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On the Decomposition of a Directed Graph with respect

to Arborescences and Related Problems

Masataka Nakamura and Masao Iri

Department of Mathematical Englneerlng and Instrumentatlon Phy51cs

Faculty of Englneerlng, Unlver51ty of Tokyo

As is well known, an arborescence (or, more precisely, a spanning arbo-
rescence) oh a diredted graph 1¢ ‘considered as a maximum ‘common indebendent.sef
of the dircui* matroid of the granh and a gartition matroid. In this paper we
apply the theor&ﬁénd the teéhniqueé which have been established for matroid
and polymatroidIintersectibné in [1], [37], [&] to this case. The main results .
are as follows: (i) We introduce the concept of 'degree.of nor-existence' of
an arborescence which shows why and to what exten®t it is impossible to find an
arborescence. (ii) In the case where there is an arborescence, we define a |
decomposition of the edge set into a partially ordered set so as to clarify the
contributicn of each edge to the reachability from the 'root' of the arbores-
cences to the other vertices,

The relaition of these results to the Hamiltonian-path vproblem, which is
dgctually a three-matroid intersection problem, is also investigated to get
a number of necessary conditions for the existence of a Hamiltonian path as

well as a procedure of reducing the original Hamiltonian-path problem to smaller

ones.

l. Preliminaries

In this section we shall outline the theory of principal partition (11, [3],

[4]. Let P, and P, denote two polyratroids on a finite set E with rank functions

u, and My respectively.'

1
The following equality is well-known: for each X e [-1, 1],
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min { (1 - A)ui(A) + (1 +Nuy(E-8) [ acE)
= max { [ul | u e (1 - A)P and u e (1 + X)P .o (1.1

The collection of subsets which attain the minimum in -the .left-hand éide of
(1.1), to be denoted by C(A), constitutes a distributive lattice (i.e., it-is,
closed under union and interSection), hence. it uniquely defines a partition.
of the,underlyiﬁg set: |

E =»E; vl- U Flu E '  o : . - (1.2)
FeF(A)

w1th a partlal order on F(A) where F(A) is the collectlon of dlfference sets
of a max1mal chaln in C(A) and EA and EA are the minimum and the comnlement
in E of the maximum of C(1), respectlvely The collection of maximum common
1ndependent vectors of the pair ((l—A)P (1+A)P ) is decomposed into a direct
sum correspondlng to (1.2).
Let C,; U C(A). C_.. also turns out to be a distributive lattice,
all : all
and determlnes ‘a partltlon of the underlynng set:

E= U r S
FeFall . i . . - A !

with a partial order on Fail' We can prove that the partition (1.3) is -a re-

finement of (1.2) for each A € [-1, 1], and that the partially ordered set asso-

ciated with the latter partition is homomorphic to that with the former. Further-

_ more,

F = U F(r). o ‘ (1.4)
all 10« ' a

A simple argument shows that there exists a finite set A c [—1, 1] such that

Foo= U FO, " | (1.5)
all Ael

if A, A' € A and A # A', then E. = E., and E. = E. (1.6)

AT AT Eare

where (1.5) is a disjoint union up to the "singular" blocks which are singletons
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and whose principal pair of minors (seg below) are of null rank.

In terms of the A, (1.3) can be rewritten as

E = [

= F ] | ' (1.7)
Ael

Fey(k)
which we shall call the‘principaz partition of E with respect to (P;, P,) and
the elements of A the eritical values of (P, P,).

A "standard pair" of minors (Pl[F], PZ[F]) of (Pl’ Pé)
with each F ¢ F(X) () € A) as follows. Let F = |/ F' for F < F', F = F' (F'

can be associated

+ ' :
€ Fall), and F =) F" for F'* < F, F 2 F" (F" ¢ Fall), where ~ is the partial

order on Fall’ and-then delete F~ and contract F' from P..

is the direct sum of a polymatroid on F, denoted by Pl[F]’ and polymatroids on

“The resulting minor

the blocks incomparable with F. PE[F] is obtained from P

5 with the operation

of deletion repléced by contraction and vice versa. For thisfpair,

(1 - x)r(Pl[F]) = (1 + Vr(p,[F]) : (1.8),
holds (r(P) being the rank of the polymatroid P), and the pair ((1 - A)PlrF],'
‘(1 + A)Pg[F]) has a common basis vector. The pair (Pl[Fl,VPé[Fj) is called the
principal pair of minors on F e F(1),

The following lemma is easily deduced from the basic resulfs of the theoryt

of the principal partition.

Lemma 1.1, Let A be the maximum of the critical values of (Pl’ Pz), and
g =2 0. Then there exists a common independent vector of (Pl, qP2) which is

a basis veétor of Pl iff
1+
max

Q23T -
max

(1.9)

For details of the theory of the principal partition, we refer to [11, [2],

[31, [X], and for matroid intersection problems and algorithms, to [51, [61, [T1].



3. Arborescences on a directed graph

Let G = (V, E) be a diréctedAgraph with a vertex_éet V and an edge setvE.
Throughout this'paper; we assume G to be connected for the sake of simplicity.
Let 8 v denote the set of edges'whose terminal vertex is v,_and 8+v the set of
edges with v as the initial vertex. A subset T of E ié called an spanning arbo-
rescence or, simply;‘ an ainboreécence if T is a tree on G (as an undirected graph )
and if |T n 5;Vl < 1 for ever& v € V. An inverse arborescence is defined with
th'e' condition ]T' n 6+v|_ < 1 instead of ]T né& vl €1, We s‘jhall" slightly gener-
alize'thekdefinitions. For a positive infeger k, a k-arborescence is a tfee T
(c E) with |T n 6v| < k for every v € V. A k-inverse arborescence is similarly
 defined. If T is an arbofescence, there is a unique vertex v with IT n d_vl = 0,

which is called the root of T.

Theo;em 2.;. A necessary and sufficiént condition for an arbérescence with its
root v € V to exist in G is that all the other vertices of G are reachable
from v thrqugh directed paths. |

(Proof) The vérification is a routine work. 0O

Theorem 2,1 indicates that a variant of shortest-path algorithm affords an
efficient way for finding an arborescence,

Now let us define an arborescence in terms'of matroids. G, as an undirected
graph, determineé the circuit_matroid on E, which we denote by G. For a positive
integer k, the collection of subsets A of E such that IA n G-VI < k for every v
€ V satisfies the axioms of independent sets of a matroid, so that it defines a

1

+ - . ,
in a similar way with 8§ instead of § , Clearly, an arborescence is nothing but

- - + + R
matroid which we denote by'Pk. We simply write P~ for P.. Pk and P are defined

a common independent set of (G, P~) which is a base of G, and a k-arborescence
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is a common independent set of (G, P;) which is a base of G. Thus, we can apply
the theory of the principal partition to arboresecnces. Suppose that the princi-
palApartifion of E with respect to (G, P7) is

= U L U 7l o _ ! (2.1)
Aeh™ FeF(X) v = o e 2

fhéoreﬁ,Z.E. vLe; Am#k be‘the maxiﬁuﬁ Qalue in A;;,&Théﬁ arneceséary;éna é;ffi-
| éienf‘cqndifion fof é k-argoreéceﬁce to exiét iﬁ’Gvis thatvv‘ o
| k>1;g# e i e
(Proof) . Lemma 1.1 implies that (G, kP”) has a common independent vector which
. +is a basis vector of G iff (2.é) holds, Although kP~ is not equal .fo.PI-{,z
s the collection of common independént vectors of (G, kP-) coincidés.with that
of (6, PD). O
A directed graph does not necessarily>centaiﬁ an -arborescence, quever;'
if;isrclear that a k-arborescencemdbeshexistrika is large enough, " The méximum
Amax of the critical valuesjof A~, which determines the minimum of-k for which
a k—afborescence_exiéts, can be considered as the 'degree of non—existenéelfof:
grboresqencgs in G iﬁ the case where the;e is noAarbqrescence in G{_
The partition (2.1) possesses the folloﬁing interesting proper;y.,,As is”
easily seen, . : »
'k 2 rank of G / rank of P = ([V] = 1) / |[{veV: 67v = g} (2.3)
is a necessary condition for the existence of a k-arborescence, but not a suffi-
cient condition in general. However, for the subgraphs (mo;e exactly, subcon-
tractions) corresponding to the principal pair of minors on the blocks of the
partition (2.1), (2.3) is a sufficient condition as well. This is readily proved
from basic properties of the principal pairs of minors.
Moreover, (2.1) is closely related to the decomposition of the graph into
strongly connected components, Let V = U Vi be the decomposition of the vertex

iel
set V of G into strongly connected components.

-5-
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Theorem 2.3. In the case where G has an arborescence,” the partition (2.1) is
a refinement of the partition E = | éiVi where G_Vi'= U & v for v e V..
s S, o del .
(Proof) Let u, and u, denote the rank functions of G and P, respectively.

From the assumption of the existence of an arborescence,

min { ﬁl(A) + ué(E'_ A | AcE Y= |v] - 1.

+ - cne
Suppose I < I satisfies the condition: there is no pair (i, j), with i € It

and j € I - If, such that V, < Vi where =< is the natural partial order -amorig

J

the strongly connected components, i.e., Vj - Vi implies that the vertices of

Vi are reachable from those of V.. Then, we have

J
w (U, 8v) +u,C U L ev) = v -1,
it 4 2 je1-1t  J

as is readily shown from the definition of the rank functions. Hence,

- + ‘ ‘ ‘ A
U + G»Vi ] I satisfies the above condition } is a subcollection of { A c E

jelI A oo S v ‘

| ul(A)»+ u2(E - A) = minimum }, and the assertion of the theorem directly

follows, [J

The implication of the partition (2.1) is further investigated. In the
following, we assume that G contains a vertex s of null indegree, ‘and that all
the other vertices are reachable from s. (It is easy to transform the problem
with a specified root into this form.) From Theorem 2.1, there is an arbores-
cence in G, and every arborescence of G has the unique root s. Since in this
case an arborescence is a common base of (G, P7), zero is the only critical
value of (G, P7), so that (2.1) is reduced to

E—

= | F. (2.4)
FeF(0)

The elements of E can be classified into three parts EO(G, P7), El(G, P7)

and EZ(G’ P”) as follows:
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EO(G, P-).=>{ e € E | {e} ¢ F(0), the rank of the principal pair
of minors on {e} =0 },

.El(G, P) = {'é e BE| {e} e F(O),' the rank of the princii)al pair

| of minors on {e} =11},

Ey(6, P7) ={eckE | e € F for some F ¢ F(0) such that |Fl =2 }.

Then, we have

Theorem 2.k,

<A> e eZy6, P7) (A.1)

<> No arborescence on G contains e (A.2)

<<=> There is no elementary directed path in G starting from s

and containing e. ' (A.3)
<B> ec¢ El(G, P7) : (B.1)
<> Every arborescence on G contains e (B.2)

QRN The deletion of e from G makes some vertices unreachable

from s. , ’ (B.3)
<C> eekElG, P) o ' (c.1)
<> Some of the arboresc'encesb on G contain e and some do not.('C.2-)'_
(Proof) (A.1) <= (A.2), (B.1) <> (B.2) and (C.1) <= (C.2) follow from the

basic results of the theory of the principal partition. (See [h].) It is
easy to show that an arbitrary elementary directed path starting from s can
be augmented to an arborescence in G, so that (A.2) <> (A.3). The proof of

(B.2) <> (B.3) is straightforward from Theorem 2.1, [

In other words, the edges belonging to EO(G, P”) are of no use at all for
the reachability from s, whereas the edges belonging to El(G, P”) are indispen-
sable. The edges belonging to EQ(G, P”) can be considered as the replaceable

edges, and the relation of replacement is also decided by (2.L4).

-7 =
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3. Related Problems

In this section we consider problems related to the Hamiltonian-path prob-
lem. Let G be a directed graph with a vertex s of null indegree and a vertex:t
of null outdegree. A quiltonian path in G is a directed path from s to t which
runs through each of the vertices of G exactly once. In terms of G, P~ and pt
(which are defined in the same way as in the previous section), a Hamiltonian
path is nothing but a common base of G, P~ and P+, so that the following condi-
tions should be satisfied for the existence of a Hamiltonian path.

(N1) - G and P~ have a common base, i.e., G has an arborescence,

(N2) G énd P* have a common base, i.e., G has an inverse arborescence,

(N3) P~ and P’ have a common base.

Each of these cdnditions can easily be checked by a matroid intersection algo-~
rithm, If one of them is violated, it is directly concluded that there is no
Hamiltonian path in G. If they are all satisfied, construct the three principal
partitions of E corresponding to the three pairs (G, P7), (G, P*) and (P, P+),
and determine the sets E (G, P7), E (5, P*) ana B (P, P =0,1,2). (This
can also be done by an efficient algorithm. See [ﬁ].) Put E_ = EO(G, P7)u

0

B (G, PT) v E, (P, P*), and E. = E (6, P7) U E (6, PY) U E (P", PY). IfG has

1 1

a Hamiltonian path, it must contain all the elements of El and none of Ej. Hence,

(yL) EO n El =g

should be satisfied. If (N4) does not hold, there is no Hamiltonian path. If
(N4) is - satisfied, the original Hamiltonian-path problem can be reduced to a

smaller one as follows. Let El = |J [ 67(87e) v sF(a%e) ], where 3 e (resp.,

eeEl

+ -
3 e) is the terminal (resp., initial) vertex of e. The edges of E, - E, are

contained in no Hamiltonian path (even if one exists).. Consider the graph G!'

obtained from G by deleting the edges of E, u (E, - El) and contracting the edges

0 1
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of E Then, it will be obvious that

1° ‘
Theorem 3.1. A subset T of the edges of G is a Hamilﬁonian path in G iff T > El
and T - E, is a Hamiltonian path in G'. [
If G' is strictly "smaller" than G, we can apply the above procedure to G'.
By repeating this procedure, we can sometimes reduce the original problem to a’
considerable extent. Horever, it may also happen that G' equals to G, i.e., we
have no substantial reduction. In fact, we can expect no powerful procedure

which is "elways" effective, since the Hamiltonian-path problem is known to be

NP-complete.

4, Examples

Example 1. The graph G1 shown in Fig.l does not contain an arborescence. The

partition (2.1) for G, is

E = ’ [ U F ]’
re{3/7,1/7,0,- 1/3} FeF(}A)
{_ _______________________
' s 17
s 16 | (r =3
|
3 1k 17 : 19 V18
! o~
2 SAVS 13 e L _ )} _
L T 12 20 l T 12
> < I
! (x =3
8y 9 { ? 0 !
10 L
G 1% 3

Fig. 1
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where

I

F(3/7) = { {13; 1k, 15; 16; 17, 18, 19; 20} },
F(1/7)
F(0) = { {3, 4, 5, 6} 1,

F(-1/3) = { {1, 2} }.

il

{ fT;vB,‘9; 10; 11, 12} };

From Theorem 2.2, a k-arborescence exists on Gl iff k 2.%%:—%§%-= g-(i.e.,

k > 3). And {1, 3, 6, T, 8, 10, 12, 15, 16, 17, 19, 20} is an example of a

3-arborescence on'Gl. Fig. 2 shows the subgraphs each corresponding to the

principal pair of minors on a block of the partition (2.1).

Exampie 2. The graph G, of Fig. 3 has an arborescence, and the partition (2.14)

is

for G2

E—

= F
_ FeF(0)

where
Flo) = { {1,2,3,4}, {5,6,7,8}, {9}, {17}, {11}, {12}, {13,14,15,16} }.
Fig. 4 shows the principal pairs on the blocks and the partial order among them.

The classification of the edges is as follows;

EO(G, P)=1{9, 111},
El(G, P7) = { 10, 12 },
EZ(G, P7) = {1,2,3,4,5,6,7,8,13,14,15,16 }.

In Fig. L4, the broken lines indicate the partition of the edges corresponding to

the decomposition of the graph into strongly connected components.

Example 3. Let us consider the Hamiltonian-path problem on the graph G3 of Fig.

5. As is easily seen, G3 satisfies (Hl); (N2) and (NB); Fig. T shows the‘parti-

tions (2.1) with respect to (G, P7), (G, P*) and (p7, P+) of G3, and we have
EO(G, P7)

{221},
£ (6, P*) = {10, 14 },

5,(P7, P) = (1,3, %, 7,11, 14, 15, 18, 22, 30 J,

- 10 -
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5 8 13
1
s v7 5 ~11Y412 15
2 6 10 1k
Go
Fig. 3
) 13 28 t
1y 2 )18' 19 M2
1k 20
/ 22 A23
6 8 \(21
9 15 2k
16 2 26/
12/ v
10 2
17 . .
G5
Fig. 5

TN

Fig. 4

Fig. 6
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{211,
(8,161},

H

E (G, Ph)

+
El(G, P)

E (P, p*y =1{2, 5, 6,8, 13, 21 }.
Since

E,nE = {1,3,%,7,10,11,14,15,18,22,30} n {2,5,6,8,13,16,21} = ¢,

(N4) is also satisfied. Deletion of the edges of Ej v (El - El) and contraction

of those of El from G, will give the graph of Fig. 6, whigh does not posses a-

3

Hamiltonian path; in fact, it eontains even no arborescence. Hence, from Theorem

4,1, it is seen that there is no Hamiltonian path in G3.

Example 4. Next the Hamiltonian-path problem on the graph G), of Fig. 8 is examined.
’ N
As for the graph Gh’ we have

E

E, = {1, 6, 11, 15, 22 }.

{2,3,9, 13, 20, 23 },

By deleting the edges of Eo and contracting the edges of El from Gh’ we obtain

the graph of Fig. 9, to which the reduction proceaure is agaln applicable. As
for this graph, we have

]

E0

El' ={ 4, 5, 8,12, 17, 19 }.

{7, 16, 211},

Finally, the original Hamiltonian-path problem on'Gh is reduced to the trivial
problem on the graph of Fig. 10, Hence, from Theorem 3.1, a subset T of the edges
of G, is a Hamiltonian path in G, iff T =E v E,' = {1,4,5,6,8,11,12,15,17,19,22},
i.e., {1,4,5,6,8,11,12,15,17,19,22} is the unique Hamiltonian path in G),.

- 12 -
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