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SOME TOPICS IN PG-GEOMETRY
SEIICHIRO KAMIYA

WASEDA UNIVERSITY

Our interest is to construct "good"cohomology theories on comp-
lex varieties with singularity. PG-geometry will be the first step
for it. In this not;e we shall formulate relative cohomology theory,
cohomology theory with supports and homology theory, with polynomial
growth condition and discuss their elemgntary properties and relations
between them. Our discussions are all elementary so we omit the proofs.

Let (X, 0x) be a reduced complex space and g:X—»{i ,+e [ a fun-
ction. A holomorphic function f on an open set UCX is called a PG-

holomorphic function with respect to g (or simply a PG-holomorphic

function) if there exists o =(otl,0(2) € [1,+00[ X [1,40] such that
lf(x)[ga{lgo“2 for all xeU.
We define a linear subspac'e PGI"(U, @X) of @x(U) as the set of
‘all PG-holomorphic functions on U.
We shall keep in mind following two situations:
(I) X is a smooth affine variety and g(z):=1+}z|.
(II) Let G be an open set in G:N. then XC G is an analytic variety,
D:=V(h) a locus of héf(G) in X such that U:=X\D is smooth, and g(z)
:=|h(z)| -1

For simplicity we state only in the case (I).
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§3. Relative PG-cohomology by PG-coverings.
3.1. Relative PG-coverings.
(3.1.0) Let X be a smooth affine variety in CN, Z C X a closed

subvariety and Y := X~~Z. Let ﬁr(X) be a PG-covering of X, i.(e.,
Ae(X) '={a(x)} - for C= (0C (¢.) € R*x R*
‘ ’ 4 x € X , 2 +° Ny

. _—
where f},(x) 1= X(\{yl ly - x| < (0’1(1+lZl) 2) 1}-

(3.1.1) It is called that (Aq(X), ﬁq-(Y)) is a _relative PG-covering
of (X, Y) if Ag(X) = (U;); ¢ g is a PG-covering of X and Ag(Y) =
)

(U is a subcovering of Y with I'C I.

i'i e 1
(3.1.2) Let (Ag(X), Ag(Y)) and(Rp(X), Ap(¥)) be two relative PG-

coverings of (X, Y). We define ,
Re(x), Be(¥)) < Rp(x), Rp(¥))

as ©<p, i.e., ;< P 1 and 0'2< P 27 in other words,
a) for each P € J there exists o € I such that VP C U«,
b) for each B € J' there exists g ¢ I' such that VP C Uy,

and Ap(Y) = (V) with J' C J.

jedyg j" je J'
Then we have a refinement map ¢ : J —I, B> T(f) =o¢. It defines

where 'zi,(x) = (Vj)

a simplicial map

T: Bp(x), 3p (M) — Be(x), Re(¥)).
3.2. Relative PG-cohomology with coefficients in structure shea.f@X

(3.2.1) Let (Ag(X), Be(Y)) = ((U;); ¢ 7+ (Uy); ¢ p+) be a relative

PG-covering of (X, Y). PFor any integer p 2 0,
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¢ = P .. i €T I @(Uio .... i) is a relative alternative
TP (edp et P .
p-cochain with coefficient in O if

a) ?' | = .o
igeeeer iy € Otug o ip) =00 ATy )
b) @, Cs .= =P, — .
) ?10 csose lﬂ"" l@"’" 1p ?10 ceour J_P..- ld anen lp
= 3 T | eeecoe 3 )
) P ity = 0 g A €T

The set of relative alternative p-cochains will be denoted by
cPRe(x), Rp() 5 0
o 4 T ’ X

and is an abelian group.

(3.2.2) We define a coboundry operator

B: cPhex), Rp(v) 5 O —>cP R0, Bo(v) 50

- D= a . .
as follows. If P = (qvio ip) € CT(RAg(X), Ag(Y) ;0,), define
; 5 () Ireslrii |
(3%) . . 1= (=i)“res ™ Y (B, ~ . ).
? lo..-.-- 1p+l jso ‘U";. ...... t?*£ ?10 PRPPN lj-..-.lp+l

It is clear that § is a group homomorphism and thét 82 = 0. Thus

we have a relative cochain complex
( CBex), Bp(0) 0, ).
(3.2.3) We define ,.CP@Rgx), R,(¥) ;0 :={PecP@Bex), Ap(¥2Q))

d
Jo= (d «,) € [1, +o[ x [1, +e[ such that]P(x)] < g 23.

Then

PBex), Re(v);5 0 2 > P A, R0y

)

o Re(X), Be(D): 0 ) . bl A, Be(v); 0
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So we have a relative cochain complex (PGC.(ﬁv(X),ﬁw(Y);@%),S) and

ine: HP A :0.) :=0P (_ c® A(Y) ;
define:  HP (Rg(X), A (Y);0,) :=H" (5oC° (AL (X) ,ALY) 50,)) .

(3.2.4) Let v:(Rp(X),R,(¥))—> (RAg(X),Ap(Y)) be a simplicial map

associated to a refinement map § :J~+I. Then T induces a morphism‘

T, CP (R (X) Ag (D) 10,) ——> o CP(Re(x),Ap(¥);0,) ,defined by
(ﬁ?)p,--up? = Pregor - Tipp) on  Ugpy.etipp) #

‘and T* commutes with the coboundary operater § . Consequently we héve

a homomorphism

ol B (X) Ao (¥) 7 Oy) ———> , HPRp(x) ,Ap(¥) 7 0y)

which is independent of the choice of the refinement map T

3

{(3.2.5) Thus we can define :

pcHE (X, Y7 0 2) =, cHP (XmodY; @) ‘=—§¥‘psﬂp‘§v‘x’ Ag(¥):0,)

called p-th relative PG-cohomology group with coefficient in @X.

3.3. Long exact sequence.

PROPOSITION (3.3.1) Let OL,OX) be a smooth affine variety in CN,

ZC X a closed subvariety,and Y:=X~2. Then we have a long exact

sequence:

9 (x.vs j q g, i qQys @) s 59 (x,v; ;
““—“QPGH (X,Yl ax) —'_*PGH (xl @x) _—ﬁPGH (YI @X) —aPGH (XIYI @x) —>

COROLLARY (3.3.2) Let X,Y be as above. Then we have:

. 0 0 0
(1) 0=, H (X,¥; Oy) —> pcH (X5 Oy) —> B (Y5 0y) —>

PG
1 .
— ol (X,Y; ﬁx)—+ 0 is exact.

(11) Y (¥ @)= PGHqJ’l(x,Y';'bx) for gq2l.
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3.4. Relative PG-cohomology with coefficients in PG-coherent sheaves,
(3.4.1) Let (X,@k),Z,Y be as above. Let (ﬁ¢(x),§v(Y)) be a relative
PG-covering of (X,Y) and & be a PG-coherent OX—Module. Then we have
a chain of PG-syzygies:

0 ___,D;nc! ]&. 0;‘” ktg, e mmem .- __k‘_’OI)I(l, __.k' @;‘9 £ F — 5 0.
where Xk, are PG-morphisms. For any integer gz 0, we have:

So we define:
2cCTBX) ALY) 1 F) :=Image of (,.cT (B(x) ,A(¥) ;05)—> TR0 A V) 7).

Then the coboundary operator § induces a homomorphism

0 ¢ o C R (X) A g(¥); ) > LT Rex) R 05 F,
and it is clear that § 2_ 0. Thus we have a relative cochain complex
( pC Re(x),B(¥);F) , §) and define:

pcH Re(X) Ae(¥); F) := HI( L c®Rex) Re(W:F) ).

(3.4.2) Let % :(ﬁf(x) ,ﬁ?(Y))-——-v(ﬁ,.(X) ,?\,(Y)) be a simplicial map
associated to a refinement map ¢ :J —=1I. Then induces a morphism
A ~ A A
T* 15l Re (X),Re(¥): F) — L CTEp(x) ,Bp (1) 5 57)
and commutes with the coboundary operator § . Consequently we have
. o A o
a homomorphism  , HI(Re(X) Ae(¥): F) —> ,H R (), Bp (V)5 F )

which is independent of the choice of the refinement map T .

(3.4.3) Similar to the case of the structure sheaf Ox , we can also

define;

pH (K, Y; F) =, HY (XmodY ; F) =lin pcH Re(X) Ap(¥); %) .
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3.5. Long exact seguence.

PROPOSITION (3.5.1l) Let (X,@X) be a smooth affine variety in ¢N,

ZCX a closed sub\}ariety and Y:=X\2. Let & be a PG-coherent @x-

Module. Then we have a long exact sequence:

o pcd i F) s w2 1Y) Lo, 1T v )

COROLLARY (3.5.2) Let X,Y % be as above. Then we have:

O (x: 97 ) —> 10 (vi 7)) Ls

(i) 0—>PGH0(X,Y;7)—-—-’

PG
—-—’PGHl(X,Y:?’)-———ro is exact.
(i1) ¥ ¥y = T,y e for qzl.

$§4. PG-cohomology with supports.

4.1. Supports.

(4.1.1) Let (x,@x) be a smooth affine variety in CN, ZC X a closed
subvariety and Ag(X) a PG-covering of X. If % is a PG-coherent Ox—
Module,then we have a cochain complex (PGC°(K¢-(X) ;F),8). For a

cochain t?z((Piow-'ig)epc;cq(Ad'(x) 1 F), we define:

Suppa (¢):= U v,
Ae (X) "’i.-»i{#o o %

(4.1.2) Let @ be a family of supports on X. Then we define:

pcCe B :F):={ e, T Rex)1F) | Suppg () (91 €8] -

Since Suppﬁu_(x) (¢)C Suppr(x) (P), we havg

94 ; d at+l x ;
pC B F) ———— TR (X) i F)

D,

8

~ +1
pcCaBe(X) i F) ————> PGC% Re(x): )
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So we get a cochain complex ( (A (X);%),8) and we define :

PG $
= g9
pHIR () ;%) := B COR_(X); ).

4.2. PG-cohomology with supports.

and Ap(X)=(V.). be two PG-coverings

(4.2.1) Let &_(X)=(U;), i jed

i'delI

of X such that Ag(X)< Ap(X) . Then we have a refinement map g :J—1I
and ¢ induces a cochain map

. * . ®* 3 .
It is easily seen that if SuPP§ (x) (9)¢$ , then Suppﬁp(x) (*pre o.
So we have a cochain map

i Co(Bo(X) i F) ——> L Co(Rp(X) i %)
and consequently a homomorphism

ptia Bo (X) 1) ——  HIRp (X) ;)

which is independent of the choice of the refinement map ¢

(4.2.2) Thus we can define:

PG Q(X F):= l(J;m PG Q(AG(X) F).

(4.2.3) Similarly, for a closed subvariety ZC X, we define:
pcCa Bo(X) i) 1= {?ePch(ﬁo(X) F) | suppy (y) (NC 2}
pca Bo () F) 2= HI( .00 Bo(x);5) ).

Now we can also define:

q =
PGHZ(X F):= lém PG Z(AO(X) F).
(4.2.4) Let ¢ be a family of supports on a smooth affine variety

(X,@X) in G:N and ¥ be a PG-coherent 0 -Module. Then we have :

PG Q(X F) = %:eug PG Z(X )
where Z means a family of closed sets of X contained in Z.
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4.3. Relations between relative PG-cohomology and PG-cohomology
with supports.
(4.3.1) We define: '
pelz (Xi0y) = (o€, T(X;0,) | Supp(¢)C 2z},
rz(xalg,ﬂxalg) ;= {¢er(xalg,0xalg) | supp(¢)C 2z} .

LEMMA(4.3.2) Let (X, @ ), 2 be as above. Then we have

(X, 0)=T 2 Ka1g:0g ) pely (X,00).

PG 2 alg

LEMMA(4.3.3) Let (X,@&), Z be as above. Then we have
0 ,~ ~ —~

lg
where Y:=XN\12Z.

LEMMA(4.3.4) Let X,Z,Y be as above. Then we have

P P
PGHZ(X'@X)‘=§’PGH (XmodY,C&).

PROPOSITION(4.3.5) Let X,Z,Y be as above. Let# be a PG-coherent

@X—Module. Then we have :

ol (X, F) =5 BP (XmodY, % ).

COROLLARY (4.3.6) Let X,%,Y, # be as above. Then we have :

(i) 0~—+PG Z(X f)—-—> H (X, ?)—-—*PGH (Y, ?’)—-*PG Z(X F)— 0 |
is exact.
(ii) pGH EH'(X F) o= PGHq(Y,}') for g2l .
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§5. PG-homology.
5.1. FN-structure, DFN-structure and PG-precosheaves.
(5.1.1) Let PGF(U,C%n) be a vector space of PG-holomorphic func-
tions on an open set UCZEn. Then we can construct on PGF(U’é&n) a
locally convex topology as follows. Let
K, € K, EXK,C K3c-~------@ng----f—-——+U, &;joxmj U ‘
be a sequence of compact sets in U. (Ki@Ki+l means Ki=Ki+1 .)
Note that for any compact set KCU, there exists N2z0 such that KC:KN.
Let
Py (£) 3= leka(l+|z|)_k|f(z)! for fe . T(U,gpn) ( m=0,1,--).
Then we have a countable sequence of semi-norms (pm,k) (m=0,1,2,----,
k=0,1,2,---). It follows from the Weierstrass convergence theorem
that with this semi-norms PGF(U’@&n) becomes complete and hence a
Fréchet space. In other words this locally convex topology is given
by a fundamental system V(I;e) of nbds of OEPGT(U,G&n) :
V(I;e):= {fePGI‘(U,Omn) : pm,k(f)<€ ,(m, k) €T }
where I runs through the finite subsets of NXN .
It is easily seen that B is bounded in PGT(U’Ghn) if and only

if for any f€B Dg?é,,(‘lﬂz')-k [£(2)|¢ Mm,k< +o for every m,k€ N.

(5.1.2) The locally convex space PGF(U’@bn) is nuclear. This locally

convex topology is compatible with the one induced from T(U,O&n).

(5.1.3) Let (x,@&) be a smooth affine variety in Y. Then PGF(U,@&)

has a localiy convex structure of Fréchet-Nuclear for any open set
- S, _ s . _

UCX. In addition PGI‘(U,OX) = PGF(U,@&) is a Fréchet-Nuclear space

in the Cartesian product topology. Again a sequence of compact sets

in U as in (5.1.1) defines semi-norms P x by
L
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P,k (E1rfare oo rfg):= Py g (£7) + Py p (£5) 4 eveeee 4 py y (£)
and the semi~norms (pm k) determine the locally convex topology of
14

PGI‘(U,O)S() of type FN.

(5.1.4) Let ¥ be a PG-coherent 0X—Module. Then for any open set
UCX, the space TI'(U,% ) has a natural topological structure of

Fréchet-Nuclear. If we have a chain of PG-syzygies :

0—-—._)@!;(‘2—]—(—!—4@1;2”__]{&'_} -..‘.n-co ;0§| k' }0;‘._._6—} y — 0

where ki are PG-morphisms, then we set

.= m £
PGF(U,?” ) := Image of ( PGI‘(U,@X°) ruo,#) )
Then PGl"(U,.ﬂb’) is a closed subspace of T(U,%) and has a FN-structure .

induced from I'(U,%).

(5.1.5) We define the space g% (U) as the strong dual of L.I(U,&).

Then A% (U) has a topological vector space structure of type DFN.

(5.1.6) Then a PG-precosheaf 8% is defined as follows:
For an open set UCX, A% : U r—— BF (U) is a functor. The exten-
sion map pg : BF (V) —— BF(U) is defined as the transposed of

the natural restriction map resd

v 1,,GI‘(U,Q') ———pl (V, F) for an

open set VCU.

5.2. Supports.
A S e
(5.2.1) Let A_(X)=(U;);¢; be a PG-covering of X. Let N(KU(X))
denote the nerve of the covering ﬁo(x).‘ For a element ge'rrjvTUi_.izv
~ fo,~ i? °
we define the support as following:

" o s . pt+l )
SuppN(Ac(X))(g)o_ { S—(lo,..,l’)GI l gio"..iP # o } .

10
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(5.2.2) .,We define the subcomplex K(g) of N(?\o-(x)) as the set of

all simplices o, o<s for some seSuppN(ﬁ«(X)) (g) . Note that K(g) is
locally finite in N(?\c-(x)),i.e.,for every seN(ﬁr(X)) the set{ teK(g)l
(t,s)eN(?&,(x))} is finite, since A¢(X) is an open covering by re-

latively compact open sets which is locally finite.

5.3. PG-homology with coefficients in PG-precosheaves.

(5.3.1) We define. :

cp(’i,(x),,ag y:=TT BF (ug ).
(fo.'"

e 1
ip) 0 ¢

(5.3.2) We can define the coboundary operator

bp-—l : Cp(xﬂ’(x)roa? ) ————> Cp_1(3¢(x) , OF )
by the formula
P .
o= - J UiO"""""t‘P
’ap-l(gio ------- iP)' _‘g (-1) per_M,‘;___MP (gio----—-ip
where pgu--.-:—-ip is the traﬁ;posed operater of the restriction map
by em S o
~ ‘ P
reslto—-Tiy .

| { LR

(5.3.3) Since K(’ap__l(g))C K(g), the boundary operator ap-l is well~-
defined and we obtain thus a chain complex ( c.(ixq(x) CRF ), 9 ).

Their p- th homology will denote by Hp(ﬁg—(x) ' OF ).

5.4. PG-homology with supports.

(5.4.1) For geC_(Re(X), HF ), we define: Suppa X) (g):= U U, -
p A )

(5.4.2)‘ If ¥ is a family of supports on X, then we define :
Y oA~ _ . |
CpBe), &) :={gec,Bex), &F) | suppg(y) (@ € ¥ § .
One readily verifies that a . T -
b4 Suppgv(x) ( 9p-19’ - SuppA‘(x) (9) here

fore we have a subcomplex ( C‘ﬁ(ﬁf(X)', BF), 9 ) of ( Ce(Be(X) ,ﬁ;‘),a)_

i
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The homology of above complex will be defined by
Y a o y
Hy By (X), BF) 2= Ho( Co(R (X), 2F).

(5.4.3) Let ?\O(x)=(U and 'z‘\p(x)=(vj) be two PG- coverings of

)ieI
X such that 3o(x)< ’Ap(x) . Then a refinement map 1t :J—I induces a

i jeJd
chain map Tg : C.(ﬁp(X) 1 BF ) ——> c.(ﬁo(x) , BF ).
For g€ Co(R_(X),®F ), we can see Supp, (1,(9))C U,
p A Tinb¥p 1
Eay s
where A = AO(X), B = Suppgp(x) (g). Hence ,if Suppap(x) (g) € ¥, then
Suppy (X) (t(g)) €Y¥ . So we have a chain map
Ty: Co(R (X), 85 ) ————> CL(B (X),2%),
and consegquently a homomorphism
Y a Y oA
—_—
Hp(l\p (X) , %) Hp(Ao(x) BF )

which is independent of the choice of the refinement map Tt

(5.4.4) Thus we can define :

Y ol s oY
Hp(x,ebf) 1= }_;gnp(ﬁc(x),w).

{5.4.5) Similarly, for a closed subvariety ZC X, we define

.

N - A ; . .
Co(A(X) ;67 ) =1 g€ C (A (X); 85 ) : SuppAc(X) (9)cz }

Then we get a subcomplex ( CE (ic(x) 1 2% ),9 ) and define :

HE (B (X) 109 ) := H ( Co(R (X):08) ).

P
Now we can also define

Z N .
Hp(X;.&?’) i= }%HP(AU(X).M) .
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§6. Relative duality.

6.1. Dual pair of supports.

(6.1.1) Let ® be a family of supports on a topological space X.

The dual family v of ¢ is defined as follows :

y := { TCX is closed | TNS is compact for all Se€ ¢ } .

The dual family=Y is also a family of suppots on X.

A

(6.1.2) A pair of families of supports (9¢,¥) is called dual pair of

families of suppdrts if

(i) ¢ is the dual family of ¥ , and
(ii) ¥ is the dual family of ¢ .
If X is locally compact and (¢,¥) is a dual pair of familles of

supports on X, then U s=x and U z=x
Se ¢ zey

6.2, Locally convex topology on PG-chains and PG-cochains.
(6.2.1) Let Y be a familv of supports on a smooth affine variety

)

(x,@x) in @ and ﬁc(x)=(U be a PG-covering of X. For any set

i‘ieI
72CX, we define :

A x|, = Uigﬁc(X) : u,Cz}
and if Z€V¥Y , then we now define :

A . b o= - D, . .

CqBs (0157 89) 2= g mefio (%) 522 Uigeneniy)
This is a countable product of locally convex spaces of type DFN.
Hence we get a subcomplex ( C.(?\O(X) IZ;,ag; ), 3 ) of PG-chain comp-

lex ( CH(R_(X);0%), 5 ).

(6.2.2) Let Z,2'€¥ such that Z2C2'. Then the chain map N(KU(X) )

— N(ﬁo(x) [Z,) induces a chain map :

13
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.z A A \
g Cq(AO(X)IZ;b?) cq(Ac(xHZ.;,a?)

given by
g

2 _
JZ'(g)iO".i%:_{o
i%)ecq(ﬁ,(X)lz;.aaF) .

iol"it if7 Uiso.oo'Uite ?\O(X)Iz” —_

otherwise

where g={qg.
9910 .....

(6.2.3) Hence we get a system of injective topological homomorphisms

on the partially ordered set Y (ordered by inclsion). Obviously

Y a \ «
A (X); = A ; .
Cq(By (X 2) z\e'\y Cy o (X) | 518%)
So we can define a locally convex topology on CZ(%O(X);J%F) by

im cq(AG(X)IZ;M).

e

setting: Cg(ﬁo(X):l%F)==

3

(6.2.4) Let (9,Y) be a dual pair of families of supports on X.

Then for Ss€ ¢ , we have a exact sequence

g, a . roj q,4 .
pcC A (x) ;g ) B2 — VAR (X) [y g7 F) — 0
where proj is the projection. We define
pcCHGIAR (X) ;) 2= Ker( pCFA_(X) ;1 F)——,CHE (X) 4 g7 F))

Then we get a subcomplex ( PGC'(SIf\.O(X);gﬂ , 8 ).

(6.2.5) For any two S,S'e ¢ such that S CS', the projection
9.4 . 91 .
pcC (Ao M) ly\g7 #) pcC By (X) Ix\g 11 F)
induces the natural map:

pCl (IR (X))

q Y .
pcC (g A, (X) ;).
Hence we have

QA (x); %) = 1im _c3(_|1A_(X);
pCo By (X): F) = Lin, pgC (g3 (X); F)

(6.2.6) On the other hand, we have natural topological inclusions:

a8 : R (%) a3 . ,
pC B X) | g1 F) —— [ CHIR (X); F) A (X) g, iF) .

4
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So, defining the extension maps

S, c9; ; .. 9 .
Jgr ¢ pCl A (X) | gi F) ocC (B (X) | g5 F)
by
£, . .
.S e lgeece-i if U, ....:.. CS
Jsl(f)ioocooi"—{o t 1o l‘

otherwise.

We can also write the above locally convex topology as
q. . = 14 d,.2 .

PGC¢(AO(X),5V) ét$ PGC (AU(X)ISU?)-
6.3. Natural pairing between chains and cochains.
(6.3.1) Let (X,@k) be a smooth affine variety in cV and F a PG-
coherent @k—Module. For any open set UCX, we have a natural pair-
ing : F(U) x  AF(U) >
given by ( s, £ ) bFr———<s , £> = f(s).

(6.3.2) Let ﬁc(x) be a PG-covering of X and (¢,Y¥Y) be a dual pair

of families of Supports. Then we have a natural pairing :

d,% . ¥ 4 . ,
PGCq,(AG(X).JF) X cq(Ac(x)..aﬁ) > €
defined by

(£,9) ——— <f,9> =) < £ i 95 0eeeil”
Gorrip 0 g o 13

= 94i . =
where f=(f, t)ePGCq)(AG(X),jF) and g=(g

Y, 2 A
lo""i 3)GCq(AO,(X) :-097).

ioil.i
- This pairing is meaningful because of the finiteness of the sum and

it is compatible with the boundary operator and coboundary operator.
(6.3.3) The above natural pairing is separated,i.e.,

(WE€pCq By ()1 F N0} ) (FgeC (B, (X):2F ) )z <E,g> # 0
( yaecg By (X)7 29 IN(O} ) (3 fep B (01 5)) s <E,9> # 0.

\5
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Theorem (6.3.4) Let (X,ox) be a smooth affine variety in ¢ ana (9,v)

be a dual pair of families of supports on X. Then for any PG-coherent

0_-Module ¥ , we have topological isomorphisms :

X
Y, a ~~ qd,4 ’ .
Ho By (%), 8F ) =2 Hom (L HIR (X)), F): € )

HI(R(X), &) -5 Hom |\ ( BY(R (X),2F); € )

PG
denotes the weak dual.

for any g% 0, where HomCont

16



