goooboooogn
0 3810 19800 180-194

180

An Exsended Iteratiorn Statemens ard

Its Computability

Takeo Yalku, JAPAN, Departzent of Mathematical Sciences,
Tokai University; Hiratsuka; Kanagawa 259 - 12.

Kokichi Futatsugi, JAPAN, Computer Science Division,
Elecirotechnical Laboratory, Sakura-mursa, Niihari-gun,
Ioaraki 300-31.

Akeo Adachi, JATANY, Departmens of icaderic and Sciensi

Progrars, ISM Japen, Ropporsi, llinato-iu, Tclyo 1CE.

ASSTRACT

A "loop n P" stetement generates a chain of the iteration

module P with length n.

The ™loop" stztement is extended and a new control

structure ﬁsubstitution", implemented by "call" statement,
is introduced. A "czll n" statement genefates a k-ary tree
(k 2 1 is a constant) with depth n of the substitution
module. The statement generates E&i occurances of the sub-
E . =0

stitution modules without any dyramic change of the control
variaples during the. executiocn.

Computability of the static programs, in which the_
control variables are not changed during the exécution, is

extendedld o zxronential tire computation from rolyronmial

time computation.

181

(WY

1. INTRCDUCTICN

The class of progrzms are considered in this pager

with the control variables fixed by inisial i

8]
o]
s
ct
<
]
|..J
<
o
u

end not changed dynamically during the execution. The

programs are said to be static. In a static program, image

of computation structure can be statically found with respect.

to given input values before running. The static programs
thus have the following vroverties

(1). static program is éasier to be ccmprehehded than
pon-static program (2, 6, 7I.

(2). The runniig time of static progrzam can be exact-

1y evaluated before execution (cf. [1, 4]).

It is noted that "loop n P" statement - generates a chain P

—y
with
of length M of loop module P. A staftic nrogram the iterasion

(loop statements) is executed in polymomial time, and the
runniﬁg time of it can be exactly evaluated belfore running.
On the other hanmd the programs with exponential time com-
plexity are not static with the iteration (loop statements).
In general, these programs with exponentizl time complexity
dynamically change control variables during computation. The
changes violates the above properties (1) and (2).

We extend in Section 2 the iteration statement "loop"
and introduce a new control structure "substitution." The

Substitution is implemented by "call" statements. A "call n

n

182

=

statement generates a k-ary tree (k is = constant) of <the
substitution module with depth n. Thus the statement in
static programs allows the exponential runnin timg com-
putation.

Consequently, the computation power of the stafi
programs is extended to exponential time computation from
polynomial time computation, conserving above properties
(1) and (2). The extension is important from following
reasons.

It is necessary to conéider,programs with exponentizl
computaticn Time, since we occasionslly encounter this tyve
of oroblems such as NP complete probilems revresented by known
algcrithms. We note that even programs with compuvation

“

time bounded by a2 linearly eiponential funcition £(a) = %
(k is a constant) is indeed alrmost intrzctable in practical
computing. It is thus imp&tant to evaluate exacily the
computation time of a program before running. Then we can
know the tractable range of input values fqr'the program,
which is possibly almost empty.

The subétitution is implemented as follows. Statements
"call n" and "recall" are employed for implementation of

the substitution. For example, a statement "call n do recall ;

recall ; P end" is Zdefined syntactically as

call n do recall ; reczall ; P end

—> <¢alln - 1 do recall ; recall
call n - 1 do recall ; recall
P (n > 1)

—> P (n=1)

’

’

183

P end ;

P erd ;

Two "recall"™ statements are both sustituted by "call

n - 1 do recall ; recall ; P end" statements. Thus the

computation structure gernerated by the substitulion state-

ment above is a2 binary tree of the subst

ni

B

tution moduleP with

depth n. Accordingly, a statement "cz2ll n" possib ly gere-

n=' ; . . . 5 .
rated I k' occurances of the sustitution module P, where X

iz

is the number of recall statements in "substitute" scare

between do 2nd end stztements. We note

that an iterziion

"loop n do P end" is represented oy the substitution as

"call n do reczll ; P end". A program with call - reczll

statements is called a "recall" progran.

FolloWings are examples of a static recall program that

computes a expornential function f(n) = 27

tion tree with respect ton= 2 [2],

EXANMPLE 1.

, and its computa-

\n

pPage ¢
Fi-?ure 1.

184

begin

vyl

call n do
recall ;
recall ;

y¢< ¥y + 1 end end ;

F}}ure 1.-

185

2. STATIC RECALL PROGRAMS

Programé with extended iteraﬁion are introducea.in
this section and are called recall programs.

A loop statement generate a chain of iteration modules
and control thellength of the chain. The computation’ét-
ructure is tﬁus a dhain generated by a loop'statement, where
a vertex corresponds to the iteration modules. We extend
here the iteration to generate.a tree of iteratiorn modules
from a chain., The extgnded iteration statement is called

2 call statement.

modules (kx is a fixed positive irnteger), and control the
depth of the tree. A program with call statement is called
a2 recall program.

Only static programs are dealt in this section, in
which the oontrol varialbles are fixed by input values and
not changed during the camputation. Now we define the
syntax and semantics of a static recall program syntactical~

ly as follows.

186 | | | 8

DEFINITION. Let X and S be fixed mutually disjoin
countable sets of symbols. An element of X and S is called

a control variable a simple variable, resvectively.

Let Var denote the all variables

Var= X V S

A static recall program is a sequence of statements over Var

defined recursively as follows.
{atomic statementy :: as expected

(asignment statement)

{ call statement) ::= call x do

¥This stament list includes at least

one 'recall' statement.
{statement) ::= (atomic statement) |

{call = statement) | recall
{statement list) ::= (statement) |
{statement) ; {(statement list?)

{static _ s -
recall program) ::= begin{statement list) end

where u, v in S, x in X, and ¢ is an integer. ()

#x this ¢statement 151D Jues not
l"'clude_ 'N.LA”’,

187

DEFINITION. A furction ¢ : Var— N is called a memory

confizuraticorn, The set of memory configuratiorns is denoged

by C. The excansion expan(?, Q) of a static recall program
P in a memory configuration < is a sequence of atomic sta-
Tement defined syntactically as follows.
1. if P is an atomic statement s,then
expan(s, ¢) = s.
2. if P is a call statement P call x Q, where
Q = do sl ;' recall ; s2 ; recall ;
ees 3 recall , s end
and c(x) > 2, then

expan(?, ¢)= 31 ; call x -1 Q

e

s2 ; call x -1 Q

e

s N-1 ; call x-1Q ; sN
3. if P is a call statement
P= call x Q, and c(x) = 0,
then expan(P, c¢) = & (null string),
where sl, s2, ..., sN are statement lists without
recall statement.
4. if P is a program begin sl ; s2 ; ... ; sN end
(si is a statement 1S i< N), then
expan(P, c)

= expan(sl, ¢) ; expan(s2 ; ... ; sN, c).

(2)-

10
The reslul P(c) of a static recall program P for a
configuration ¢ is the configuration 4 such that 4 is
obtained by apvlication of expan(P,) %to c. A function ¥ =

f(a) is compﬁted oy a program P if and only if (i) P is

over a set { x} of control variable and a2 set S of simple
variables, and (ii) there exists a configuration ¢ and y in

S such that c(x) = n, (s)= O (for any s in S)and

P(c)(y) = f(n) for any n in N.

1.‘m£(E',¢) ‘ .
A conmputation time of 2 for ¢ is the number of all

atomic statements occured in expan(P,). The time complex-

, the =
ity of a program P is a fuxnction timeP : C—»> XN of irnitial

memory configurations C to N, where timeP(c) = time(P, c).

ct

Example 1 is a static rec=ll program that computes
.. o . . AT
the function f(n) =2 .
A tree type function is defined inductively as follows :

i. Pollowing basic functions are tree type

f(n) = ¢, c¢ is a constant
ri— ~ l) n

f(n)= Z k" (1 +kK+k+ ... +¥ = k - 1).
i1=0° R

k-1
ii. If f(n) and g(n) are tree type then f + g and

f g are tree type.

It is noted that any polynomial function and any

exponential function of the form €™ are both tree type.

Let P be a static recall progrzm over the
If a

THEOR=EM 1.

control veriable X = {x} and the simple variables S.

memory configuration d is suck that 4(x) = n and d(s) = 0

(s in S), then time(P, d) is tree type over n.

——

Remark. For any tree type function f(n), there exists
a static recall program P such that time(P, d) = f(n), where
d is such that d(x)= n (x is the control variable) and

d(s) = 0 (& is arbitrary simple variable).

?

)}

5 is noted that the rurmnirz time time (2, &) o
d can te evaluated symtactically ard exzcily vefore rumnin

frem Syntaxes (1) and (2).

Pollowing theoresm skhows the computation power of thre

static recall programs on successor 'function.

THEOREM 2. A function f is tree type if

and only if there is a static recall program P

for

-

on successor

function such that P computes f,

190

4. CONCLUDING REMARZKS

We have restricted the study in this paper to staiics
of controil structure in progfams during the execution. The static
programs have two properties such that

(1). the control structure is simple enough to be comprehendegd.

(2). the execution time can be exactly evaluated before
running. . o
the ' . _

On the other hand, static programs with "loop" itera-
tion rur in polymomial time.with respect to input wvalues.
It is, however, necessary to consider programs with expo-
nential computation time.

rom these considerations we extended iteration arnd

i

introduced the substitution, which is implemented By "czll®

7

and "recall" statemenits. Prograzms with the substiftution are
called recall programs. Static recall programs are noted <o
conserve zbove properties (1) arnd (2). As a2 result comput-
ability of the static programs can te extended to linearly
exponential time computatiorn fr&m polynomial time computa-
tiorn. In the programs, computation time is exactly evaluat-
ed before running.

From theoretical interest, we introducéd in Section 3
a sequence "semi static reczll program” of static recall
programs; Then we showed that the class of all functions

bounded by k - fold exporential functions is equal to the

i
e
class of all functions computed by fthe semi static recall
orograms with lergth k. Hence the elementary funcilons are

classified by the lerngth of se static programs,

7

In practical view several issues lie in this theofy.

1. Reretitior time in call statement is restrict ed to
control variable itself in this paper. But we can consider
that the time can expressed by expresseions of input variables.
This case is not considered in fhis paper. |

2. Explicite expression of élgorithm are not provided

in this . pager, tut we can construct 1%, that evaluzale the

3]
(0]
3]
ct
0
'.‘
[4]
(o)
H

actical cormruting sysiems is not explicitely pro-
vided, but it is directly coxmstruciinle from syntaxes (1)

and (2) of the statements.

0
0
5
(0]
&
’_l
p‘
@)
(0]
Q
(o]
R
I

In the future of tkis fheory,'follbwin
~gidered : }

4. Syntax (1) should be extended to practical use,
For example "if then élse"'statement should Tte added to it.

5. (Call - recall statements have another aspect, in
addition to an extension of the iteratioﬁ. It is very
strong restriction of recursive subroutine call. - If we
take off the statics from programs; then recall programs
can indeed compute the primitive recursive functions

directly, in some sence. On the other hand if we attache

192

data structures to programs, then call recall statemernits are

on of

k4

very simple, vossibly run in shorter {time, implementat
recursive subroutine call in scme resiriction. We prorose

"call while { logical expression) " statement in above serse,

. ——

1S

REFERENCES

(1). A.‘Adachi, T. Xzsai and E. Moriya, A theoretical s

study on the time analysis of programs, Lecture Nostes

in Computer Sciences 74 (1979), 201 - 207.

(2). K. Futatsugi and T. Yaku, Flow trees ard their com-

putation trees, 19739 National Convention Record of

IECE Japan (1979), (6) - 123, (in Japanese).

(3). L. Ralmar, Egyszeru pelda eldonthetlen aritmetikai

problemara, Mthematikai es fizika lavok 50 (1343),

1-230
(4). T. Xasai and A. Adachi, A characterization of time

complexity by simple loop programs, J. Comput. System

Sci., to appear.
(5). A. R. Meyer and D. M. Ritchie, The complexity of loop
| programs, Proc. 22nd ACM National Meeting (1967),
465 - 469.

(6). ™. Yaku and K. Futatsugi, Tree structured flowcharis,
IECE Japan Revort AL 78 - 47 (1978), 61 - 66

(7). T. Yaku and K. PFutatsugi, Flowtrees and derivation

trees of program texts, Proc. 20th National Conven-

tion Inform. Processing Soc. Javan (1979), 281 -

282, (in Japanese).

193

APPENDIX : An example of extended iteration
(restricted recursion) program.

procedure HANOI

/* purpose */

/* move n disks from tower A to tower C */
/* data */

/i A, B; C ; the names’ of towers . */

/*n ~; the number of disks. ; the */

/* disks are labeled by 1, 2, */

/* ...; n from the smallest one */

/* to the largest one. */

/* X1,X2,X3; array(d .. n) of name

/* method */

, ot
/* initially, the disks are 1ocatedf3he */
/* tower A */

begin

depth‘e 0 ; index¢ n + 1 ;

X1 (depth) « A ; X2(depth) « B ; X3(depth) <« C ;

call n do ‘ |
depth ¢« depth + 1 ; index « index - 1 ;
X1(depth) « X1(depth - 1) ; X2(depth) «

X3(depth - 1) ; X3(depth) ¢ X2(depth - 1) ;

recall ;

writeln 'move disk', index, 'from',
\ ’
-\ -

X1 (depth), 'to', X3(depth) ;
X1 (depth) & X2(depth - 1) ; X2 (depth) <«
AXl(depth - 1) ; X3(depth) & X3(depth - 1) ;
recall ;

index¢« index + 1 ;. depth ¢ depth - 1 end end ;

194

Figure 2. The flow tree of
procedure HANOI

Figure 3. The computation"
tree of procedure HANOT

forn = 3.]

[AeA e

-
Ef_o; e 4|

B

B o»
[

V)€
Red)e B
[igye ¢

LJS |

xzid)e p3ed-1)

movedisk 33 Atel

% (e %'(ﬁ>J [AL_ u

1
(A ERAAT

12

(A B n
Xord s & Mef-1) BA _ M
ruie3dnl {c ¢

—
.

Nmove AiskE index, oo,

7

xiteh « ¥
f20d) & XA
30d) « X2 td-D)

[recat |

1) T¥, X34
|

A .
¥
N‘wz:‘x]rmr AAART)
e e rzd-n | lgeec
M (d) & x2(d-1) CBIB W

ald) & xicd-13
xad> & x3 -0
F3d) € xa (d-1)

4 .
A A A %t
E.fé_j’*_ *z

o

A

o (A & xadd=1
xe s &= xped-1>
yabexlyd-«)

v
AAAB W
BCBA
CBee £

X1 () € ¥e@dT7
x2 @) € xyd-v)
X3.0d) € X5 ¢d-1)

TUCLia xluﬂ—x) 1

[AAT AAT i
[Bc A R e ngd) BCAC gy
cte wu{ |IBerd-n CBBB 15

xu?ﬂ- X2y] [A ATR
lzld)(—)\,(a(-l)~ BrALC
Aed) € X3 (d-1)%

ckep
(et dedy

