A note on the stable \mathbf{Z}_2 - cohomotopy groups

by Goro Nishida

§ 0. Introduction

Let X and Y be based \mathbf{Z}_2 - complexes and let $\widetilde{\mathbb{Z}}^{n,m}(X;Y)$ denote the group of stable \mathbf{Z}_2 - maps of degree (n,m) (see §1 for the definition). If $Y = \Sigma^{0,0}$ is the o-sphere, then $\widetilde{\mathbb{Z}}^{n,m}(X:\Sigma^{0,0}) = \widetilde{\mathbb{Z}}^{n,m}(X)$ is called the stable \mathbf{Z}_2 - cohomotopy group of X, and has been studied by various authors ([3], [4], [7] and [4]). The purpose of this note is to describe it in terms of non equivariant stable homotopy for certain X and Y.

To state our result recall that the stunted projective space P_a^b is defined for all integers a and b as a stable complex by the well known periodicity. We shall define in §2 a stable map $u: \Sigma^{-1} \longrightarrow P_a^b$ for $b \ge -1$ and a well defined stable homotopy type P_a^b/Σ^{-1} . Let S^q denote the q-sphere with the antipodal in volution. Then our results are,

Theorem 1. Let q be a positive integer and let X be a based \mathbf{Z}_2 - complex with the trivial \mathbf{Z}_2 - action. Then for any n, m \leftarrow Z,

there is a natural stable isomorphism

$$\bar{\alpha}:\tilde{\pi}^{n,m}(X:S^q_+)\cong\tilde{\pi}^m(X:P^{n+q}_n).$$

Theorem 2. Let n,m and q be integers such that n+q>0.

Then for any based \mathbf{Z}_2 - complex X with the trivial \mathbf{Z}_2 - action of dim. $\langle n+m+q \rangle$, there is a natural stable isomorphism

$$\alpha : \widehat{\pi}^{n,m}(X) \cong \widehat{\pi}^{m}(X : P_n^{n+q} / \Sigma^{-1}).$$

Here $\widetilde{\mathcal{T}}^{\mathbf{m}}(:)$ denotes the usual group of (non - equivariant) stable maps of degree m. If we fix, then the above groups are all generalized cohomology theoryes and by <u>stable</u> we mean that those isomorphisms commute with the suspension isomorphism. We should mention about the dimensional restriction in Theorem 2. If we use a homotopy type $P_{\mathbf{n}}^{\varnothing}/\Sigma^{-1}$ (defined in a non - canonical way), we can state that there is an isomorphism (not natural!)

$$\widetilde{\mathcal{T}}^{n,m}(X) \cong \widetilde{\mathcal{T}}^m(X: P_n^{\emptyset}/\Sigma^{-1})$$

for any $\underline{\text{finite}}$ trivial \mathbf{z}_2 - complex \mathbf{x} .

Let n=m=0, then $P_0^{\infty}/\mathcal{Z}^{-1}\simeq RP_+^{\infty}/\Sigma^0$. In this case our result is just the theorem of Segol [?]. When n>0 and X is a sphere

similar results are obtained by [η].

Finally we state a conjecture which is seen to be equivalent to the conjecture of Mahowald ['] by using Theorem 1 and 2. Let $\pi_{n,m} = \tilde{\pi}^{-n,-m}(\underline{\Sigma}^{0.0})$ be the stable (n, m) - stem. Using the inclusion i $\underline{\Sigma}^{p,q} \longrightarrow \underline{\Sigma}^{p+1,q}$, one can define an inverse system $\{\pi_n,m\}_n$.

§ 1. Some notations

First we recall some notations. If X is a \mathbb{Z}_2 - space, $\mathbb{X}^{\mathbb{Z}_2}$ dinotes the fixed point subspace. $\mathbb{R}^{n,m}$ denotes the representation of \mathbb{Z}_2 on \mathbb{R}^{n+m} given by $\mathbb{T}(x_1,\dots,x_n,x_{n+1}\dots x_{n+m})=(-x_1,\dots,-x_n,x_{n+1},\dots,x_{n+m})$. $\mathbb{Z}^{n,m}$ denotes the one point compactification of $\mathbb{R}^{n,m}$. The unit sphere in $\mathbb{R}^{r+1,0}$ is a free \mathbb{Z}_2 - complex and denoted by \mathbb{S}^r . Let X be a based \mathbb{Z}_2 - space, then $\mathbb{Z}^{n,m}\mathbb{X}$ denotes the function space $\mathrm{Map}(\mathbb{Z}^{n,m},\ *: X,\ *)$ with the compact open topology and the usual \mathbb{Z}_2 - action. The equivariant infinite loop space of X is defined by $\mathbb{Q}_{\mathbb{Z}_2}(\mathbb{X}) = \lim_{n \to \infty} \mathbb{Q}^{n,m}(\mathbb{Z}^{n,m}\mathbb{X})$ similarly to the non - equivariant case. It is

A \mathbf{Z}_2 - spectrum $\mathbb{X} = \{\mathbf{X}_n, \mathcal{E}_n\}$ is defined [3] by \mathbf{Z}_2 - spaces \mathbb{X}_n and structure maps $\mathcal{E}_n : \mathcal{Z}^{1,1} \mathbf{X}_n \longrightarrow \mathbf{X}_{n+1}$. Given a \mathbf{Z}_2 - complex \mathbf{X} the suspension spectrum (with a shifted dimension) $\mathbf{Z}^k \mathbf{X}$ is defined by $(\mathbf{Z}^k \mathbf{X})_n = \mathbf{Z}^{n+k}, n+k \mathbf{X}$ where $\mathbf{k} \leftarrow \mathbf{Z}$, and is reffered to a stable complex and sometimes written as $\mathbf{Z}^k \mathbf{X}$. A \mathbf{Z}_2 - spectra map (or stable

known [2] that if X has a \mathbf{z}_2 - homotopy type of a \mathbf{z}_2 - complex,

then so does $\Omega^{n,m}X$ (and hence $Q_{\mathbf{Z}_2}(X)$).

 \mathbf{z}_2 - map) is defined similarly as the non - equivariant case.

Let X and Y be stable complexes. Then the group $\check{\overline{\mathcal{L}}}^{n,m}(X:Y)$ of stable homotopy classes of stable maps of degree (n, m) is defined by

 $\widetilde{\mathcal{H}}^{n,m}(X:Y) = \lim_{\longrightarrow P} \left[\sum_{i=1}^{p,p} X_i, \sum_{i=1}^{n+p,m+p} Y_i \right]_{\mathbf{Z}_2}.$ If (n,m) = (0,0) it is sometimes denoted by $\{X,Y\}$ \mathbf{Z}_2 .

 $\tilde{\pi}^{n,m}(X:\Sigma^{0,0})$ is simply denoted by $\tilde{\pi}^{n,m}(X)$ and called the (n, m) - dim. Stable \mathbf{Z}_2 - cohomotopy group.

Given a \mathbf{Z}_2 - spectrum \mathbf{X} , we can define the associated

 $\mathbf{Z}_2 - \Omega$ - spectrum $\mathbf{Q}\mathbf{X}$ by $(\mathbf{Q}\mathbf{X})_n = \varinjlim_{\mathbf{Q}} \Omega^{\mathbf{q},\mathbf{q}} \mathbf{X}_n + \mathbf{q}$. Note that $((\mathbf{Q}\mathbf{X})_n)^{\mathbf{Z}_2} = \varinjlim_{\mathbf{Q}} \Omega^{\mathbf{q},\mathbf{q}} \mathbf{X}_n + \mathbf{q})^{\mathbf{Z}_2}$ is an infinite loop space. Hence the fixed point spectrum $(\mathbf{Q}\mathbf{X})^{\mathbf{Z}_2}$ is an Ω - spectrum which we denote by $\mathbb{E}(\mathbf{X})$. Eviclently we see that $\mathbb{E}(\sum^{\mathbf{Q},\mathbf{q}}\mathbf{X}) \cong \sum^{\mathbf{q}}\mathbb{E}(\mathbf{X})$. The infinite loop space $\mathbb{E}(\mathbf{X})$ 0 is denoted by $\mathbb{E}(\mathbf{X})$. Clearly \mathbb{E} and \mathbb{E} are functor. We remark that $\mathbb{E}(\mathbf{X})$ is not equivalent to the fixed point subspectrum $\mathbf{X}^{\mathbf{Z}_2}$. Given a \mathbf{Z}_2 - complex \mathbb{X} and $\mathbb{E}(\mathbf{X})$ consider the stable complex $\mathbb{E}(\mathbf{X})$ i.e., \mathbb{X} with dimensions

sion shifted). If n and m are positive, then $\mathbb{E}(\Sigma^{n,m}X)$ $= \mathbb{Q}_{\mathbf{Z}_2}(\Sigma^{n,m}X)^{\mathbf{Z}_2}.$ Therefore for negative n or m, we often write as $\mathbb{Q}_{\mathbf{Z}_2}(\Sigma^{n,m}X)^{\mathbf{Z}_2}$ instead of $\mathbb{E}(\Sigma^{n,m}X)$.

Under the above notations the following lemmas are obvious.

Lemma 3. Let Y be a \mathbf{Z}_2 - complex and X a \mathbf{Z}_2 - complex with the trivial \mathbf{Z}_2 - action. Then there is a natural isomorphism.

$$\tilde{\pi}^{n,m}(x:y) \cong [x, E(\Sigma^{n,m}y)].$$

Lemma 4. Let $X \xrightarrow{f} Y \xrightarrow{g} Z$ be a \mathbf{Z}_2 - cofibration (see [3] for definition) of stable \mathbf{Z}_2 - complexes. Then

$$\mathbb{E}(X) \xrightarrow{\mathbb{E}(f)} \mathbb{E}(Y) \xrightarrow{\mathbb{E}(g)} \mathbb{E}(Z)$$

is a cofibration of spectra. Therefore the sequence

$$E(X) \xrightarrow{E(f)} E(Y) \xrightarrow{E(g)} E(Z)$$

is homotopy equivalent to a fibration.

§ 2. Stunted projective spaces.

Let \mathfrak{F} be the canonical line bundle over the projective space $\mathbb{R}P^a$.

There is a canonical isomorphism

$$KO(RP^a) \cong KO_{22}(S^a)$$

induced from the projection $S^a \longrightarrow RP^a$ (see [4]).

By this isomorphism \mathfrak{F} corresponds to the \mathbb{Z}_2 -vector bundle $S^a \times \mathbb{R}^{1,0}$. Therefore the space $S^a_+ \wedge_{\mathbb{Z}_2} \mathbb{Z}^{n,o} = (S^a_+ \wedge_{\mathbb{Z}_2}^{n,o}) / \mathbb{Z}_2$ is identified with the thom complex $\mathbb{T}(n\mathfrak{F})$. It is well known [4] that $\mathbb{T}(n\mathfrak{F})$ is homeomorphic to the stunted projective space $\mathbb{P}^{n+a}_n = \mathbb{RP}^{n+a} / \mathbb{RP}^{n-1}$. It is well known that the order of $\mathfrak{F} - 1 \in \mathbb{K}O(\mathbb{RP}^a)$ is finite. Then the following lemma is obvious.

Lemma 5. Let d be a multiple of the order of \mathfrak{F} - $1 \in \mathrm{KO}(\mathrm{RP}^a)$. Then there is a \mathbf{Z}_2 - vector bundle isomorphism

$$\eta: S^a \times R^{d,o} \longrightarrow S^a \times R^{o,d}$$
.

We denote by the same $\[{\cal I} \]$ the induced $\[{\cal I}_2 \]$ - homeomorphism $\[{\cal S}_+^a \wedge \Sigma^d, {}^o \longrightarrow {\cal S}_+^a \wedge \Sigma^o, {}^d, \]$ and also the homeomorphism $\[{\cal P}_a^{a+d} \longrightarrow \Sigma^d {\cal P}_o^a. \]$ Now for each $\[a \ge 0 \]$ and $\[n \in {\bf Z} \]$ choose d as above satisfying $\[d+n \ge 0, \]$

and define a stable homotopy type P_n^{n+a} by $\sum^{-d} P_{n+d}^{n+d+a}$. Then by the percodicity $\sqrt[p]{}$, P_n^{n+a} is well defined. For the stable complex P_n^{n+a} , define an infinite loop space $Q(P_n^{n+a})$ by $Q^dQ(P_{n+d}^{n+d+a})$. Next we define a stable homotopy type P_n^{n+a}/\sum^{-1} for $n+a\geq -1$. First let $n\geq 0$, then we define P_n^{n+a}/\sum^{-1} to be $P_n^{n+a}\vee\sum^0$, namely the cofibre of the unique homotopy class $\sum^{-1}\longrightarrow P_n^{n+a}$, where \sum^m denotes the m-sphere spectrum. Next let n<0 and put r=-n>0. Let M: $S^a\times R^{d,o}\cong S^a\times R^{o,d}$.

Clearly it restricts to a periodicity $\gamma: S^{r-1} \times R^{d,o} \cong S^{r-1} \times R^{o,d}$.

Note that a > r. Let \mathcal{V} be the normal bundle of an embedding $RP^{r-1} \subset R^N$, N large enough. It is well known that such embeddings are isotopic to each other. Since we have canonical isomorphisms $\mathcal{T}(RP^{r-1}) \oplus \mathcal{E}^1 \cong r \$ and $\mathcal{T}(RP^{r-1}) \oplus \mathcal{V} \cong RP^{r-1} \times R^N$, we have a canonical isomorphism

$$d \ni \oplus V \cong (d - r) \ni \oplus (N + 1) \in ^1$$
.

Then by using $\gamma: d\mathfrak{z}\cong d\mathfrak{z}^1$, we have a bundle isomorphism $\gamma: \gamma \oplus d\mathfrak{z}^1$ $\cong (d-r)\mathfrak{z}\oplus (N+1)\mathfrak{z}^1.$ Let $h: \Sigma \xrightarrow{N} T(\gamma)$ be the Pontrjagin -

Thom map of the embedding $\mathcal{V} \subset \mathbb{R}^N$. By the uniqueness of normal bundles up to isotopy the homotopy class of h is uniquely defermined. Then define a stable map $u: \mathcal{L}^{-1} \longrightarrow P^{-r+a} = P_n^{n+a}$ by the composite $\mathcal{L}^{N+d} \xrightarrow{h} \mathcal{L}^d \wedge T(\mathcal{V}) \stackrel{\mathcal{L}}{=} \mathcal{L}^{N+1} T((d-r)_{3}) = \mathcal{L}^{N+1} P_{d-r}^{d-1} \xrightarrow{i} \mathcal{L}^{N+1} P_{d-r}^{d-r+a}.$

If we change a periodicity by $\gamma' \colon S^{r+a} \times R^{d,o} \longrightarrow S^{r+a} \times R^{o,d}$, then the resulting map u' differs from u by a self homotopy equivalence of P_{d-r}^{d-r+a} . In fact note that ν is a restriction of a vector bundle over RP^a .

Then bundle isomorphisms $\mu \oplus id$, $\mu \oplus id : d \ni \psi \longrightarrow d \varepsilon^1 \oplus \psi$ extend to bundle isomorphisms over \mathbb{RP}^a , and hence $(\mu \oplus id)$ o $(\mu' \oplus id)^{-1}$ is a bundle automorphism of $(d-r) \not\ni \oplus (\mathbb{N}+1) \varepsilon^1$ over \mathbb{RP}^a . This shows the vequired property.

Now let $P_n^{n+a}/\underline{\mathcal{E}}^{-1}$ be the cofibre of u. The above argument shows that the stable homotopy type of $P_n^{n+a}/\underline{\mathcal{E}}^{-1}$ does not depend on choices of d and \mathcal{C} . It is obvious that the n + b skeleton $(P_n^{n+a}/\underline{\mathcal{E}}^{-1})^{(n+b)}$ is homotopy equivalent to $P_n^{n+b}/\underline{\mathcal{E}}^{-1}$. Therefore we can define (not canonically) a stable homotopy type $P_n^{\omega}/\underline{\mathcal{E}}^{-1}$.

It will be usefull to give another description of u.

Let $S^{r-1} \subset S^{r-1} \times \sum^{d-r,0}$ be the obvious embedding. The normal bundle is then canonically isomorphic to $S^{r-1} \times R^{d-r,0}$.

Hence the normal bundle $\nu(\mathbb{RP}^{r-1}, \mathbb{S}^{r-1} \times \mathbb{Z}_2^{d-r,0})$ of the induced embedding $\mathbb{RP}^{r-1} \subset \mathbb{S}^{r-1} \times \mathbb{Z}_2^{d-r,0}$ is identified with (d-r)3.

We remark that $U(S^{r-1} \times Z^{d-r,0}) \oplus \mathcal{E} = S^{r-1} \times Z^{d-r,0} \times \mathbb{R}^{d,0}$, and hence by

the periodicity μ we have an isomorphism

$$\mathcal{L}(S^{r-1} \times_{\mathbb{Z}_2}^{d-r,0}) \oplus \mathcal{E} \cong d\mathcal{E}.$$

Thus $S^{r-1} \times \mathbb{Z}_2^{d-r,0}$ is a framed manifold and μ gives a framing.

Then given an embedding $S^{r-1} \times \mathbb{Z}^{d-r,0} \subset \mathbb{R}^N$, we have the Pontrjagin -

Thom map

$$\sum^{N} \longrightarrow_{\Sigma}^{N-d+1} (s^{r-1} \times \mathbb{Z}_{2} \stackrel{d-r,0}{\longrightarrow}).$$

It is easy to see that the map $\, u \,$ defined above is also given by the composite

$$\sum^{N} \xrightarrow{N-d+1} (S^{r-1} \times \mathbb{Z}_2^{d-r,0}) \xrightarrow{N-d+1} (T((d-r)\overline{3}))$$

$$= \sum^{N-d+1} P_{d-r}^{d-1} \xrightarrow{N-d+1} P_{d-r}^{d-r+a} = \sum^{N+1} P_n^{n+a}$$

where the second map is the Pontrjagin - Thom map of the embedding $RP^{r-1} \longrightarrow S^{r-1} \times \frac{d-r}{22} .$

§ 3. The space $Q_{\mathbb{Z}_2}(X)^{\mathbb{Z}_2}$

Let X be a finite \mathbb{Z}_2 - complex and \mathbb{X}_+ denotes X with the disjoint base point. Given a continious map $f: \Sigma^m \longrightarrow \mathbb{X}_+^2 2 \lambda \Sigma^m$, let e(f) be the composite

$$\Sigma^{n,m} \xrightarrow{\Sigma^{n,of}} x_{+}^{2} 2 \sum_{n,m} C x_{+} \lambda \sum_{n,m} C$$

This defines a continious map $e: Q(X_+^{\mathbb{Z}_2}) \longrightarrow Q_{\mathbb{Z}_2}(X_+)^{\mathbb{Z}_2}$.

Conversely by assigning to a \mathbf{z}_2 - map $f:\Sigma^{n,m}\longrightarrow X_+ \Sigma^{n,m}$

the map $f^{\mathbf{Z}2}$ of fixed point sets, we obtain a continious map

$$\varphi: Q_{\mathbf{Z}_{\mathbf{Z}}}(\mathbf{X}_{+})^{\mathbf{Z}_{2}} \longrightarrow Q(\mathbf{X}_{+}^{\mathbf{Z}_{2}}).$$

It is obvious that $\psi \circ e = id$. More precisely we have

<u>Proposition 6.</u> There is a natural homotopy equivalence

$$\chi \,:\, \mathsf{Q}_{\mathbf{Z}_2}(\mathtt{X}_+)^{\mathbf{Z}_2} \longrightarrow \mathsf{Q}(\mathtt{X}_+^{\mathbf{Z}_2}) \,\times\, \mathsf{Q}((\mathtt{S}^{\omega} \times \,_{\mathbf{Z}_2} \mathtt{X})_+)\,.$$

Moreover via λ , the maps $\,$ e $\,$ and $\,$ φ are homotopic to the canonical inclusion and projection, respectively.

Proof. The existence of λ is shown in $[\S]$. In $[\S]$, λ is defined by a geometric method. That is, we may suppose that X is a G - manifold and let Y be a manifold. Then any element of $[Y_+, Q_{\mathbf{Z}_2}(X_+)^{\mathbf{Z}_2}]$ is represented by a pair

$$X \xleftarrow{f} E \xrightarrow{h} Y$$

where E is a G - manifold, f is a G - map and h is a framed map. (see $[\cente{Y}]$ for definition).

Then it is known that E is decomposed into a disjoint sum of submanifolds $E_{0\parallel}E_{1}$, where E_{0} is trivial and E_{1} is free as \mathbf{Z}_{2} - space.

Then the map λ is induced from this decomposition.

Then checking for a geometric representative, we see that the homomorphism

$$e_* : [Y_+, Q(X_+^{\mathbb{Z}_2})] \longrightarrow [Y_+, Q_{\mathbb{Z}_2}(X_+)^{\mathbb{Z}_2}]$$

coincides with the canonical inclusion. For the map arphi the proof is similar.

Now we shall stabilize the above result. Let $\, n \,$ and $\, m \,$ be positive integers. We have a $\, Z_2 \,$ - cofibration

$$X_{+} \xrightarrow{i} (X \times \Sigma^{n,m})_{+} \xrightarrow{\mathcal{K}} X_{+} \Lambda \Sigma^{n,m}$$

and the projection $p:(X\times \sum^{n,m})_+\longrightarrow X_+$ such that poi = idx. Applying the functor $Q_{\mathbb{Z}_2}(\)^{\mathbb{Z}_2}=E(\)$, we obtain a fibration (up to equivalence)

$$E(X_+) \xrightarrow{E(i)} E((X \times \Sigma^n, m)_+) \xrightarrow{E(X)} E(X_+ A \Sigma^n, m).$$

It is obvious that the fibration is trivial, and by using the map E(p) we can define a canonical splitting

$$s : E(X_{+} \wedge \sum^{n,m}) \longrightarrow E((X \times \sum^{n,m})_{+}).$$

Since the homotopy equivalence of Proposition 6 is natural, we easily see the following generalization of Proposition 6.

Lemma 7. Let n and m be positive integers, then there exists a natural homotopy equivalence

$$\lambda \; : \; \mathsf{E}(\mathsf{X} + \Lambda \boldsymbol{\varSigma}^{\mathsf{n}}, \boldsymbol{\mathsf{m}}) \; \longrightarrow \; \mathsf{Q}(\mathsf{X} + \boldsymbol{\jmath}_{\mathsf{A}} \boldsymbol{\varSigma}^{\mathsf{m}}) \; \times \; \mathsf{Q}((\mathsf{X} \; \times \; \mathsf{S}^{\omega})_{+} \; \Lambda_{\; \boldsymbol{Z}} \boldsymbol{\varSigma}^{\mathsf{n}}, \boldsymbol{\mathsf{m}}) \, .$$

Lemma 8. The map λ is an infinite loop map.

<u>Proof.</u> We are enough to show that the following diagram is commutative.

where σ is the suspension isomorphism. We may suppose that X and

Y are manifolds as before, and we can take a pair

 $x = (X \xleftarrow{f} E \xrightarrow{h} Y)$ for a representative of an element of $[Y_+, E(X_+)]$.

Note that h x id : E x $\sum_{i=0}^{\infty}$, n is canonically framed. Hence define a

homomorphism

$$\bar{\sigma} : [Y_+, E(X_+)] \longrightarrow [(Y \times \Sigma^0, ^n)_+, E((X \times \Sigma^0, ^n)_+)]$$
 by
$$\bar{\sigma}(x) = (X \times \Sigma^0, ^n \xrightarrow{f \times id} E \times \Sigma^0, ^n \xrightarrow{h \times id} Y \times \Sigma^0, ^n).$$
 Then we easily see that the diagram

is commutative, where j is the split monomorphism induced from the map s. Then the commutativity of the rectangle diagram is shown easily for a geometric representative $(X \xleftarrow{f} E \xrightarrow{h} Y)$.

Given a CW - complex X, let \mathbb{Z} X denotes the suspension spectrum. Then from the above lemmas, we obtain a homotopy equivalence of spectra $\overline{\lambda} : \mathbb{E}(X_{+}^{n} \wedge \mathbb{Z}^{n}, \mathbb{Z}^{n}) \simeq \mathbb{Z}(X_{+}^{\mathbb{Z}_{2}} \wedge \mathbb{Z}^{m}) \vee \mathbb{Z}((X_{+}^{n} \times \mathbb{Z}^{n}), \mathbb{Z}^{n}, \mathbb{Z}^{n}).$

Let n(>0) and m be integers. Then

Proposition 9. There exists an equivalence of spectra $\bar{\lambda} : \mathbf{E}(X_{+} \wedge \sum^{n}, \mathbf{m}) \cong \Sigma(X_{+}^{2} \wedge \sum^{m}) \vee \Sigma((X \times S^{\infty})_{+} \wedge \mathbf{z}_{2} \sum^{n}, \mathbf{m})$

§ 4. Proof of the theorems

In this section we proves $\$ Theorem 1 $\$ and $\$ Theorem 2 $\$ simultaniously.

By Lemma 3 we have natural isomorphisms

$$\widetilde{\mathcal{T}}^{n,m}(X : S_+^q) \cong [X, E(\underline{\mathcal{T}}^{n,m}S_+^q)]$$

and

$$\widetilde{\mathcal{T}}^{n,m}(X) \cong [X, E(\Sigma^{n,m})].$$

Thus the problem is to determine those spectra $\mathbb{E}(\mathbb{T}^{n,m})$ and $\mathbb{E}(\mathbb{T}^{n,m}S_+^q)$. for any $n, m \in \mathbb{Z}$.

First we suppose that $n \ge 0$. Note that $(S^q)^{\mathbf{Z}_2} = \varphi$ and $S^q \times S^\infty$ is \mathbf{Z}_2 - homotopy equivalent to S^q . Then by Lemma 7 and Lemma 8, we easily see that

$$\mathbb{E}(\Sigma^{n,m}S_{+}^{q}) \simeq \mathbb{E}(\Sigma^{m}P_{n}^{n+q})$$

and

$$\mathbb{E}(\mathbb{Z}^n,\mathbb{m}) \cong \overline{\mathbb{Z}}(\mathbb{Z}^m) \vee \underline{\mathbb{Z}}(\mathbb{Z}^m P_n^{\alpha})$$

as spectra for any $\,m\,\in\,Z\,.\,\,$ This immedeately implies the theorems for $\,n\,\geq\,0\,.\,$

Next suppose that n < 0, and put r = -n > 0.

Given a positive integer q, let d be an integer $(d \ge r)$ and

 $\mu: \Sigma^{o,d} S_+^q \longrightarrow \Sigma^{d,o} S_+^q$ be a periodicity as in Lemma 5. Let N, M be integers large enough. Given a \mathbb{Z}_2 - map $f: \Sigma^{N+r,M} \longrightarrow \Sigma^{N,M+m} S_+^q$, let $\mu*(f)$ be the composite

$$\sum^{N+r,M} \xrightarrow{f} \stackrel{N}{\longrightarrow} \stackrel{M+m}{\stackrel{q}{=}} \sum^{M+d,M-d+m} \stackrel{q}{\stackrel{q}{=}} .$$

Then we obrain an isomorphism (periodicity) of spectra.

$$\mu \star : \mathbb{E}(\mathbb{Z}^{n,m} \mathbf{s}^{\mathbf{q}}_{+}) \longrightarrow \mathbb{E}(\mathbb{Z}^{n+d,m-d} \mathbf{s}^{\mathbf{q}}_{+}).$$

Since $n+d\geq 0$, we can reduce to the first case and we have

$$\mathbb{E}(\boldsymbol{\Sigma}^{n+d},\boldsymbol{^{m-d}}\boldsymbol{s}_{+}^{q}) \simeq \text{Im}^{m-d}\boldsymbol{P}_{n+d}^{n+d+q}) = \text{Im}^{m}\boldsymbol{P}_{n}^{n+q}).$$

This shows Theorem 1 for n < 0.

Next let n, m and q be as above, and suppose that n+q>0. From the standard \mathbf{Z}_2 - cofibration $\mathbf{S}_+^q \xrightarrow{p > 0}, 0 \xrightarrow{i} \Sigma^{q+1}, 0 \xrightarrow{\mathbb{Z}_0^q + 1}, 0$ where P is the unique non - trivial map, i is the standard inclusion and $\mathbb{Z}_2 : \Sigma^{q+1}, 0 \xrightarrow{p > 0} \Sigma^{q$

$$\Sigma^{n,m}s_{+}^{q} \xrightarrow{p} \Sigma^{n,m} \xrightarrow{i} \Sigma^{n+q+1,m} \xrightarrow{c} \Sigma^{n,m+1}s_{+}^{q}$$

Then by Lemma 4 we obtain a stable cofibration

$$\mathbb{E}(\Sigma^{n+q+1,m-1}) \xrightarrow{\mathbb{E}(c)} \mathbb{E}(\Sigma^{n,m}S_{+}^{q}) \xrightarrow{\mathbb{E}(p)} \mathbb{E}(\Sigma^{n,m}).$$

Choose d such as $n + d \ge 0$ and a periodicity

$$\mu * : \mathbb{E}(\Sigma^{n,m}S_{+}^{q}) \cong \mathbb{E}(\Sigma^{n+d,m-d}S_{+}^{q}).$$

 $\text{Recall that } \mathbb{E}(\boldsymbol{\Sigma}^{n+d}, \boldsymbol{m}^{-d}\boldsymbol{S}_{+}^{q}) = \boldsymbol{\Sigma}(\boldsymbol{\Sigma}^{m-d}\boldsymbol{P}_{n+d}^{n+d+q}) = \boldsymbol{\Sigma}(\boldsymbol{\Sigma}^{m}\boldsymbol{P}_{n}^{n+q}).$

By assumption $\ n+q+1>0$ and by Lemma 8 we have an equivalence of spectra

$$\bar{\boldsymbol{\lambda}} \; : \; \mathbb{E}(\boldsymbol{\Sigma}^{n+q+1,m-1}) \; \simeq \mathbb{E}(\boldsymbol{\Sigma}^{m-1}) \; \vee \; \mathbb{E}(\boldsymbol{\Sigma}^{m-1} \boldsymbol{P}_{n+q+1}^{\infty})$$

Using the equivalences $\mu \star$ and $\overline{\lambda}$, the map $\mathbf{E}(\mathbf{c})$ is homotopic to a map $\mathbf{w}: \mathbf{E}(\mathbf{c}^{m-1}) \vee \mathbf{E}(\mathbf{c}^{m-1}\mathbf{P}_{n+q+1}^{\infty}) \longrightarrow \mathbf{E}(\mathbf{c}^{m}\mathbf{P}_{n}^{n+q})$. Let

$$\mathbf{u'} : \underline{\mathbb{Z}}(\underline{\mathbb{Z}}^{m-1}) \longrightarrow \underline{\mathbb{Z}}(\underline{\mathbb{Z}}^m P_n^{n+q})$$

be the restriction of w to $\mathbb{Z}(\stackrel{m-1}{\Sigma})$. Note that $\mathbb{Z}(\stackrel{m-1}{\Sigma}p_{n+q+1}^{\infty})$ is n+m+q - connected. Hence the cofibre of u' is n+m+q - equivalent to $\mathbb{E}(\stackrel{n}{\Sigma},\stackrel{m}{\Sigma})$.

Then Theorem 2 for n < 0 follows immedeately from the following

Lemma 9 The cofibre of u' is stably homotopy equivalent to $\frac{m}{\sum_{i=1}^{m}(P_{n}^{n+q}/\sum_{i=1}^{m})} \quad \text{of} \quad \S \ 2.$

<u>Proof.</u> We may suppose that m=0. Since we have defined u' using a periodicity $\mu: S^q \times R^{d,o} \longrightarrow S^q \times R^{o,d}$, it is enough to show that $u': \mathbb{Z}(\mathbb{Z}^{-1}) \longrightarrow \mathbb{Z}(P_n^{n+q})$ is homotopic to u for the same choice of \mathcal{U} .

Let

$$S = (u') \star : \frac{1}{l} (Y_+) \longrightarrow \widetilde{I}_{l}^{0} (Y_+, P_n^{n+q})$$

be the induced homomorphism. Let r = -n > 0. and let

 $z \in \mathcal{T}^{-r,1}(\Sigma^{o,o}; S^q_+)$ be the class of the composite

$$\Sigma^{r,o} \xrightarrow{\pi} \Sigma^{0,1} S^{r-1}_{+} \subset \Sigma^{0,1} S^{q}_{+}.$$

By the smash product we have a pairing

$$\wedge: \widetilde{\mathcal{T}}^{a,b}(X:Y) \otimes \widetilde{\mathcal{T}}^{a',b'}(X':Y') \longrightarrow \widetilde{\mathcal{T}}^{a+a',b+b'}(X \wedge X':Y \wedge Y').$$

Let f be the composite

$$\begin{split} \widetilde{\pi}^{-r,1}(\Sigma^{\circ,\circ}: S_{+}^{q}) \otimes \ \widetilde{\pi}^{\circ}(Y_{+}) &\xrightarrow{id@ex} \widetilde{\pi}^{-r,1}(\Sigma^{\circ,\circ}: S_{+}^{q}) \otimes \ \widetilde{\pi}^{\circ,\circ}(Y_{+}) \\ &\xrightarrow{\wedge} \widetilde{\pi}^{-r,1}(Y_{+},S_{+}^{q}) &\xrightarrow{\underline{\mu}_{\uparrow}} \widetilde{\pi}^{d-r,1-d}(Y_{+},S_{+}^{q}) &\xrightarrow{\wedge} \widetilde{\pi}(Y_{+},P_{n}^{n+q}). \end{split}$$

Then we see that $\beta(x) = f(z \otimes x)$, and we are enough to show that $f(z \otimes 1) = \{u\}.$ We remark that the element Z is given by the Pontrjagin

- Thom construction of the pair ($\star \leftarrow s^{r-1} \hookrightarrow s^q$), where the unique

map $S^r \longrightarrow *$ is, say, (r, -1) - framed.

That is, $T(S^{r-1}) \oplus \mathcal{E} = S^{r-1} \times R^{r,o}$. Then as in § 2, $S^{r-1} \times \mathbb{Z}_2 \Sigma^{d-r,o}$

is a framed manifold by $\, \, \mathbf{e} \,$ of the periodicity $\, \mu \, . \,$ Then by the definition

of λ we easily see that the class $f(z \otimes 1)$ is given by the composite

where c is the Pontrjagin - Thom map, and i and π are obvious maps.

Now by the second description of the map u, we easily see that

$$\{u'\} = r(201) = \{u\}.$$

This completes the proof.

References

- [1] J. F. Adams: Operations of the n-th kind in K-theory and what we don't know about RP®, New developments in topology,

 London Math. Soc. Lecture Note 11(1974).
- [2] S. Araki M. Murayama: G-homotopy types of G-complexes and representation of G-cohomology theories, Publ. RIMS,

 Kyoto Univ. 14(1978), 203-222.
- [3] S. Araki M. Murayama: T-cohomology theories,

 Japan. J. Math. 4(1978), 363-416.
- [4] M. F. Atiyah: Thom complexes, Proc. London Math. Soc. 11(1961), 291-310.
- [5] G. Bredon: Equivariant homotopy, Proc. Conference on Transformation Groups, 1967, Springer-Verlag 1968, 281-292.
- [6] C. Kosniowski: Equivariant cohomology and stable cohomotopy,

 Math. Ann. 210(1974), 83-104.
- [7] P. S. Landweber: On equivariant maps between spheres with involutions,
 Ann. of Math. 89(1969), 125-137.

- [8] G. Nishida: On the equivariant Barratt-Priddy-Quillen theorem, to appear.
- [9] G. B. Segal: Equivariant stable homotopy theory, Actes. Congress Intern. Math. 2(1970), 59-63.