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Complexity of Some Strategies Proving Theorems in the Propositional
Logic
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1. Introduction

The unsatisfiability problem or the satisfiability problem
for propositional formulas is one of the most typical NP-complete
problems [2]. It is also one of the most important open problems
in the theory of computation to find out whether or not unsatis-
fiability or satisfiability for any giveﬁ propositional formula can
be decided in deterministic polynomial time of its size, that is,
whether NP=P.

The resolution principle by J.A.Robinson or other complete
resolutions [1l] are powerful enough to decide unsatisfiability or
satisfiability for any given propositional formula in set of clauses,
but they necessitate more time than polynomial time of input size.

On the other hand, unsatisfiability of a horn set of propositional
fbrmulas can be decided by unit resolution or input resolution [3]
and according to N.D.Jones et al. [4] it can be decided in deterﬁiniétic
polynomial time whether there is a unit (or an input) resolution
refutation from any given propositional formula.

Unit resolution and input resolution were introduced
by C.L.Chang [1].

In the propositional logic, unit resolution is an inference rule

to derive a formula (called a resolvent) from a literal and a formula
(a clause) containing its complementary literal.

Unit resolution is equivalent to input resolution, whose deduction
takes a linear form in which center clauses are resolvents and side
clauses are given input clauses. In an input resolution deduction
'center clauses' (resolvents) are prohibited from side clauses.

Thus the input resolution deduction is a linear deduction [1] with

such strong restrictions.
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In order to decide unsatisfiability for a more general class
than the class of propositional horn sets in deterministic polynomial
time, by relaxing the restrictions about side clauses in the input
resolution, we formulated a Restricted Linear (RL) deduction, in which
some center clauses can again be side clauses [5].

From the constructive viewpoint we found that the RL deduction
is formed by layering linear deductions each of which corresponds to
an input resolution refutation. Thus we call this type of RL deduction
by another name: a Linear Layered Resolution deduction based on

Input resolutions (an LLRI deduction).

Next, as an extension of LLRI;, we formulate a nonlinear
form of layered resolution deduction based on input resolutions
(an NLRI deduction) in which resolvents are generated by LLRI from

both input clauses and unit clauses obtained by LLRI deductiomns.

In this péper we propose a more extended version of layered
resolutions based on input resolutions in which (1) linear deductions
corresponding to more general input resolution refutations are layered
and (2) resolvents containing a definite number of literals can be
memorized and used for further resolution deductions. We apply it
to the prppositional logic.

Also we characterize a class of propositional sets of clausgs
which is more general than the class of Horn sets dn [6] and for which

the unsatisfiability problem is P-complete, on the basis of LLRI deductions.

2. A Restricted Linear Resolution (RL)—

A Linear Layered Resolution Based on Input Resolutions (LLRI)

From now on we treaf resolutions in the propositional logic.
We briefly introduce the resolutions below.

Resolutions are inference rules applied to formulas in set of
clauses. A clause is a disjunction or a set L.VL U...VLn of

172

literals Li’ which are atomic formulas such as P, Q, R and so on to

2
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denote propositions or the negation of atomic formulas.
A set of clauses is equivalent tova conjunction among:clauses.

In the propositional logic, the resolution principle introduced
by J.A.Robinson is an inference rule to derive

MUMV. . .UMiUNlUNZU. . .UNj , |
which is called a resolvent and deﬁoted by Res(LUMfJMQJ...UMi,
~LUNfJN£J...UNj), from parent Flauses UJMIVMéV...UMi andn~LVN£JN2U
...UNj, where ~1, is the négation of a literal L. L énd ~L are called
literals resolved upon. The empty ciause 0 is derived from L an&
~L for any literél L.

Unit resolution in the prépositional logic is an inference fule
to derive |

MVMV.. .VMi |
from parent clauses L and “IVMiJMZV;..VMi for soﬁe literal L.

Input resolution is an inference rule to derive a clause from

parent clauses in which one of the two parent clauses is an input

clause, where the input clause is the one in a given set of clauses.

Definition 1 [1]:
Given a set S of clauses, a (resolution) deduction of C from S

is a finite sequence C C2,..., Ck of clauses such that each Ci is

1’
either a clause in S or a resolvent of clauses preceding Ci’ and

Ck=C' A deduction of the empty clause from S is called a (resolution)

refutation from S.

Theorem 1 [1]:
There is a unit resolution refutation from a set S of clauses

if and only if there is an input resolution refutation from S.

3
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Now we define a restricted linear deduction (for short, RL de-
duction),which will be called by another name: a linear layered reso-

lution based on input resolutions (LLRI).

Definition 2:

Given a set S of clauses and a clause C, in S, an RL deduction

0
of Cn with top clause C0 is a deduction of the linear form of reso-
lution in which:

1. For i=0, 1,..., n—-l,‘Ci+ is a resolvent of Ci (called a center

1

clause), and Bi+1 (called a side clause), and each Bi+l is either
in S, or in the set MC as defined in 2. Cn is in MC.
2. (the set MC)
(1 @D C0 is in MC.
(i) If Ci is in MC and j (greater than i) is the least integer
satisfying the following condition, then Cj is also in MC.
Cj is said to be adjacent to Ci'
(2) (Condition)
(i) Cf?Cj.

(ii) The literals resolved upon in obtaining Ci , C

T
cannot be contained in Cj. ‘
(iii)The literals in Cj have their terms unchanged (This condition
is unnecessary in the propositional logic).
An RL deduction of the empty clause is called an RL (resolution) refutationf
Example 1:
Let S={PVQ, pPU~Q, ~PVQ, NPVLQ} be a set of clauses, where P and
Q denote predicate symbols. There is no unit or input refutation from
S, because no unit clause is in S.
An RL refutation from S is as follows:

C0=PUQ,CfQ, C,=P, C3=~Q and CA=D are center clauses, and B1=~PUQ,

a

2
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B2=PUhQ, B3=wPUﬁQ and B4=Q are side clauses, where Ci+ is a resolvent

1

C, and C, are in MC.

of Ci and Bi for i=0, 1, 2, 3, and CO’ 1 4

Next, fundamental properties of unit, input and RL deductions

are shown.

Definition 3:

Let S be a set of clauses, and assume that there is a unit reso-
lution refutation from S. Consider a deduction tree T for a unit reso-
lution refutation from S in which nodes correspond to clauses obtained
by unit resolution.

A clause C is said to be admissible to C' with respect to S
if there is a path from the node for C to the node for C' in a deduc-

" tion tree T, where the path should be traced in the direction from

nodes for parent clauses to nodes for their resolvents.

Lemma 1:

Let S be a set of clauses in the propositional logic, and assume
that there is a unit refutation from S. Assume that a literal L is
resolved with ~L in the unit resolution refutation from S. Then
1. There is a clause C in S containing L such that there is a unit

resolution refutatioﬁ from the union of a set S-{C} of clauses

and a clause C-L.

2. There is an input resolution refutation with top clause C,

in which C is not used as a side clause.

Using Lemma 1, we have the following theorem.
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' Theorem 2:

Let S be a set of clauses in the propositional logic, and assume
that there is a unit resolution refutation from S. Then there is an
input resolution refutation from S with any clause CO’ admissible to
N with respect to S, as top clause. Also there is an RL resolution

refutation from S.

Now we discuss another relation between unit and input reso-

lutions.

Lémma 3:
Assume that there is an input resolution refutation from a set
- of clauses with top clause LUC (L§C).
Then (1) there is an inputrdeduction of L with top clauge Ve,
in which L is not included in literals upon which center clauses are
resolved, and (2) there is an input resolution refutation with top

clause L.

Definition 4:

Let C, and C2 be clauses such that C UL for some literal L.

1

Then C, is called to have a relation R; with Cy-

)

Applying Lemma 3 repeatedly, we can obtain the following lemma.

Lemma 4:
Let S be a set of clauses. Assume that there is an input reso-
lution refutation with top clause C0 from S.

Then there exist center clauses Cl’ CZ""’ Cn=D in the refu-

1 1

6

tation such that Ci+ has a relation R, with Ci for i=0, 1,..., n-1.
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Utilizing Lemma 4, we can obtain the next result.

Theorem 5:
Let S be a set of clauses.. Assume that there is an input reso-
lution refutation with top clause CO’ then CO is admissible to [] with

respect to S.

From the definition of the RL deduction, we have the following

theorems.

Theorem 6:
Assume that there is an RL deduction in which Cj is adjacent

to Ci and‘Ck=Res(C

k—l’Bk) for k such as i+1£k%j. Then there is an

input resolution refutation with top clause Ci'=Ci-~Cj and side clauses

Bk'=Bk—Cj for k between i+l and j in the order.

Theorem 7:

Assume that a linear deduction of Cj with top clause C; such

“that
= iSk&i-
1. Ck+l Res(Ck,Bk+1) for k such as iSksj-1,
2. Bk+l is an input clause or Ci for k between i and j-1.
3. There is an input resolution refutation from Ci', Bi+l"""

' '—c - t=B. — i4+1<k<S
Bj for Ci Ci Cj and B, Bk Cj (i+1£ksj).

Then the linear deduction is an RL deduction.

Thus an RL deduction is formed by layering linear deductions
each of which corresponds to an input resolution refutation. Thus
we call an RL deduction by another name: a Linear Layered Resolution -

deduction based on Input resolutions (an LLRI deductiomn).

7
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It is obvious that an input resolution refutation is also an

RL resolution refutation.

Lemma 8:
Assume that there is an input resolution refutation from S with
top clause CO’ and that Cd:Cl in S. Then there is an input resolution

refutation from S—{C1

} with top clause CO'
From Theorems 6 and 7, and Lemma 8, we have the theorem:

Theorem 9:

Assume that an RL (LLRI) deduction of Cj and C, is adjacent to

3

Ci' Then there is an RL deduction of Cj with top clause Ci in which

any clause in MCexceptCi is not used as a side clause.
3. RL (LLRI) Refutability for the Propositional Logic
From Theorems 6 and 7, and Lemma 4, we have the theorem:

Theorem 10:
Assume that there is an RL (LLRI) deduction of Cj with top clause
Ci' Then there is an RL deduction of Cj with top clause Ci such that

any clause in MC between Ci and Cj has a relation R, with its adjacent

1

clause.

It is concluded from Theorems 6 , 7 and 10 that there is some
input resolution refutation with the specified literal as top clause
for each RL deduction of a clause from an RL refutable set of clauses

with its adjacent one as top clause.

3
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Thus a decision algorithm (Algorithm 2) of RL resolution refu-
tability from a given set of clauses can be constructed by using a
decision algorithm (Algorithm 1) of input resolution refutability
which can be decided by unit resolution.

By Theorems 2 and 5, input resolution refutability from a given
set of clauses with a literal L as top clause can be decided by the
algorithm to determine whether there is a unit resolution refutation
from the set in which the literal L is admissible to ] with respect
to the set.

Algorithm 1 is constructed by gathering and storing the literals
which are generated from the specified literal or its fesolvents bv
unit resolution and contribute to derivation of the empty clause.

Utilizing Algorithm 1 repeatedly, we construct Algorithm 2 to

decide an RL resolution refutability from a set of clauses.

Algorithm 1: (A decision algorithm of an input resolution
refutability with top clause L from a set S of clauses)

Input: S={Sl,S ,Sm}, a set of clauses in the propositional

IERE
logic, and a literal L in S.

Output: 'Yes', if there is an input refutation from S with top clause
L. 'No', otherwise.

Method: The algorithm is as follows.
Let T be a set of literals. T initially consists of the
literal L. Let U be a set of literals. U is initially empty.

V is an auxiliary boolean variable indicating whether new

literals are generated or not.
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Procedure Unit(S)
begin
Vel; TeL; U«9;
while V=1 do
for each Si_gg
for each L,. in S, do
if L, {10
2043
then

begin

Decide whether there is a unit deduction of Lij

from S;

if a deduction exists and some literal in T is

used
then
begin
Te&TVL,,; Vel
1]
end; .

if a deduction exists and no literal in T is used
then
Ue—UVL, . ; Vel
1]
end;
V<0
end
else V<03
if ~L exists in T™VU for some L in T then return 'Yes'
else return 'No'

end

10
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Algorithm 2: (A decision algorithm of an RL resolution refu-
tation from a set S of clauses)
Input: s={sl,sz,...,sm}.
Output: 'Yes', if there is an RL resolution refutation from S.
"No', otherwise.
Method: The algorithm is as follows. V is an auxiliary boolean
variable indicating whether RL deductions exist.
Procedure RL(S):
Ue¢;  i=1;

while im do

begin
LA
while V=1 do
begin
for each LijESi—U_gg

Decide whether there is an input reso-
lution refutation with top clause Lij
from {S

-U,s —U,...,Sm—U} (Algorithm 1);

1 2

if an input resolution refutation exists
then begin Ue-UL 3 V41 end
else V&0
end;
ij_U=Si then return 'Yes'
end;
Ueyb; i=i+l
end;
return 'No'

end. 11
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Example 2:

Let s={PUQVR, ~QUVYW, AWV, VY, PUN, ~AQUAR, QUT, ~TY-R,
~PVU, mPVrvU} be a set of clauses, where P, Q, R, T, U, V and W de-
note atomic formulas (propositions).

There is an RL refutation from S, if we assume Definition 2.

But there is no RL refutation from S, if we take Definition 15 in [5].
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Complexity of Algorithms 1 and 2 by means of multitape Turing

machines is as follows.

Theorem 11:
Algorithm 1 is of time complexity O(nz) and of space complexity

0(n) for an input set of length n. .

Theorem 12:
Algorithm 2 (a decision algorithm of an RL resolution refutability
from a set of clauses) is-of.time complexity O(né) and of space com-

plexity O(n) for an input set of length n.
4. A Nonlinear Layered Resolution Based on Input Resolutions (NLRI)

Here we formulate a nonlinear (form of) deduction by extending
the LLRI deduction in such a way that clauses which consist of a definite
number of literals and are obtained by LLRI deductions can be used 3? side
clauses of other LLRI deductioms.

Definition 5:

We define a Nolinear (form of) Layered Resolution based on
Input resolutions (NLRI) as follows (this is an extension of RL1 in [5]):

If C is a clause containing not greater than k literals, an RL (LLRI)
deduction of C from ’Sl’SZ""’Sm} is denoted by

k-LLRI(Sl,Sz,...,Sm:C).

A k-NLRI deduction of C from S={Sl,82,...,8n} for C being a clause
containing not greater than k literals is defined recursively in the
following and is denoted by |

k—NLRI(Sl,SZ,...,Sm:C).

1. k—LLRI(Tl,TZ,...,Tm:C) for Ti in S is also k—NLRI(Tl,TZ,...,Tm:C).

/3
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2. If there are
k—LLRI(Tl,TZ,...,Tk:L) for a literal L and Ti_in S, and

k—LLRI(Ul,U

2,...,U’J.,L:C) for Ui in S,

then there is

k—NLRI(Ti’TZ"'"Tk’Ul’UZ""’Uj:C)‘
3. The deduction defined by 1 and 2 recursively is a k-NLRI de-

duction.

4, All k-NLRI deductions are defined by applying the above rules.

We can construct an algorithm to decide an NLRI resolution

. refutability from a set S of clauses in two steps as below.

Algorithm 3: (An algorithm to decide a k~NLRI resolution refu-
tability from S)
1. For a literal selected from S, decide whether there is an LLRI
deduction of the literal, and if such a deduction exists, add
it to an input set (by Algorithm 4).
Repeat such a decision until such literals are exhausted.
2. Decide whether there is an LLRI resolution refutation from

the input set and the added literals.

An algorithm to decide whether there is a k-LLRI deduction of
a literal L from an input set (Step 1 of Algorithm 3) is given as

follows.

Algorithm 4: (An algorithm to decide whether there is a k-LLRI

deduction of a literal L from an input set S)
Let' s={sl,sz, ---58_}.

Apply Algorithm 2 for a set of clauses

/%



s %{sl-L,sz

Si—L should not be selected as top clause if Si-L=S..

—L,...,Sm—L}, where

1
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If an LLRI refutation from s' exists, then a k-LLRI deduction

of L from S exists.

If no LLRI refutation from S' exists, then no k-LLRI deduction

"of L from S exists.

Example 2:

Let s—;{PVQVRVT, ARVT, RUVT, ~RIAT, ~RQVIVY, ~TVY, UVaV,

PUQUWVXR, ~WUX, WU~X, ~WYX, ~P~QUVZ, ~VZ, YUrz, A—YU~Z} be a set

of clauses, where P, Q, R, T, U, V, W, X, Y and Z are propositions.

There is a 2-NLRI refutation from S, although there is no 1-NLRI

refutation.
PVQURVT ‘ ~PVQUuVy
ARVT AUVY
/ /
PUQUT ~PUQUVY
RVAT UVev
PUQUR A~PUQUU
/\—RUNT ~U UNV
/ /
PUQU~AT ~rPUQUAT
PVQUT ~PIQUY
. Q = Q

Eventually, we can obtain the following theorem.

Theorem 13:

~PUAQUYV 7

~Vz
~PUAQVZ

YV~ 7
~PVU~QVY

~Y Vny,

TAPUAQUAZ

/"PU/\'QUZ

Algorithm 3 (An algorithm to decide an NLRI resolution refu-

tability) is of time complexity O(n.

for an input set of length n.

15

4k+2

) and of space complexity O(nk)
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5. A Class of Extended Horn Sets

A Horn set is a set in which no clause contains more than one
positive literal.
According to [3], the following theorems hold in the propositional

logic.

Theorem 14 [3]:

If S is an unsatisfiable Horn set, then there exists an input

refutation from S.
Definition 6:
A set S of clauses is minimally unsatisfiable if S is unsatisfiable

and no proper subset of S is unsatisfiable.

Theorem 15 [3]:

Let S be a minimally unsatifiable, input refutable set of clauses,
then there exists a set S' such that S' is a renaming of S and S' is a

Horn set.
We extend these results with respect to LLRI.

Definition 7:
Let C be a set of positive literals. C-Horn set is a set of
clauses each of which contains all the literals in C and at most one

positive literal not in C (@-Horn set is exactly a Horn set).

Definition 8:
Let S be a set of clauses. S is said to be well-partitioned

/b



149

by linearly ordered extended Horn sets if there are Ci~Horn sets for

1%4i¢n such that:

1.  Each clause in S belongs to at least one of C,-Horn sets.
) .
2. Ci"ci+l for each 1i.
3. C =0.
n

We can obtain the following results.

Theorem 16:
Let S be an unsatisfiable set well-partitioned by linearly ordered

extended Horn sets, then there is an LLRI refutation from S.

Theorem 17:
It can be decided in O(n3) time and in O(n) space to decide

whether a given set of length n can be well-partitioned.

Definition 9:
A set S of clauses is minimally LLRI refutable if there is
an LLRI refutation from S and there is no LLRI refutation from ény

proper subset of S.

Theorem 18:

If S is a minimally LLRI refutable set of clauses, then there exists
a set Sl such that:

1. Sl is well-partitioned by linearly ordered extended Horn sets.

2. SUS0 implies Sl’ where S0 is a set of clauses each of which contains

two literals.

According to [4] and [3], it can be concluded that the unsatisfiability
problem for Horn sets in the propositional logic is P-complete.

Consider the transformation for a Horn set S={Cl,c yeeesC }
2 m

17
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. = \ V) v ~ \//v \V/
TFl: S»S {Clu,\L,Cz A PRSI ,Cm/l., LULl L2, Ll\/Lz, Ll L2, "'Ll lez } .

where L, L1 and L2 are atoms not appearing in S.
Obviouly S' is well-partitioned by {LVLl}—Horn set and p-Horn set.
S is unsatisfiable if and only if S' is unsatisfiable. Thus we obtain

the next theorem.

Theorem 19:
The unsatisfiability problem for propositional sets well-partitioned

by linearly ordered Horn sets is P-complete.

6. Concluding Remarks

In this paper we defined an extended version of layered resolutions based
on input resolutions proposed in [5] which are extensions 6f unit and
input resolutions. We applied the resolutions to the propositional
logic.

We extended the restricted linear resolution deduction proposed
in [5] such that it is formed by layering linear deductions each of
which corresponds to a more general input refutation and called it
by another name: a linear layered resolution deduction based on input
resolutions (LLRI deduction).

Next we formulated a nonlinear layered resolution deduction based
on input resolutions (NLRI deduction), as an extenéion of the LLRI
and RL1 in [5].

On the Basis of LLRI, we characterized a class of pgppositional
sets of claused which is more general than the class of Horn sets and
for which the unsatisfiability problem is P-complete.

It is left for future study to characterize a class of propositional
sets of clauses for which the unsatisfiability problem is P-complete,

on the basis of NLRI.

/8
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