gooooooogn
0 396 0 19800 21-38

21

USE OF DATA REPRESENTATION MAPPING IN AUTOMATIC
GENERATION OF DATA BASE ACCESS PROCEDURES

Koichl Furukawa

Electrotechnical Laboratory

Ibaraki, Japan

ABSTRACT

Formal definition of data structure mappings are‘given and
used to transform relational algebraic formula 1into data
base access procedures which search a formally defined data
structure. Especlally, a hierarcical data structure 1is
introduced to represent a set of relations which are
inherently hiearchical. We show that a retrieval procedure
using data accesses along a two level hierarchy can be
obtained from an original formula on flat relations by
applying equlivalence transformatlion rules and data

representation mappings.

~1. INTRODUCTION

During the latest decade, data base theories and data
structure theories have been developed independently. In
data base area, much research has been concentrated on
relational data base theories. As far as query processing is

concerned, many logical query languages as well as deductive

22

query evaluation systems have been proposed. Query
optimizations and processing based on relational algebla

have also been investigated by many researchers.

On the other ﬁand, theoretical researches on data
structure have been developed 1n the field of program
correctness studies [Hoare 72]. Recently, [Hansson 79]
developed a framework to formally define data structures and

prove correctness of programs maﬁipulating them.

In ¢this paper, we will combine the above two
theoretical approaches and put them in a framewofk of data !
abstraction theory. Namely, we regard relations as objects i
of an abstract data type and relational algebra as its
assoclated operations. Furthermore, we formally define data
structures and represent relations by them. Our final goal
1s to transform relationai ‘algebraic query formulas into
data base access procedures which search the defined data
structures. Especlally, we consider to represent a set of
relations which are inherently hierarchical by a
hierarchical data structure. We show that a retrieval
procedure using data accesses along a two level hierarchy
can be obtained from an original formula on flat relations
by applying equivalence transformation rules and data

_representation mappings.

2. RELATION AND RELATIONAL ALGEBRA

First, we define the relational data base formally.

2

‘Définition. Let Dl,...,Dn be n domains (not necessarily
distinct) of elements and Al,...,An be n identifiers which
are assoclated with Dl,...,Dn respectively. A relation R on
the set of 1identifiers {Al,...,An} 1s a subset of the
carteslan product- D1 X,..X Dn. Al is called an attribute of
the relation R. The relation R on the attribute set
{Al,...,An} 1s denoted by R(Al,...An).

We use A, B,... for a single attribute and X, Y,... for

a set of attributes (including the null set).

Definition. A relation type R(Al,...,An) on the attribute
set {Al,...,An} 1s a set of all relations on the set
{a1,...,An}.

A relation R(Al,...,An) is an element of the relation

type W®(Al,...,An). A conceptual schema which determines the
logical data structure 1s defined by a set of relation
types. In this paper, we regard hierarchical data
organizations to be matters of 1internal schema, which
determine the physical data structure.

Figure 2-1 shows an example of a relational data base
rwhere the conceptual schema is the set, {EMP(emp, loc),

ROOM(room#, sect)}.

Next, we define the relational algebraic operations

([Codd 72], [Reiter 781]).

Definition. Let R(A,X) be a relation. Then, the projJection
Tof R with respect to A is a relation given by the equation
3

23

24

T (R) ={x:3z)¢z,x> € R}
A

where x represents the sequence of values corresponding to
the attribute set X and z the value corresponding to a

chosen attribute A.

Definition. Let R(X) be a relation, and ¥ be a variable
which corresponds to X. Let £ be a 1logical function X <
{T,F}. Then, the selection of R with‘ respect to £(y),
denoted by g;(x)(ﬁ), is a set of ¥ values given by the
equation
[(R) ={ 2:x&R A f(x) = T}.
£(X) :
The selection operation §f() is an assoclative

retrieval of the relation R under the condition that r(v) T.

Definition. Let R1(A,X) and R2(B,Y) be relations, and
f(A,B) a logical function. Tnen, the Join of R1(A,X) and
R2(B,Y) with respect to f(A,B) 1s denoted by

R1(A,X) % R2(B,Y), and 1is given by
£(A,B)

R1(A,X) x R2(B,Y)
f(A,B)

= {<a,¥,b,y>:<a,¥> € Rl A <b,y> ¢ R2 A f(a,b) = T}.

If the Jjoin condition f(A,B) is given by an equality
formula such as [loc = room#], then a = b always holds in
ithe above set expression and the answer becomes redundant.
In this case, we remove one of the two attributes from thé

result. This modified join 1s called the natural join.

3. QUERY TRANSFORMATION INTO HIERARCHICAL DATA ORGANIZATION

Figure 3-1 displays the loglcal structure of the data
base given in Figure 2-1. This diagram is a Backman dlagram
and uses arrows to indicate one-to-many mappings (Backman
[(1969]1). One-to-many mappings correspond to hierarchical
relations and the arrows represent the access paths in
hierarchical data bases; namely, subordinate data are
retrieved by specifying the superordinate data and the

access path between them.

Figure 3-2 shows an example of a concrete tree
structure which has the logical strﬁcture given 1in PFigure
3-1. Traversal from the root nodé in FPigure 3-2 corresponds
to retrieval along access path "a" in Figure 3-1. Given a
plece of section information, we select an apprcpriate are
and follow it to reach the set of room#'s which belong to
the sectlon.

Let us assume that each set of room#'s forms a relation
distinctively. We denote a set of room#'s under the selector
"sect = ai"™ as ROOM.ai(room#). This relétion can be defined

by a selection followed by a projection as follows:

ROOM.ai(room#).

° (ROOM(room#,sect)). (3.1)
sect sect=al] ’

If we regard ai to be a variable, then the above

formula defines any relation under any selector.

25

26

Next, we define a hierarchical data organization for the EMP
relation similar to that which was defined for the ROOM
relation. Let us denote EMP.bj(emp) to be a relation which
comprises the employees who are located at bj. Then, the

formula corresponding to (3.1) is given by:
EMP.bj(emp) = T ° (EMP(emp,loc)). (3.2)
loc oc=bj] : :

Let us now consider the example query "Get all

employees who belong to INFO section":

Q=T
Tl-1oc°-n;ect:¢ (sect=INFO]
(EMP(emp,loc) % (ROOM(room#,sect))).
[loc=room#)

(3.3)

It has been shown in [Furukawa 79] that Q i1s equivalently
transformed to:

Q= U EMP.bj (emp). (3.4)

bJ € ROOM.INFO(room#) :

The e§aluation of formula (3.4) proceeds as follows: first,
compute ROOM.INFO(room#) according to the ‘definition (3.1);
then retrieve EMP.bj(emp) for all bJ 1in ROOM.INFO(room#);
finally collect them together. This procedure is exactly the
structural retrieval along access path comprising "a" and
then "b" in Figure 4-2, However, this access method 1is
~somewhat different from that of the hierarchical data bases.
In order to retrieve all of the employees who are working in
‘room bj, the abdve method relles upon the use of

" assoclativity rather than a pointef to access EMP.bJ

6

relation. Although associative retrieval can be realized
very efficlently with hashing techniques and/or specialized
hardware; it 1s still less efficlient than the polnter access
method. We will show further transformation of expression
(3.4) based on the data stucture mapping to realize the

exact access method of the hierarchical model.

4, FORMAL DEFINITION OF DATA STRUCTURES AND PRIMITIVE

-

FUNCTIONS

In this section, we formally define a’ hierarchical
structure and its related primitive functions to manipulate
the structure. In defining a data structure, we adopt a

framework developed by [Hansson 79].

First, we define a 1list consisitng of arbitrary

components.
Axiom 1 Vw{list(w) ¢> w=NIL v ExEy[w=x.y & list(y)]}

Then, we define a selection 1list (slist) to represent a

set of subrelations such as'{EMP.r i r e‘room#}.
Axiom 2

Vk{slist(w) > w=NIL v
ESExEt1l[w=<s,x>.t1 & '
Vs'Vx'(<s',x'> ¢ t1 —» s8'=3)) &
11st(x) & slist(t1)]},

where ¢ is a membership predicate for slist vand will be

27

28
defined later.

This axiom defines a 1list of pairs whose first
components differs from each other. We 1introduce the

following useful lemmas concerning to the slist,

Lemma 2.1 slist(NIL).
Lemma 2.2
VsVxVw{slist(<s,x>.w)

> Vs'Vx'[<s',x'> & w —~» 3'%s] & list(x) &
slist(w)}.

Next, we define a membership predicate as folloﬁs:
Axiom 3.

VeVw{e ¢ w

<—> slist(w) & EhdEtl[hd=e v e & t1]}
Like Axiom 2, we also introduce the following lemmas:
_L_e’_;n_x_ng 3.1 Ve{~e ¢ NIL}.
Lemma 3.2 VeVw[e ¢ e.w <& slist(w)].

Lemma 3.3

VeVhdVtl[e € hd.tl 4> slist(hd.tl) & e & t1]

We are interested in representing hierarchy using
slists. The following axiom defines a hierarchical data

structure called multi-level slist structure or simply

mls-structure in terms of slist.

Axiom 4.

Vw{mls-structure(w)

«> w=NIL v slist(w) & VsVx[<s,x> € w — slist(x)]}.

Finally, we define a double 1list (dl1st) whose

components are all lists.
Axiom 5

vw{dlist(w)
> w=NIL v EhdEtl{w=hd.tl &
1ist(hd) & dlist(tl)]1}

Now, we Introduce primitive predicates and their
corresponding functions for manipulating slist and/or

dlists.
(1) assoc(s,w,x)

assoc(s,w,x) corresponds to a LISP ASSOC function and
is equal to "x = ASSOC(s,w)". A formal definition of assoc

is given as follows:
Axiom 6

1, vs[assoc(s,NIL,NIL)].
2. VsVxVw[assoc(s, 8,x .w,x) <« slist(s,x .w)J].
3. VsVs'VxVx'Vw[assoc(s, 8',x' .w,x) <& slist(s',x' .w) &

ss' & assoc(s,w,x)].

23

30

assoc(s,w,x) 1is similar to <s,x> € w. They differ only
when w is an empty list, where assoc(s,NIL,x) 1s true for
x=NIL, but <s,x> ¢ w becomes false. Relations between assoc

and & are stated by the following two theorems. o
Theorem 1 VsVxVw{<s,x> € w — assoc(s,w,x)}.
Theorem 2 VsVxVw{~r<s ,x> e w — assoc(s,w,NIL)}.

(2) project=-sublist(w,w')

project-sublist(w,w') corresponds to a projection | of
a felational algebra. It projects out first components of
each pair of w and obtains w' consisting of all of ‘the
second components of the pairs. Formally, it is stated‘as

follows:
Axiom 7

1. project-sublist(NIL,NIL).
2. VsVxVwVw'[project-sublist(s,x .w,x.w')

<« s8list(s,x .w) & project-sublist(w,w')].

We denote a function corresponding to

project-sublist(w,w') as PRSUBL(w).
(3) project-selector(w,w')

project-selector(w,w') is similar to
*proJect-sublist(w,w'). The roles of first components and the

second components are interchanged.

10

Axiom 8

1. project-selector(NIL,NIL).
2. VstVﬁBw'[proJect—selector(S,X W,S.W')

€ slist(s,x .w) & proJect-selector(y,w')].
A corresponding function is denoted by PRSEL(w).
(4) dunion(w,w')

dunion(w,w') is a predicate which manipulates dlists
and makes a 1list w' consisting of all elements of all

components of w.

Axiom 9

1. dunion(NIL,NIL).
2. VxVwVw'[dunion(x.w,APPEND(x,w"'))
6~ dlist(x.w) & dunion(w,w')].

A corresponding function i1s denoted by DUNION(w).

5. DATA STRUCTURE MAPPING AND FURTHER QUERY TRANSFORMATION

In order to represent ROOM.s and EMP.r using an
ﬁls-structure, we need to assoclate each room# in ROOM.s
relations with EMP.r. We introduce a pseudo relation called
HROOM.s(room#, Emp) where Emp 18 a pointer to an EMP.r
relation. The original ROOM.s(room#) relation 1is obtained
from HROOM.s(room#, Emp) by

11

31

32

ROOM.s(room#) =T (HROOM.s(room#, Emp)) , (5.1)
Emp ‘

We organize ﬁROOM.s and EMP.r 1in a ROOM-FILE as
shown in Figure 5-1, where ROOM-FILE satisfles the following

assertion:
Assertion 1 mls-structure(ROOM-FILE).

The mappings from ROOM-FILE to HROOM.s and EMP.r

are glven as follows:

Mapping 1 For any section s,

if Ex[«<s,x>» & ROOM-FILE]
then Repr(ASSOC(s ,ROOM-FILE)) = HROOM.s
else HROOM.s = F&

From Assertion 1 and Mapping 1, 1t is shown that any
non empty HROOM.s 18 represented by a selection list.
Namely, the representation runctioanepr maps a selection

l1ist to a pseudo relation.

Each EMP.r i1s then represented by a second component of
some element of the selection 1list corresponding to an

HROOM.s such that r belongs to s.
Mapping 2 For any room# r,

.1. Vw{EsEx[<s,w> & ROOM-FILE & <r,x)> ¢ W]
—» [Repr(ASSOC(r,w)) = EMP.r}

2. ~EWESEx[<s,w> ¢ ROOM-FILE & <r,x> &€ w] —> EMP.r = §.

12

33

From Mapping 1 and 2, it is shown that the following

equation§ holds:‘

Mapping 1.._' For any section s, HROOM.s 1s obtained from
HROOM.s = Repr(ASSOC(s,ROOM-FILE)).

Mapping 2' For any room# r, EMP.r 1s obtained from

EMP.r = U (1f r ¢ PRSEL(w) then Repr(ASSOC(r,w))
w & PRSUBL(ROOM-FILE) else@)

.

We are now able to construct a mapping from ROOM-FILE

to each ROOM.s:
Mapping 1" = For any section s, ROOM.s is obtained from
ROOM.s = Repr(PRSEL(ASSOC(s, ROOM-FILE))).

Now, let us consider how to transform the query (3.4)

into a program which searches the ROOM-FILE mls-structure.

.By applying Mapping 1" and 2' to (3.4), we obtain

e= U °
r ¢Repr(PRSEL(ASSOC(INFO,ROOM~FILE)))
w € PRSUBL(ROOM-FILE) |
(1f r e PRSEL(w) then Repr(ASSOC(r,w)) else). (5.2)

Since the functional dependency room# =3 section hoids,
r belongs to only one section (in this case, INFO), and
"r ¢ PRSEL(wW)" becomes false for any other sections.

Therefore, (5.2) 1s reduced to

13

34

e= U (Repr(ASSOC(r,ASSOC(INFO,ROOM-FILE))))
r € Repr(PRSEL(ASSOC(INFO,ROOM-FILE))) ()
5.3

Generally, a reduction theorem from (5.2) to (5.3) 1is

stated as follows:

Theorem 3 Let M be an mls-structure, S be a constant
corresponding to a first level selector of M and f be an

arbitrary function. Then,

s

v . o U (4f r € PRSEL(w) then f(r,w)
r ¢ PRSEL(ASSOC(S,M)) w & PRSUBL(M) else @)
= U £(r,ASSOC(S,M)).

r € PRSEL(ASSOC(S,M))

Since the range of r covers the entire set of all first
components of pairs 1n HROOM.INFO, we do not need to search
HROOM.INFO 1ist for each r, but simply union all second
elements of pairs in A HROOM.INFO. The following theorem
suggests us to use a DUNION function to compute the above

union.
Theorem 4 Let W be an slist. Then,

U (Repr(ASSOC(r,W)))
r ¢ PRSEL(W)

= [Repr(DUNION(PRSUBL(W))).

By applying Theorem 4 to (5.3), we obtain the following

simple program to compute Q:

Q = [Repr(DUNION(PRSUBL(ASSOC(INFO,ROOM-FILE)))) (5.4)
14

Axiom 6, 7 and 9 define ASSOC, PRSUBL and DUNION
respectively. These axioms can be considered to be PROLOG
program segments and can be executed directly. It 1is also
possible to generate LISP programs by adding a sultable set
of transformation rules and applying the same transformation

methods as above.

6. CONCLUDING REMARKS

In ¢this 'paper, we have represented a set of

subrelations by a formally defined 1list structure and

generated a data retrieval procedure which manipulates the.

structure given a higher level relational algebralc query

formula.

The i1idea that we represent relations instead of tuples
or values 1in tuples 1s closely related to the data
abstraction concept. We do not care the detaliled structure
of each relation, which 1s another lower level problem to be

solved separately.

We also have shown that during the transformation of
relational algebralc formulas into data structure
manipulation procedures, simplifications' due to the
structure are performed. We think this simplification

process 1s very important in data abstraction theory.

[Yonezawa 80] has attacked a similar problem to ours in

the frame of first order logic. Yonezawa has achieved a very

15

35

36

neet method to generate recursive procedures for recursively

defined queriles.

Further consideration 1is needed to see whether our
methods can be applied to the recursive case or not. We also

plan to apply our methods to the network case.

ACKNOWLEDGEMENT

The authe? is grateful to Drs. Osamu Ishll and Akio
Tojo for the opportunity.to make the present_study and to
the staffs of the Information Systems Section ana especially
to Dr. Akinori Yonezawa of Tokyo Institute of Technology for

their stimulus and helpful discussions.

REFERENCE

1. [Codd T72] Codd, E. F. "Relational Completeness of Data
Base Sublanguages", In Data Base Systems (Ed. R. Rustin),
Prentice-Hall, 1972, 65-98.

2. [Purukawa 79] Furukawa, K. "On Intelligent Access to Data
Bases"™, ETL Research Report No. 804, 1979 (in Japanese).

3. [Hansson 79] Hansson, A. and Tarnlund, S. A. "A Natural
Programming Calculus™, Proc. Sixth IJCAI, 1979, 348-355.

4, [Hoare T72] Hoare, C. A. R. "Proof of Correctness of Data
Representations”, Acta Informatica 1, 1972, 271-281.

5. [Reiter 78] Reiter, R. "On Closed World Data Base

Systems", In Logic and Data Bases (Eds. H. Gallaire and J.
Minker), 1978, 55-76.

16

EMP(emp,

SMITH
JONES
BROWN
HENRY
NELSON
MURPHY
LONG
MORGAN
LEE

ROOM(room#,

101
102
201
202
301

Figure 2-1l.

37
loc)

101
102
101
301
102
201
202
201
202

sect)

INFO
ARCH
LANG
INFO
ARCH

An Example

Relational Data Base.

Figure 3-1. A Backman
~ diagram for EMP, ROOM
‘relational data base.

38

kROOM

sect = INFO ARCH LANG
ROOM.INFO ROOM. ARCH ROOM.LANG
(room#) (room#) (room#)

EMP.101 EMP.202 EMP.102 EMP. 301 EMP.201
(emp) (emp) (emp) (emp) (emp)

SMITH LONG JONES HENRY MURPHY
BROWN LEE NELSON MORGAN

Pigure 3-2. A structural organization for
the ROOM and EMP relations.

ROOM-FILE

H%EOM.INFO HROO%.ARCH HROOM. LANG

<INFO, <101, ->.—<—20—27:\>f§ﬁf>.<mcu ,<102,9>.<301, 4> NILD. . . . NIL

———————— .-_...--’

EMP.10 EMP.202 EMP.102 EMP.301

\

u Ly \},
SMITH.BROWN.NIL ﬂ%NG.LEE.NIL ONES .NELSON.NIL *HENRY.NIL

Figure 5-1. Organization of HROOM.s and EMP.r in
the ROOM-FILE mls-strucutre.

