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A note on the stable 2, - cohomotopy groups
by Goro Nishida

§ 0. Introduction

Let X and Y be based 2’2 -~ complexes and let j—{;“’m(x 3 )
denote the group of stable -Z9 - maps of degree (n, m) ( see 851
for the definition ). If Y =Z°’° is the o - sphere, then ff(,n’m(x :
z’.o’o) =ﬁn’m(X) is called the stable Zz - cohomotopy group of X,
and has been studied by various authors ( [3], [4], {7] and [ £] ).
The purpose of this note is to describe it in terms of non equivariant
stable homotopy for certain X and Y.

To state our result recall that the stunted projective space Pg is
defined for all integers a and b as a stable complex by the well known

periodicity. We shall define in §2 a stable map u :Z—l__; Pg for

b2 -1 and a well defined stable homotopy type Pg /Z-l. Let SS9 denote

the q - sphere with the antipodal in’&volution. Then our results are,
Theorem 1. Let q be a positive integer and let X be a based
*
22 - complex with the trivial 22 - action. Then for any n, me 2,
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there is a natural étable isomorphism
X g™ X.: S_?_ ) =X : P§+q ).
Theorem 2. Let n,m and q be integers such that n+gq >0.
Then for any based 2, - complex X with the trivial Z, - action of
dim. { n + m + q, there is a natural stable isomorphism
o VTR =Fx s et gl
Here fﬁm( ¢ ) denotes the usual group of ( non - equivariant )
stable maps of degree m. If we fig?, then the above groups‘are all

generalized,cohomology theoryes and by stable we mean that those iso-

morphisms commute with the Suspension isomorphism. We should mention

about the dimensional restriction in FTheorem 2. If we use a homotopy
type Pi /Z:—l( defined in a non - canonical way ), we can state that
there is an isomorphism ( not natural )
TWMx) 275 x : p? /571
for any finite trivial 23 - complex X.
Let n = m = 0, then Pg /23-1 o RPI VZP. In this case our result
is just the theorem of Segal | 7]. When o >‘0 and X is a sphere
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similar results are obtained by [?}.
Finally we state a conjecture which is seen to be equivalent to

the conjecture of Mahowald [{ ] by using Theorem 1 and 2.

Let ﬂ:n,m =fﬁ_n'-m(zo'o) be the stable (n, m ) - stem. Using the
inclusion i Zp,q ___)Zp+l,q, one can define an inverse system ﬁin,m}n.
3

Conjecture. lim fn,m =0 for all m.
&n
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§1. Some notations
First we recall some notatiomns. If X is a 2y - space, )‘(22

dinotes the fixed point subspace. R™™ denotes the representation of

22 on Rn+m given by

n,m
x ’

‘L‘(xl’...A X X 100X ) = (—xl’...’- n,xn+l,"',xn+1n)' )34

, D, n+m

denotes the one point compactification of Rn,m. The unit sphere in
Rrﬂ"0 is a free 2Z; - complex and denoted by st. Let X be a based
22 - space, then SZ“’“‘X denotes the function space Map(gn’m, * : X, %)
with the compact open topology and the usual 2, - action.

The equivariant infinite loop space of X is defined by sz X) =
E;nQn’m(gn’mX) similarly to the non - equivariant case. It is

known [ ] that if X has a 2, - homotopy type of a Z, - complex,
then so does %2™°"x ( and hence QZZ(X))'

A 2, - spectrum X ={Xn’ gn§ is defined [3] by Z, - spaces

Given a 2y - complex X

1,1
X, and structure maps £, T VXX

the suspension spectrum ( with a shifted dimension ) Z’kx is defined
by (,ZkX)n =Zn-{—k,n+kx where k¢ Z, and is reffered to a stable
complex and sometimes written as ka. A 2y - spectra map (or stable

-’
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Zp - map ) is defined similarly as the non - equivariant case.
Let X and Y be stable complexes; Then the group ;i?’m( X‘: Y)
of stable homotopy classes of stable maps of degree -( n, m)
is defined by
ﬁn,m( X:Y) = ‘];j.inp [ZP’PX’ZH"'P,UH'PY ]ZZ.

If (n,m)= (0, 0) it is sometimes denoted by EX, Yf z,

ﬁ?’m( X :Z:O’O ) 1is simply denoted by JL"°"( X ) and called the
(n, m) - dim. Stable 2, - cohomotopy group.
Given a 2, - spectrum X, we can define the associated
Z) - () - spectrum QX by (' @X )n = ligézq’an+q. Note that
(( x )n)z2 = ligquq(gzq’OXn+q )22 is an infinite loop space.
Hence the fixed point spectrum ( X )22 is an §2- spectrum which we
denote by E( X ). Eviclently we see that EG%" ) SYE(X).
The infinite loop space f=( ® )o 1is denmoted by E( X ).
Clearly [E and E are functor. We rémark that F( X ) 1is not equi-

valent to the fixed point subspectrum Kzz. Given a 22 - complex X

and n, m « Z, consider the stable complex ijn’mX (i.e., X with dimen-~
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sion shifted ). If n and m are positive, then E(Z;“’“‘x)
szqzn’mx)zz. Therefore for negative n or m, we often write as

sz(zf)’ 22 instead of E(ﬁ] mX)

Under the above notations the following lemmas are obvious.

Lemma 3. Let Y be a Zé - complex and X a 2, - complex with
the trivial Z, -~ action. Then there is a natural isomorphism.

T2™x:Y)S[X, ECM) 1.

Lemma 4. Let X —fé Y _EL? Z be a 22 - cofibration ( see

[ 5] for definition ) of s#able 22 ~ complexes. Then
E® E(f)t(Y) E(g)E(z)

is a cofibration of spectra. Therefore the sequence

e 20 gy EB®) gz

is homotopy equivalent to a fibration.



§ 2. Stunted projective spaces.

Let 3 be the canonical line bundle over the projective space RP3,
There is a canonical isomorphism

Ko(RP?) = KOZZ(Sa)

induced from the projection s2—5 RrRP? ( see [4—] ).
By this isomorphism § corresponds to the 22 - vector bundle Sa x R
Therefore the space' Si /\ZZZ,H’O = (s3ar™%) / z, ’is identified with
the thom complex T(nJ3). It is x;zell known [{.] that T(3) 1is

+ +
homeomorphic to the stunted projective space Pz a - g2 / RP

n—l‘
It is well known that the order of 3 - 1€ KO(RP?) is finite.
Then the following lemma is obvious.
Lemma 5. Let d be a multiple of the order of 3-1 E’KO(RPa).
Then there is a 12 - vector bundle isomorphism

v : s? x Rd’o _— s? x Ro’d.

We denote by the same '1/ the induced ZZ - homeomorphism

d +d d_.a

S.?./\Zd’o — Si/\z,o’ , and also the homeomorphism Pg —s P Now

for each a >0 and n& Z choose d as above satisfying d+4n 2> 0,

‘7

1,0
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-d_n+d+
and define a stable homotopy type P§+a by ¥ dPg_,.d a

Then by the percodicity ‘Z,, Pg+a is well defined. For the stable

+
complex P]r::+a , define an infinite loop space Q(Pg 2y by AQdQ(PgIg-Fa).

Next we define a stable homotopy type Pg+a /Z“1 for n.+a >-1.
First let n > 0, then we define P;H—a /Z_l to be Pg-'.a \/ZO, namely

- -+, —
the cofibre of the unigue homotopy class 1 1 - Ph a’ where & denotes
the m - sphere spectrum. Next let n < 0 and put r = -n > 0. Let

d be a multiple of the order of 3 -1 € I’(\(')(RPa), and choose a periodcity

d

d,0 x g2 , -9,

q :s* xR

Clearly it restricts to a periodicity Z : Sr-'1 ds0 2 gr-1 o,d.
Note that a > r. Let Y be the normal bundle of an embedding

RPr_lc RN, (N large enough. It is well known that such embeddings

are isotopic to each other. Since we have canonical isomorphisms

1 = r§ and ’E(RPr_l)Q)) = RPr—l b4 RM, we have a canonical

TR He s
isomorphism
430y TW@-13e (N+ el

Then by using / : d3 = dEl, we have a bundle isomorphism j" ) ® dgl

= @ - r)§ D (N+ 1)51. Let h :Z:N.__..) T()) be the Pontrjagin -

¥
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Thom map of the embedding Y C &N, By the uniguéness of normal bundles
up to isotopy the homotopy class of h is uniquely defermined. Then
- define a stable map u : ;3'1 > p_Efe é‘P%*a“Bythe‘ composite

) : h _ ‘ ‘ -
N Bocd ny Nt a - gy =g IpdL L dorta

1f we change a periodicity by ‘Z/: stta 4 Rd’o —_— Sr+a x Ro’d,

then the resulting map u' differs from u by a self homotopy equivalence

of P;l::l-a In fact note that ) is a restriction of a vector bundle

over rRPZ,

Then bundle isomorphisms /M@id, /M/eid : d3®Y —> d£,1®1/

extend to bundle isomorphisms over RPa, and hence ( /u ®id) 6 (/J'@ :i.d)'-l
is a bundle autm;lorphism of (d-1)3@p (N+ DEY over RPA.  This

shows the vequired property.

Now leﬁ Pg+a/Z-l be the cofibre of u. The above argument shows'

that the stable homotopy type of Pg+a/z- 1 does not depend on choices

: +a, =1, (n+
of d and Y. It is obvious that the n + b skeleton (P a/Zl) (o)

is homotopy equivalent to P:+b/ f 1. Therefore we can define ( not

canonically ) a stable homotopy type P;o[ bl 1.



It will be usefull to give another description of wu.

Let Sr-lc Sr“l X Zd-r,O be the obvious embedding. The normal bundle
- d-
is then canonically isomorphic to st 1 x R r,O.

Hence the normal bundle V(RPr-l, Sr-.1 X z;d-r,o) of the induced

r—-

embedding RPr_]‘C S 1 X ZZZd-r’O is identified with (d - r)3.

r-1 d-r,0 d,0

We remark that l:(Sr-l x Zd—r’o)@z =8 x5 x R ’", and hence by

the periodicity p we have an isomorphism

C(Sl’-l }zd—r,o)ﬁg > df.

r,0

Thus Sr_.l X Zfzzd— is a framed manifold and A gives a framing.

Then given an embedding Sr-l X 2 d—r,OC RN, we have the Pontrjagin -
Thom map

—N__ N-d+1,_r-1 d-r,0

P _ﬁ)__‘ (s X 255 +).

It is easy to see that the map u defined above is also given by the

composite
—N d+ -1 d- ANed+1
SN — T x 5, 2700 — M@ - o)
sN=-d+1_d-1 > {-d+1_d~-r+a _ N+1l_nta
=2 Pg-r LN Pg-r == Py

where the second map is the Pontrjagin - Thom map of the embedding

r-1 d-r,0
X

r-1



§ 3. The space Q;z,z(x)22

Let X be a finite 2 - complex and X, denotes X with the
distint base point. Given a continious map f :Efn-——¥ lemSm,
let e(f) be the composite

i ﬂ"fxzazn’mc XA
This defines a continious map e‘: Q(sz) — sz(x+)72.
Conversely by assigning to a Zy - map f :,ZP’m ~—9'X+AZP’m
the map fz2 of fixed point sets, we obtain a continious map
9+ 0z %072 — Q).

It is obvious that {-¢ = id. More precisely we have

Proposition 6. There is a natural homotopy equivalence

At 0, (%2 — i) x (s x 2,000,
Moreover via 7, the maps e and ¢ are homotopic to the canonical
inclusion and projectién, respectively.
Proof. The existence of ‘X 1is shown in [5]. In [%1, =«
is defined by a geometric method. That is, we may suppose that X is
a G - ménifold and let Y be a manifold. Then any element of

(Y4, QZZ(X+)22] is represented by a pair
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where E 1s a G - manifold, f dis a G - map and h is.a frame&
map. ( see [?{] for definition ).
fﬁen ig.is koown thatv E is decomposed into a disjoint guﬁ ofbsubmanifoids
EgllE1, where EQ is trivial and E; is free as 23 - space.
Then the map A is induced from this decomposition.
Then checking for a geometric representativé, we see that the homomorphism
ex : [Y+, Q(sz)] — [y, Q§2CX+)22].
coincides with the canonical inclusion. For the map - ¢ the proof is
similar.
Now we shall stabilize the above result. Let n gnd m be positive
integers. We have a rzz - cofibration
Xy = @ x 2Ny Lo gt
and the projection p : (X’xj:n’m)+7¥~$ X; such that poi = idx.
Applying the functor sz( )Zg = E( ), we obtain a fibration (up to
equivalence )
2x) EHe(x x 7™ E®p, 0.
. ‘ R
It is obvious that the fibration is trivial, and by using the map E(p)

we can define a canonical splitting

Iy



st EGAR™ — B x M.

Since the homotopy equivalence of Proposition 6 is natural, we easily see
the following generalization of Proposition 6.
Lemma 7. Let n and m be positive integers, then there exists

a natural homotopy equivalence

A EGeAZT™) — o™ x QX x 594425,

Lemma 8. The map )\ is an infinite loop map.

Proof. We are enough to show that the following diagram is commu-
tative.

z
(e, 2601 23 (2, QGGD] @ (T4 QU x 2,551

o~

e

o

o,n

l
0,0 o,n 'n %y n . n A
[F4AZ 5 BG4S )] 57 [Tl s QEGAT) ] P [Yanle, QU x 874 2> )1,
where O is the suspension isomorphism. We may suppose that X and

Y are manifolds as before, and we can take a pair

x = (X $£—-E b, Y) for a representative of an element of [Y4, E(Xy)].

Note that h x id : E x'zf’n is canonically framed. Hence define a

homomorphism

69
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T ¢ [T EED] — [ x 2Ny, E(& x50
by 3(x) = xxyondxdd, onhxidy x57°").  Then we easily
see that the diagram |
(Y4570, EGeas* ™1
[Y+, EG4)] /lj
o [ x5, B(X x527))]

is commutative, where j 1is the split monomorphism induced from the map

S. Then the commutativity of the rectangle diagram is shown easily for
. . £ h
a geometric representative (X&— E — Y). q. e. d.

Given a CW - complex X, let Z X denotes the suspension spectrum.
Then from the above lemmas, we obtain a homotopy equivalence of spectra
- n,m Ty M ~n,m
A s BELTD > ZEHIHVEE x 59, 4,500,

Let n(>0) and m be integers. Then

Proposition 9. There exists an equivalence of spectra

A BT 2 20825 v (X x0 8% A m
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% 4. - Proof of the theorems

In this section we proves Theorem 1 and Theorem 2 simultaniously.
By Lemma 3 we have natural isomorphisms

T s sh =[x, EETSH]
and

T = (x, eI,
Thus‘the problem is to determine those spectra EQZP’m) and E(z?’msi).
for any n, m &£ Z.

First we suppose that n > 0. = Note that (Sq)z2 = (P and s% x s¥
is 25 - homotopy equivalent to s%. Then by Lemma 7 and Lemma 8,
we easily see that

- +
EGT s = ZMen

and

™ = 26 v P
as spectra for any m < Z. This immedeately implies the theorems for
n 2 0.

Next suppose that n { 0, and put r = -n 7 0.

Given a positive integer gq, let d be an integer (d > r) and
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/.4 :Zo’dsi ——)Zd’os.?. be a periodicity as in Lemma 5. Let N, M be
N+ Hm
integers large enough. Given a Z) - map f 15 r,M ——}2—_—‘”’ S_?_,
let }}*(f) be the composite
Mr,M _f N, M s M+d ,M-d

SN L Mgl =gid,Hodimgg

Then we obrain an isomorphism (periodicity) of spectra.
n,m_q ~n+d ,m—-d gd
/u*:EQf‘ s3) — EE s$).

Since n + d > 0, we can reduce to the first case and we have

+d ,m~d —~ -d +d+ +
e "% 2 P D =S P, D).
This shows Theorem 1 for =n (¢ 0.

Next let n, m and q be as above, and suppose that n + q 3> 0.

From the standard Zj ~ cofibration s$ _bzo,o ézq‘“l” J”ﬁf’lsf;l,'

where P is the unique non - trivial map, 1 1is the standard inclusion

+ +
SJ1 1,0 — 55t 1,0/20,0

and T(: =~ Zo’lsi is the projection, we obtain

a stable 2Z7 - cofibration
Z:n,msg E;Zn,m i;Zn+q+l,m c.;i;n,mls_%-

_ Then by Lemma 4 we obtain a stable cofibration

n+q+1,m— l) E(c) E(sF

L q E(p) E(,n, ).

EC

Choose d 'such as n+d 20 and a periodicity
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U g% 2z BT s9).

/

Recall that EGV Hd ’m—dSi) = g(zm—dP3:§+q) = g@mPg-l-q) .

By assumption n+ q+ 1 >0 and by Lemma 8 we have an equivalence of

spectra

R 226 v 2@ g
Using the equivalences P and 3\, the map [E(c) is homotopic to a
map w o =T L)y Z(zm~1P:+q+1) —> PR, Let
w6 — =R
1

be the restriction of w to Z(Zm— ). Note that Z(gm_lP:+q+l) is

n + m + q - connected. Hence the cofibre of u' is n + m + q - equi-

valent to E(Zn’m) .

Then Theorem 2 for n< 0 follows immedeately from the following

Lemma 9 The cofibre of u' is stably homotopy equivalent to

sPERYYTY of g2,

Proof. We may suppose that m = 0. Since we have defined u' using

q d,o

a periodicity }4 : s x RYC —> 5% Ro’d, it is enough to show that

= . + . .
u' I 1) —-—:*L‘{Z(Pg 9)  is homotopic to u for the same choice of .
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Let
A= @ T A — 7P, BT
be the induced homomorphism. Let r=-n> 0. and let
z € n_-r,l(zo,o H S_?_) be the class of the composite
Z.,)r,o ‘E?z’?’lsi-l ng,lsg.
By the smash product we have a pairing

ATEPE e P @ sy ) —FER Mg .

Let 4 be the composite
:,'C-r,l(zo,o . S.?.)@ ﬁ;o(Y+) :'Ld@e!E ,ﬁ:-r,l(zo,o . 32)@7%0’0(1”-)
Lo r,, 5D 5Ty, 53 28 5y, 20
Then we see that A (x) = {(zex), and we are enough to show that
{(z81) = fuf We remark that the element Z 1is given by the Pontrjagin
- Thom construction éf the pair ( *<— Sr_1 s Sq), where the unique

map ST —> is, say, (r, -1) - framed.

r-1 d-r,o

That 1s, T(S" )@g = S* ' x R%’°. Then as in §2, sT-1 xz, %
is a framed manifold by e of the periodicity /,4 Then by the definition

of A we easily see that the class $(z01) is given by the composite



S—rN c | -N-d+1 r-1

_.d- —~N-d+
S5 I (ST xg, 1TT0) ) o
WEZ_—,'N—d+1

where c¢ 1is the Pontrjagin - Thom map, and i

Now by the second description of the map u, we

4

fuf = (1) = Jui.

This completes the proof.

d-’
(5 %2, =779

(sﬁﬂz;d'r’°) ___ZN-f-l (Pg+q)

and JU are obvious maps.

easily see that
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