for [5k.‘5£] C §k+1 .
Therefore, by 1.5 Lemma, we see that ‘g itself is the only Cartan
subalgebra of OJ . Thus, the conjugacy is trivial in this case.

Now, suppose g/gl # 10} , and let gl be a Cartan subalgebra

of %/‘31.

“

-13-
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1.8 Lemma Let %1,---, %k be a series of Cartan subalgebras of

‘3/‘51, e, 9 /gk respectively such that p,_ , SQ - Sl"l for 2s14

Ek+l of og/aak_l_l such

S k. Then, there is a Cartan subalgebra
that Pk Sk+l = %k.

Proof. Let S/ be a Cartan subalgebra of (g/gk+l‘ We prove at

/
first that pk%’ is a Cartan subalgebra of g/%k. Since S is nil-
potent, so is pk%' . Let g,s = {us(k+l); u(k+l)€-S'§ , and let v(k)

be an element of the zero-eigenspace of 2% %”. Then, [v (>k) ' Py g},s] =

(k+1

{0} and hence v ) can be written in the form (9). Let v ) be an

element of S/gkﬂ; such that ka(k+l) = v(k) . Using the eigenspace

!
decomposition of %/gk+l with respect to ad(gs) , we see that

v(k+l) = Z—‘\Aem‘%’)v;k+l) . Note that this decomposition is given by

only rearranging of the terms of v(k+l)

ék+1) N V(gk+1)

(cf£.1.6 Lemma). Hence it is

clear that" PV is an element of the zero-eigen-
! . /.

space of gs' However, since % is a Cartan subalgebra of fg/gk_l_l

14
we get vc()k+l) € % . . Thus, v(k)

algebra of /% X

By the well-known conjugacy of Cartan subalgebras of g/gk ,

/
€ pk% . Hence pk%' is a Cartan sub-

there is an inner automorphism A such that A(pk%,) = %k. Since

(k+1) (k)

there is a natural projection of G onto G (cf. 1.7A), there

is an inner automorphism A' of (3/% k41 which induces naturally A.

Thus, by setting A’ %' = %kﬂ‘, %k+l is a Cartan subalgebra of

g/g k+1 Such that pk%ka'l = gk.

By the above leinma, we have a series -{Ski of Cartan sub-

kz1
algebras of ﬂ/gk such that pk%k+l = gk' Let % be the inverse

k &
limit of S .

1.9 Lemma Notations and assumptions being as above, g is a Cartan

-14-
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subalgebra of gg .

.

Proof. Since §k% = %k, f)’k% is a nilpotent subalgebra of g/gk
for every k21, By 1.7 Corollary, 'ﬁkﬁg(o) (%) is the zero-eigen-
space of ad(pkgr ). Since '_i)jk% = 'Sk is a Cartan subalgebra, we have
o (o) _ k (o) _ . e

Py 0(‘5 (% ) = g and hence Cg (S )y = S . Thus, ﬁ is a Cartan

subalgebra of Y .

We next consider the converse of the above lemma.

1.10 Lemma Let g be a Cartan subalgebra of g . Then, 'f;k% is a

Cartan subalgebra of Og/gk for every k=21.

Proof. By 1.7 Corollary, the zero-eigenspace of ad (f)JkS ) 1is equal
~ (o) . . , ‘ '
to Py pa (g). Since % is a Cartan subalgebra of g ; We see

'{)k g(o) (%) = ﬁks . Thus, f)kg is a Cartan subalgebra of &/q,.

As in 1.A, we denote by G(k) the Lie group generated by
fepku ; u € O(Sk . Let Ttk : G(k+l)'->G(k)

We shall next prove the conjugacy of Cartan subalgebras, which completes

be the natural projection.

. ~
the proof of Proposition A. Let f} ’ S be Cartan subalgebras of ‘g .

By the argument in the first part of this section, we may assume

~ o A
%/Sl # 10y . Since plg . pl% are Cartan subalgebras of g/ gl ,
A

(1)

there is g, €6 such that 2d(g;) ('151% ) = ﬁl% . Therefore, one may

(k)

~
assume without loss of generality that f)l% = “ﬁl% . Let Gy be

the Lie group generated by iepku ; u < :\R.X for any L , L<£ k.

Fal
1.11 Lemma Let S ' % be Cartan subalgebras of g such that 5]{% =
Al
i)’k% . Then, there is g, ;€ G%k+l) such that Ad(g, ;) (§k+l%)
o A
Peyr § -

-~ ~ N o~ ~ " .
Proof. Since pk% ,\: pk% ’ Pk+1g and pk+l% are Cartan subalgebras

"l '—lr\r
of pk P'Vk% = Pk ka . Let

-15-
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-1n o~ ! . -1 o~ A
N A pk+1% @%ﬂ‘ﬁ,\ e N L 3>
be the eigenspace decompositions with respect to ad(§k+l% ) and
~ > . . N . ~ B _
ad(pk+l% ) respectively. Since pkpk+lS = pkpk+lg -—;ﬁ(g , we see
’ ” . _
that Z({;)\C gk/qkﬂ. and 7 TIn  C z&k/g xa1- It is well-known (cf.
. "
[6] pp59-66) that there are Vyree sV eZ_ (g;\ r Wity €D %’A

A%o0 A%O
such that

A
Ad (exp vl)-~ Ad (exp vm)Ad(exp wl) --~ Ad(exp w )pk+18 = pk+1§

(k+1)
k

A
such that Ad(g ,,) (§k+l€) ) = Pk+1'3 .

. (k+1)
Since exp Vs €Xp wj € G Gk

, we see that there is gk+l€
Let Gk be the subgroup of G generated by {eu ; u € ng\ For
~ .

Cartan subalgebras % ' % of i& ;, the above lemma shows that there

are elements 9yr 9orotcs Gpeoco such that gke Gk and
Ad(gl)Ad(gz)-~-Ad(gk)% = S mod g&k+1'

Note that glgz-ngk-n € G, hence putting g = 9192'°°gk”" we see
N

Ad(g)g = % . This shows the conjugacy of Cartan subalgebras.

Proposition A is thereby proved.

~-16~-
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%2 cartan subalgebras at expansive singularities
2.A Semi-simple expansive vector fields

In this section, notations are as in the introduction. A germ of
holomorphic vector field u € X(V) is called expansive, if the eigen-
values of the linear term of u at 0 1lie in the same open half plane

in € about the origin. u is called to be semi-simple expansive if

u is expansive and semi-simple as a formal vector field. The purpose

of this section is to show the following :

2.1'Lemma Let u ¢ I(V) be a semi-simple expansive vector field.,

" Then, there is a germ yj = fj(xl,---,xn), 1<j<n, of biholomorphic
change of variables such that u can be written in the form

U=Z /‘*iYiB/aYi

=1

v

Proof. By a suitable change of variables y. = X such as

a,.
J é\d\ék 3.
in (7), we have that wu can be written in the form

7

u= 2 p;y; 90y tw, woe X (V)

i=1

for sufficiently large k. For the proof that u is linearizable, it

is enough to show that there are holomorphic functions flr""fn in

N~
Yy, .Yy such that ufj = ﬂﬁfj ( 12j<£n) and fj = yj + higher
order terms. Set fj = yj + gj and consider the equation u(yj + gj)
la) . .
= .(y. + g.). Then we get
My vy gj) ,\ get
(17) (u - Pﬁ) g. = = WY..

J J
Since k 1is sufficiently large, we have

A

(18) 11mt_>oo 3

and p

Q ~
(19) - S e~t(u - Ay, Yy dt
0
-17-
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exists as a germ of holomorphic functions (cf. [5]). Set 95 =
Lo

_ S ot - ;Aj)

[}

w yj dt. Then,

SN d -t(u - ;Aj) [ e—t(u —ﬂj)

(=]
A ac® v yj]o_ W Yy

(u-A) = dt =
»5795 = VY5 | j

2.B Lie algebras containing semi-simple expansive vector fields.

Let (g be a closed subalgebra of 8’0 such that g contains a
semi-simple expansive vector field X.

2.2 Lemma Let X be a semi-simple expansive vector field in ‘3 . Then,

there is a Cartan subalgebra S of 9 containing X.
Proof. By the same proof as in the above lemma, we see that X can be
linearizable by a suitable formal change of variables, and hence we
may assume that X can be written in the form X =7 Aiyi'a/ayi,
i=A .
A o ]
Re A, > 0. ILet g( )(X) = {u €q ; [X,ul] = OE. Since every u ¢ g(o)()()

can be written in the form

(20) w= > 7 a; ,yYo/ly; .,
1= A (u,/u\)=//\b 7

we see that Og(o) (X) is a finite dimensional Lie subalgebra of .
Since ad(X) : ‘{g(o) (X) +—> 03(0) (X) is of diagonal type, there is a
Cartan subalgebra S of 05(0) (X) containing X. We shall show that
is a Cartan subalgebra of ‘g . For that purpose we have only to
show ‘g(o) (%) = S . Since X € S , we see g(o)(g) C ‘3(0) (X)
and hence g(o) (% ) 1is the zero-eigenspace of ad(s ) in C‘g(o) (X).
However since % is a Cartan subalgebra of g(o) (X), we have S =

03(0)(%).

2.3 Corollary If g has a semi-simple expansive vector field, then

every Cartan subalgebra % of g is finite dimensional and g(y\) (g)

is finite dimensional for every € T (S ).

~18~



120

Proof. By the above lemma, there is a finite dimensional Cartan sub-
algebra of g . However by Proposition A it implies that all Cartan
subalgebras are finite dimensional and every Cartan subalgebra contains

a semi-simple expansive vector field. Note that

3A={ue30;u=

s

-

Z 4 « Yqé/ayi
CHM>= o= N !

iz
Since % contains an expansive vector field, we see that dim 3& < 0o

and hence dim ‘g(” (%) < o0,

2.4 Corollary Notations being as in the introduction, if X (V)

contains a semi-simple expansive vector field X, then there is a

Cartan subalgebra of 0(“) (V) such that {3 C X (V) . Moreover, for

that \3 , 03(}') (S ) is contained in X (V) for every Xe T{ (S)'

Proof. Since X € X (V), 2.1 Lemma shows that X can be written in

the form X = 2 f/\i yi'}/e?yi by a suitable biholomorphic change of
[Sak

variables. Therefore, every u € ‘g()) (S) is contained in f ),

because u is a polynomial vector field in Yi,00 .Yy

2.C Isomorphisms of g(v) onto "S(V').

L
Let V, V' be germs of varieties in Cn, c” respectively.

Suppose there is a bicontinuous isomorphism & of (V) onto §(V').

2.5 Lemma Let S be a Cartan subalgebra of ¢[(V). Then, so is @(g)
of J(V'). ,

Proof. Set %' = & (S ). Since & : (V) r—> J(V') is continuous,
for every k' there is an integer k = k(k') such that cﬁ(%k(v))c
gk. (v'). Thus, 5k' S‘ is a nilpotent subalgebra of &(V')/J,, (V')
and %(O) ( 5') DXX %(O) (g )).“ Thus, replacing & by é—l, we get

the desired result;

-19-~



121

Now, suppose that V and V' have.expansive singularities at the
origins respectively. By 2.4 Corollary, X (V) and *(V') contain

Cartan subalgebras of g(v) and Z (V') respectively.

2.6 Corollary Assumptions being as above, let % be a Cartan subalgebra

of °5(V) contained in X (V). Suppose there is a bicontinuous iso-

morphism & of (V) onto P(V'). Then, there is a bicontinuous iso-

morphism ¢ of (V) onto Y(V') such that 11/(%) C *#(Vv'), that

is, 11_/(% ) 1is a Cartan subalgebra of O (V') contained in ¥ (V').
Proof. By the above lemma, & (%) is a Cartan subalgebra of Y (V').

By 2,4 CoroAllary, thei‘e is a Cartan subalgebra ﬁ/ of g (V') contained
in % (V'). By Proposition A, there is gé€G such that BAd(g) §>(g ) =
%I . Note that Aad({(qg) : 03 (V') CJ(V') is a bicontinuous isomorphism.

Thus, ¥ = Ad(g) ® is the desired one.

In the remainder of this section, we assume that there is a bi-
continuous isomorphism- & : QW) > (V') such that & (3 y = %,
where % . S' are Cartan subalgebras of g(v), T (V') respectively
such that 5 C ¥(v) and %, C ¥(v'). By 2.3-4 Corollaries, there
is a local coordinate system (yl,.--’yn), related biholomorphically
to the original one such that every go‘) (%) is a finite dimensional
space of polynomial vector fields in Yy, " ¥pe We choose such a

local coordinate system (z for g (V'). Let

1'...,zn')
. * o o " * & o 1
@)(V,yl’ ,yn) (resp. (W 17y, ,zn,)) be. the totality of u € g(v)

(resp. g(v')) such that u can be expressed as a polynomial vector

field in Yy, Y, (resp. Zy,0 2 ), @)(V;yl,o--,yn) and

& ! izy,+++,2,,) are Lie subalgebras of X (V), X (V') respectively.

«

Since %(7‘) (%) .C (p (V;yl,---,yn) for every o5 6'{\'(%), we get the

-20-



122

following :

2.7 Corollary Notations and assumptions being as above, the above

isomorphism & : <g(V) kﬁ>(g(V') induces an isomorphism of

@(v;yl,...,yn) onto  P(V'iz,,---,z ,).

Proof. Note that @(g‘”(%)) = g? ("), pecause g™ (8 s
an eigenspace of ad(S ). Every u ¢ @Nv;yll...'yn) can be written
in the form u = ‘ZAﬂd$u* , but the summation in this case is a finite
Hu,) and B(u,) € iﬁx)(gl), we see that

Aeu(S\
()€ @(v';zl'.--’zn,). Replacing & by é—l, we get the desired

sum. Since $(u) = 2

result.

Let C[yl,...'yn] be the ring of all polynomials in Vim0, ¥
A
Then, since (g(v) is an (O -module, ‘P(V;yl""ryn) is a

G[yl’---,yn]—module.

-21-~
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3 Theorem of Pursell-Shanks' type

In this chapter, we consider two Lie algebras @(V;yl,...'yn)
and @)(VI;er”"zn') of polyﬁomial’ vector fields such that they are

14

(t[yl,---'yn] and G:[zl,--- zn.]—module respectively and that there is
an isomorphism é of @(V;yl, .. "yn) onto (V' P2y, 'Zn') . The

goal is as follows :

Theorem II Notations and assumptions being as above, there is a bi-

1
holomorphic mapping ¢ of ¢” onto ¢€" such that ag @D(V;yll---yn)

= @) (v! iz, 'Zn') . Moreover, CQ (V) = V' as germs of varieties.

Note at first that Theorem II implies Theorem I in the introduction,
for 2.6-7 Corollaries show that an isomorphism between (V) and
g (V') induces an isomorphism between &(V;yL .- -,yn) and

&(V' ;Zl' T lzn') °
3.A Characterization of maximal subalgebras

0
Let 5 be a subalgebra of @ (V;yl,---'yn) . We denote by ‘%( )
the ideal consisting of all u € % such that ad (vl) --cad (vk)u € S
for every k20 and any Vyretes vke @)(V;yll---,yn). Let Vg be
the set of all points g¢ ¢” such that @(V;yl,---,yn) does not span
h—dimensional vector space at ¢, that is, dim éD(V;yl’-o-,yn) (g) < n.
For a point pé€ (Bn, let & be the isotropy subalgebra of

p
Wiy, ---,y) at p, ie. §

o= lue Wiy, oo y) sue) = 0.

3.1 Lemma For a point peg¢ c" - & v &p is a maximal, finite co-

dimensional subalgebra such that @E()OO) = {0}y .

’ C n ‘
?roof. Since p€C - Vg , there are wuy +--,u € H(Viy;,---,y)
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such that uy (p) = 9. Yilp for 1£js<n. Consider
(ad (a2 -+ ad(u )W) (p) = 0
ad (u,) ad(u )v) (p) =

for any f4,--~ %. , and we get easily that péoo) =30} .

We next prove the maximality of @p. Let S be a subalgebra of
&(V;yl,---,yn) such that 5 2 é)p’ There is then an element v € S
such that wv(p) # 0. By a suitable linear change of variables, we may
assume that v 1is written in the form

(1)  v=g3Dy + 3233 hyd/Ayy, 9@ # 0, hyp) = 0.

Let (pl’...'pn) be the coordinate of p. Then, (yl—pl)uje é‘)p for
1$jen. Therefore, [v,(y; - ppluyl = viyp)us + (y;-pp) Ivyugd e §.
Since v(yl) (p) = g(p) # 0, we have {:}(p) = &D(V;yl,...’yn) (p) and

hence S= &J(V;yl,---,yn).

Let ?/)é, be the set of all points g such that @q is a maxi-
mal subalgebra and &;q(?“) = {0} . By the above lemma, %)y contains )

c” - Ve - The goal of this section is as follows :

3.2 Proposition Let (g be a maximal, finite codimensional subalgebra

of ?(V;yll.--,yn) such that g(oo) = {0\ . Then, there is a unigue

point p € U@ such that = @p'

Let g .be a subalgebra of @(V;yl,---,yn), and let J =
{féc[yl,---,yn] ; f@(v;yl,---,yn) C ﬂ} . Obviously, J is an ideal
7
of (I:[yl’---,yn], for &D(V;yl,u.,yn) is a C[yl,---,yn]—module.

3.3 Lemma Let & be a subalgebra of £(Viy;,...,y ) such that

c[yl,...,yn]‘g = @(V;yl,.'..,yn). Then J&O(V;Yl,...,yn) is an ideal

of [?(V;yl,...,yn) contained in %C .
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Proof. By definition J&D(V;yl'---,yn) C‘S . Since (uf)v =
[u,fv] - flu,v], we have ¢JJ € J, hence (m[yll---,yn]"é)q c J. By‘
the assumption, we get &D(V:Yl,“',yn)J C J. Therefore, J@’(V:'Yl,"‘,yn)
is an ideal of @)(V;yl,.-.,yn).

By the above lemma, we see also that J@(V;yl'...,y'n) - ‘g(m).
The next lemma is due to Amamiya [1]}. The proof is seen also in [5],

however we repeat the proof for the sake of selfcontainedness.

3 .4 Lemma Let ‘5 be a finite codimensional subalgebra of

&)(V;yl'...'vn). Then, J # t0%.
' . (1) .
Proof. Set g = tueqy ; I[u, eWiyq, ..., v)1] C"S} . Since
codim 03 <e¢s and ad(u) for every uc¢€ ‘S induces a linear mapping of
. ] . . (1)
é(v,yl’...,yn)/g into itself, we see that codim < 63  and
hence in particular k%(l) £ 10t.
Let v be a non-trivial element in g(l), and let f be a
polynomial‘ such that vf # 0. Consider a sequence fv, fzv, f3v,---.
Since codim %(l) < o0 , there is a polynomial P(t) in t such that

P(f)v ¢ %(1).

We next prove that if v and gv are contained in g(l) , then
(vg)2€ J. For that purpose, let w be an arbitrary element of

@(V;yl’...,yn). Then, we have

[v,gw] = (vg)w + glw,v] € %
[gv,wl = —(wg)v + glw,v] ¢
Hence
(22) (vglw + (wg)v €

for every w € @(V:Yl’...,yn). Replacing w by (wg)v, we have
(vg) (wg)v € g . Replacing w in (22) by (vg)w, we have also
(vg) 2w + (vg) (wg)v € &

Hence (vg)zw € 4 . Thus, (Vg)2 € J.
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Set g = P(f). Then, v, gv 6‘8(1) and vg # 0 because of vVvf # @,

Thus, we get J # {Ok

X e () _ R
@(V,yl,...,yn) such that ‘g = }0}. Then, ‘g is a G:[yl,‘...,‘yn]-
module. ' _
Proof. We have only to show that €ly;,...,y 19 § &(V;yl'...,yn) ,
because if so, the maximality of & shows that C[yl'...'yn]% =g,
Thus, assume that Cly,,-. -, y,] q = @(V;yl’ --.,Y ). Then by the above
lemma, we get that g(w) 2 J&(V;yll...'yn) # 0 , contradicting the

assumption.

Now, we have only to consider a maximal finite codimensional s;ab-
algebra g of @(V;yi,...,yn) such that 3(00) = 10} ana § is a
C[yl,...,yn]—module. Let Mp = {fe (C[yl,...'yn] ; E(p) = 0}. /

3.6 Lemma For a C[yl,...,yn]Fsubmodule T of ® (Viyq, ...,y ), if
G+ M O Wiyy, -, y) = PWVivy, ..n v
for every p € c7, then ‘5 = (fD(V;yl'...,yn).

Proof. By Nakayama's lemma, we see that for each pe¢ Cn, there is fp

e C[yl,...,yn] such that fp(p) # 0 and fp@(v;yl,...'yn) = ‘5( .
Since the ideal J generated by {fp ; PE€ (‘L‘n} has no common zero, we
see that (¢J = G:[yll...’yn] and hence there a:;e fp1' fp2,---, fp R
99, 92,-",g{ € C[yl'...’yn] such that 1 = 52=: gijj' Therefore,

4
EViyy, .-,y = (%‘1 993 <3 -

3.7 Corollary Let g be a maximal, finite codimensional subalgebra of

é) (V;yl, e ,yn) such that Cg(m ) - {0‘(. Then, there exists uniquely

a point p ¢ ‘Z,_)& such that I = &p'

Proof. By 3.5 Corollary, is a €[y, ... y_l-module, and hence
1~ r“n
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3 3 n
there is a point pe@ such that § + Mp@ (Vivy,---,¥) &
@(V;yl;._..,yn). Thus, ‘5 > Mp@(V;Yl:""yn) by the» maximality of ‘g .

It is easy.to see that such a poirit is unique, because Mp + Mq =

clyy,---,¥,} if .p # q.

If @(V;yl,...,yn) (p) = {0}, then Mp@(v;yll...'yn) is an ideal
of &D(V;yl_,...,yn) » hence it must be contained in g(w ) . Thus, by
the assumption, it must be {0}, contradicting the assumption. Therefore
we get &(V;yl'...,‘yn) (p) # {0}. YNow, there is u € (?(V;yl,...,yn);
such that u(p) # 0 and f¢ C[ylr...,yn] such that f(p) = 0 and
(uf) (p) # 0. For every v e § (V;yl'...,yn), fv is an element of g .
Therefore if u were con'tained in g , then [u,fv] € 3} . Thus, (uf)v
< ‘3’ . It follows that (uf)(p)v € (uf - (uf) (p))v + 05 - ‘6 . Since
(uf) (p) # 0, we get Vv € g » hence g = &(V;yll...'yn), contradicting
the assumption.

By the above argument, we see that % C @p , and hence & =@p
by the maximality of g . Since g () {0‘1 , we see p € ?J@ by

definition.

This completes the proof of 3.2 Proposition.
3.B A diffeomorphism induced from b .

Let § (V';zl,...,zn,) be another Lie algebra of polynomial vector
]
fields on €% . Subsets Vet Lp+ are defined by the same way as in
@(V;yl,....,yn). Suppose there is an isomorphism § of @(V;yl'...,yn)
onto  Q(V'izy,...,Z,). Eor a point p ¢ Wy, @p is a maximal
finite codimensional subalgebra such that g)éoo) = 0 . Then, & (@p)
has the same property, hence there is a point ‘{’(p) € ?Jé)x such that
4 . .

B ( &Dp) = &f,f(p) , where &"S’f?) is defined by the same manner as in

&(V;yl'...,yn). ig’ : ‘L‘)@M‘ZJ&' is a bijective mapping. The goal of
. ~26~
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this section is as follows :

vector field X (resp. X') such that X = i ﬁjyj /2 yj ( resp.

J=1

n*

X' = 7 f,\'jzj 2 /2 zj) . Then ¢ can be extended to a holomorphic diffeo-
. 3=1 ,
morphism of €" onto €% % such that ¢ (Vp ) = Vpr .

Note that the existence of X and X' are obtained by 2.1 Lemma,

Let {Lfé) be the totality of (¢-valued functions £ on ?4)6) such that

fu can be extended to an element of gJ(V;y ..,yn) for every u €

ir°
@x(v;yl'...'yn) . Remark that the extension of fu is unique, because

?,J@ is dence in ¢". % is a ring and &)(V;yll...,yn) is an ‘ll/”@—-

module. For @(V';zl'...'zn,), we define \:{fgy by the same manner as
above.

3.9 Lemma Notations and assumptions being as above, Cf induces an

isomorphism of 1&'@/ onto \lfg; .
Proof. Let £ Gf‘{g,/ and p an arbitrary point in %J&). By definition,

f $(u) can be extended to an element of (V';z ,zn.) , which will

Loeee
be denoted by the same notation. £ ®(u) - £($0p))d(u) € gvf?(p) , hence
FHEb) - £(5ENB@) € P, that is, T (EPW) - £(F(ENHP W) (p)

= 0. Therefore, & T(£5()) (p) = £(Y(p))u, that is, § (£&(w) = (§*H)u.
Since the left hand member is contained in &D(V;yl’...,yn), we see

Qrf € zIré) . It is easy to see that CF* : Il,r&, r—)llfp. is an isomorphism.

3.10 Lemma Under the same assumption as in the statement of 3.8

Proposition, we have \]f&o = (E[ylr. .;,yn] . Hence @ is a bi-holomorphic

]
diffeomorphism of c¢” onto ¢" .

£

Proof. Obviously llf@)j) (i:[yl'..‘.,yn]. For any £ GKIf@ , £X is an

element of @(V;yl,...,yn). Thus, fyl,~--,fyn€ C[yll...,yn]. ‘Hence
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it is not hard to see f€?¢[y1'...,yn].
]
3.11 Lemma %(C" - Ve ) = - Ve .
Proof. By the above lemma, we have n = n'. Let p be a point of
n A . . o ’ _ ’
C' - Vg . Then COlel&%,z n, hence codinm @QKP) = n, because ?%ﬂp)
L

n _ ~n'
§J(85p). Therefore, we see ?(C - V@ ) = € V@f .
This completes the proof of 3.8 Proposition.

3.C Recapture of the germ.

Recall that V 1is a germ of variety with 0 as an expansive
singularity. Hence there is X = §1 fxiyi 'a/ayi € %¥(V) such that
Reji; >0 for 1g<i$n. Since X is a linear vector field, exp tX
is a bi-holomorphic diffeomorphism of ¢” onto itself. Remark that
(exp tX)V = V as germs of varietis, for X J (V) C 0 (V) where (9(V)

) ~
is the ideal of Vv in O . Let V = (exp tX)V. Though V is a

Yiw
germ of variety at 0, the expansive property of X vyields that v
is a closéd subset of €% such that {exp EX)V = 6. Obviously, V=v
as germs of varieties.

In this section, we shall prove that Vép = %, hence V@ =V as
germs of varieties. Let Lﬁ(vo be the closure of (V) in 8 . Note
that (V) 1is also the closure of %(V) in 30. Hence %(V)<§(V)C:
g§(v). Recall that Gﬂv;yl’...,yn) is given by using the eigenspace
decomposition of g;(v) with respect to ad(X), that is, every uc¢
2;(V) can be rearranged in the form wu = 2, u, as in 1.6 Lemma, and
&Jv;yl,...,yn) is generated by the u,'s. Similarly, we decompose
@(V) into eigenspaces of X. Let f be an element of ﬁ(V). Then,

f can be rearranged in the form

(23) £f= 7 £,, fy = 5;» yady“ .

Then, £, is a polynomial such that Xf, =Vf, . By the same proof
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A
as in 1.6 Lemma, we see that £, €J (V). We denote by Iz the ideal of
A
C[yl,...,yn] generated by all £,'s with £ € J(v).
3.11 Lemma Ig C § (V).

v=1

oQ
Proof. Let f ¢ \Q(V) . £ can be rearranged in the form f = Z fp.» ’

£, = 2. va“y“ . We may assume 0 < VY, <V, <---<Y <, First of all, we

¢ I p =Y,
) (Y. =V
shall show f,,.te,&(v). Note that e ‘t(exp-—tX)f =7 e 5 ‘)tf,,. eJwm
: &
for t>0. Suppose f is defined on a neighborhood N of 0 in c”.
Then, (exp-tX)f is defined on (exp tX)N. Note that yo(exp tX)N =

¢ ana yo(exp tX) (NAV) = V. since ev‘t(exp~tx)f =0 on

(exp tX) (N~V), taking l%@ﬂa we see that £, =0 on V. Since V =
V as germs of Varieties, we have f,‘e&(V) . Repeating the .same procedure
to £ - £, , we have fuze\_()(v), and so on. Hence fgé € &(V).

Let f € J(V). Then, there is a seguence {f(m)‘j in J(v) such
that 1lim f(m) = f in the topology of formal power series. For any

A A
eigenvalue v of X : O = § , we see ff,m) e d(v), and lvi‘.gmf(m) =

1 4
£, as polynomials, because the degrees of f,(,m) , £) are bounded
from above by a number related only to ;Alr"" )AAn and V . Since
f(ym)lv = 0, we have f,,‘v = 0, hence £, € J(V). Recall that the f£,'s

generate Ip . Thus, we see Ig cdw.

3.12 Lemma Notations and assumptions being as above, a polynomial

vector field u with wu(0) = 0 1is contained in @(V;yl’;..,yn) if

and only if uly ClIp .

N
Proof. For u € V), f € J(V), let u=7 u,, f=2,6f, be the
decompositions of eigenvectors with respect to ad(X), X respectively.
Then, u, € @(V;yl,...,yn), f, €Iy . Since Xu, £, = [X,u\1£f, + u,Xf,
: ~
= (A+9Y)u,f, , u,f, is alsg an eigenvector of X. Since uf ey,

the u,f,'s appear in the eigenspace decomposition of wuf, and hence

u, £, € I, . Thus, we have &(V;yl'...’yn):{@ CIgp-
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Conversely, if ul, € Ig for a polynomial vector field u with
u(0) = 0. Then, u (_6 (V) C @(V) by taking the closure in the formal
power series. Note that u @(V)<Z @/\ﬁ(V). We next prove that dwy =
O n §(V) . For that purpose, we have only to show J (V) D> O r\ﬁ V),
because the converse is trivial. Let fe @rn@ (v), and £ = Zy £, the
eigenvector decomposition of f with respect to X. Then, by 3.11
Lemma, we have £, € Ig cd(v). Thus, £, =0 on V, hence f =0 on
v. This means f € Y(v). Thus, uly, C I, yields ue X (V) C ).
However u is a polynomial vector field in Yy, ¥pr hence u €

@(V;yl, oo ,yn) .

3.13 Lemma Ve = VI& : the locus of zeros of Ip .

Proof. Let p be a point in c"- Ve . By definition there are u

i
cee Uy € &Nv;yl,...,yn) such that ul(p),---,un(p) are linearly

independent. Assume for a while that p€vV Since uiI@ C Ip . we

I&; N
have

Q‘ Ql
1 Y2
for every f£€ Ip and any Iy, 4, -

0., _
(u e £)(p) = 0O

, 4 . Thus, f = 0, contradicting
the fact I, # 10{. Therefore, Vy, D> V .
& e Is
Conversely, let pe=cn - VI? . There is then g €I, such that
g(p) # 0. By 3.12 Lemma, g3/2Yyr---s g’a/ayn € @(v;yl,...,yn), which

are linearly independent at p. Hence pé¢ c® - Ve . Thus, VI@,D Ve -

3.14 Lemma VI? = V as germs of varieties,

Proof. By 3.11 Lemma, we have O1Ig cJv), hence Vv

o V. Assume
Te

for a while that Vy 2 V. Then there is f €J§(v) such that £ #Z 0

on V. Let f = Ziyfv be the eigenvector decomposition of £. Then

f, € Iz . Therefore f, =10 ‘on V, hence f =0 on V contradicting
the assuption. Thus, we get VI& = V as germs of varieties, and hence
v =V,

Ty
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. ' ~
By the above result, we get that ? : ¢ " maps V onto e

and (V) = V' as germs. This implies that ?*j(v') =Jdwv) ana
hence a9 X (V) = ¥(v'). This completes the proof of Theorem I in

the introduction.
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