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Introduction

Following Hormander([3], we call effective hyperbolic the
class of weakly hyperbolic operators which have non-vanishing
real eigenvalues in their Hamilton maps (fundamental matrices)
defined at the critical sets of the principal symbols (See Ap-

pendix I; For the terminology, we refer to Ivrii-Petkov[5]. Also

[3]).

We list some examples:

2.2

Di—th teoo, (1)
2 - (tPexP)pZ +.ne, (2)
D2 - t’p? - D}2, - (3)
D2 - (tPexPry®)pl - D}Z, P (1)

Here ... stands for lower order terms, and

D, = -/-1 8/3t, D, = -/-1 3/98x etc.

The Hamilton maps of the above operators are given in Appendix I.

The operator (1) has a smoothly factorizable principal

symbol.
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A class containing this operator is now extensively studied (Re-

ferences omitted). It is worth noting the following observation

of Chi[2]: for a non-negative integer N, the solution u(t,x) of
p?u - t%p*u + /7T (4N+1)D_u = 0 (1)
t X X

u|t=0 = f(x), Dtu|t=0 = 0,

is given by

2k

u(t,%) = Tieg prBrieyzy [T DO el (xet?/2)

(See also Oleinik([6]).

This explicit formula in fact led me to a study of the
above mentioned class of effective hyperbolic operators, with a
motivation to know how the quantity N expressing the loss of
derivatives of the solution with respect to the initial data is
related to the lower order terms of the operator (here /-1 (4N+
1)Dx). Now I know that this quantity is expressed in terms of
the subprincipal symbol at the double characteristic points
combined with the real eigenvalues of the Hamilton map. " This is

in a sense common to effective hyperbolicity.

Returning to the operators listed in the above, a paramet-
rix of the operator (3) was constructed by Alinhac[l]. On the
other hand, between the operators (2) and (3) there is a differ-
ence in the symplectic geometries of the characteristic sets.
Owing to this fact, Alinhac's construction does not work for the
operators of the form (2) (See Appendix II for related discus-

sions).
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The purpose of the present talk is to give parametrices to
the Cauchy problem associated to a class of operators containing
the operator (2). We also indicate some properties of these pa-
rametrices, such as estimates and wave-front sets. The details

are expounded in Yoshikawa[7].

As to the operator (4), purely imaginary eigenvalues appear
in the Hamilton map (See Appendix I). For such operators, by the
method of separation of variables, we can apply the results about
the operators of the form (2) or (3). However, as for detailed
properties of solutions of the operators of the form (4), includ-
ing propagations of singularities, there still remains much to

investigate (cf. Alinhac[1]).

It should also be mentioned that the operators close to the
above types were discussed by Ivrii[4] in a way analogous to
Oleinik[6]. Our explicit construction makes some of Ivrii's

observations precise.

Main Results,

As our main results, we give representation formulae of pa-
rametrices to a class of effectively hyperbolic operators con-
taining the operators (2) and (3).. Properties of parametrices

are more or less derived from these formulae.

Hypothesis. We begin by stating our hypothesis. Let U be a
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bounded open neighborhood of the origin in the Euclidean n-space
n

R". Consider the operator:
_ a2 ; _
P = D/ A(t) + B(t)Dt, “ (5)

where A(t), B(t) are classical pseudo-differential operators in
U, respectively of order 2 and of order 0, both properly support-
ed, and depending on a c” parameter t running in a neighborhood

of t = 0.

Let A(x,&£,t) be the full symbol of A(t) with the homogeneous
expansion:
ACx,E,t) ~ [T A (x,E,1).
We first assume

A%(x,E,t) = a(x,E) + b(x,&,t)2t2, (6)

where a(x,£) and b(x,£,t) are respectively homogeneous of degree

2 and of degree 1 such that

a(x,g) > 0, (6a)

b(x,£,t) > 0. (6b)
We then require a decomposition of coordinates x = (x',x"),
X' = (eee,x ), X" = (Xp4,qs0005X), 0 < n' < n, whence x' may

be void, such that

a(x,g) = 0 if and only if x" = 0, (7)
and that the quadratic form in X" = (Xn,+1,-'-,Xn):
a,(x',6;X") = § 3% a(x',0,8) X" /o (8)
2 s 5 |0(,"|=2 x" sV . ¢

is positive definite (See Appendix I). Note that az(x',g;X") is
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essentially the Hessian of a(x,£) at its critical set x" = 0.

The operator P is said to be of class (EH)O if P fulfills

the requirements (6) ~ (8) (EH for effective hyperbolicity).

Symbol class. Parametrices of operators of class (EH)0 will be

expressed in terms of the symbol class Sd. Let T > 0. For real

d

d, we denote by S~ = Sd(U,T) the totality of c” functions p(x,y,

A

£,t,r,s), x, y e U, 0 < s <r <t < T, vanishing in a neighbor-

hood of £ = 0, for which we have the estimates:

A, BaYalajak
l3X3y3gat3rasp(anag,t’r,S)| L

< c(as|epdrUanlslBr+iviri) /2-]v]

for x, y e U, € # 0, 0 <s <r<tz<T.

Even if some of the arguments x, y, &, t, r, s are absent,
we use the notation p e Sd. We often write p = p(t,r,s), p(t,r)
or p(s) etc to indicate p really depends on which of the parame-
ters t, r, s. On the other hand, if we write p = p(x',y",&,t,r)

etc, this means that p is independent of x", y', s, etc.

Phase functions. First of the crucial steps in our construction

is the following observation concerning the phase functions

¢i(x',y",§,t,r) determined from:

* 2 ' + b "
¢t - iJA (X ’-¢£",¢X"g ,t) ’

+
¢ !t:r = <X',€'> _ <yn,gn>



20

when y'" # 0.

Lemma. When restricted to (]y”|2+r2)]£| AT lg] > Ng> MNo>
ny >0, |
* + 1
¢, ¢yn e S,
Furthermore, there is a family of functions ¢§(x',y",£,t,r) such

that
+ o +
¢ ~ Z]'-:O ¢i(xy’y"’g’t’r)’
by = <x',E'>,

o1 = -<y",E">,

¢2 = +b(x',0,&,0) j; JGZ + p(x',y",€) do,

and for i > 2

e

©
;

~ eIt () g o Hed M gt () T ol ey ).
Here
p(x',y",E) = ay(x',E5y")/b(x',0,£,0)

and

T(t) = T(x',y",E,t) = t + Jt° + o(x',y",E)

(For the details, including the meaning of ~, see [7]).

Let
+ +
@ (t,r) = ¢ (X"y"’g’t’r) - <y"£'> + <X"’€">

In view of Lemma, we can introduce, as an oscillatory integral,

the following variant of Fourier integral operators:
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I(p(t,r,s);0" (t,r))u(x) =

(m) ™™ [ T (Tt s uly) dyde  (9)

for p(t,r,s) = p(x,y,&,t,r,s) « s¢ supported in |£] 2 n,,
w2
(ly"]

used when o is replaced by

+r2)|E| > nl; ue E'(U). A similar notation to (9) is

Y = <x-y,&>.

Thus, I(p;¥)u is a pseudo-differential operator with the ampli-

tude function p = p(x,y,&,t,r,s) € Sd.

Parametrices. Let s > 0. Consider the problem:

Pu = 0, t > s,

, (10)

Deul,_ = £, 1=0,1,

with prescribed £, i =20, 1. For sufficiently small U and T,

we are now ready to give a pair of parametrices Ei(t,s), i=20,
1, to the problem (10) such that PEi(t,s) are of C~ kernels in

i i oo
x, yeU, 0<s <t<T, and that DtEk(t,s)|t=S - 6,1 are of C

kernels in x, y ¢ U, 0 <'s < T.

Let

the suprema being taken over (x',0) € U, £ ¢ R™\{0}. Note that
—Al(x',O,E,O) is the value of the subprincipal symbol of the
operator P at the double characteristic points and *b(x',0,%,0)

are the real eigenvalues of the Hamilton map.
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ret s4%0 - s

d+n
n>0 :

Our basic results now read as fol-

lows.:

Theorem 1. Let P be an effectively hyperbolic operator of class
(EH)O. Assume U and T are sufficiently small. Then we have
pairs of amplitude functions:

. . +
pli(t,s) . S1/4-31/4+|m |/2+0,

. . +
qli(t,r,s)ve S1—1/2+|m |/2+0’

ql(tys) € 5-1/29

i =20, 1, such that the oscillatory integrals:

Ei(t,s)u =
= LI (t,s)507 (8,5))u + T(al(t,s);¥)u +

e I, JE 1@ e, 80500 (8, 1) dr,

ue E'(U), give a pair of local parametrices to the problem (10).
Here pli(t,s) are chosen independent of x" in U and supported in

le| > Ng» (lY"|2+52)]€| 2 nys qli(t,r,s) are supported in |&|

Iv

2 2 - .
2 ng, Uy"[%+sH) ] < ny, Uy %+r?) el 2 ng, and q'(t,s) in
1] 2 g, (ly"%+s®)le] < n,, (1x"|%+t%)|g] < n,. Here n, > 0,

0 2 4 i
i=0,1,2,3,4.

The proof of Theorem 1 and related discussions are found in
[7}. In particular, corresponding to the operator (3) we have a
microlocalized subclass of (EH)O, for which the above representa-

tion formulae take a much simpler form (microlocally).
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Wave-front sets. To describe the wave-front sets of Ei(t,s),

we first extend the bicharacteristic relations associated to
+
Eg * JAz(x,g,t). Let (Xi(y,c,t,r),E_(y,c,t,r)) be the solutions

of

x*, g%, 0 /2% (XL e, ),

e
]

-+

>

+ +

2 + PN
ET o= AT (X7,E ,t)/Z/A (x,27,t),

(XLE) oy = (752D, y" £ 0, ¢ # 0.
For UlcClL we set
B* (t,T5U;) =

+

+
= {(x,8,y,8); x=X"(y,5,t,r),E=E" (y,z,t,r),ycl;,y"#0}.

Now let us set

+
By(t,r5y',2)

+ _*
=N oo {XT0y,2,t,1),E (y,8,t,1),y,2); 0<|y"[<n}
and

BX(t,r;U.) =U BX(t,r;y"
O( s T3 1) - (y',O)eUl,C#O 0( » T3y ,C)-

Finally we put

~+ ) + +
B (t,r,Ul) B (t,r,Ul) U Bo(t,r,Ul).

It is not difficult to see that ﬁi(t,r;Ul) are closed subsets of
(T*Ul\{O})X(T*Ul\{O}). Ei(t,r;Ul) are thus the extended bichar-

acteristic relations (See [7] for detail).

Now we have the following (probably rather rough) estimates
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of the wave-front sets of E;(t,s), i =0, 1.

Theorem Z. Let P be of class (EH)O. For sufficiently small

Ulcc Uand T > 0, we have

~t ; ; +
B™(t,s;U;) UUi Us<r<t‘BO(t’r;U

+

WF(Ei(t,s))lUl <y

when 0 < s <t < T. If s > 0, the second union in the right

hand side is unnecessary. Here WF(Ei(t,s))lU is the restriction
1

of WF(Ei(t,s)) to (T*U\{O})X(T*Ul\{O}), and for the distribution

kernels Ki(t,s) of Ei(t,s),
WE(E; (t,s)) = WE'(K,(t,s)) =

= {(X’g’y,g); (X’g’y,_zﬂ—)€WF(Ki(t,S))}'

For the proof, see [7]. We remark that gi(t,r;Ul) (in their
micro-localized version) as well as Theorem 2 are much simplified
for the operators corresponding to (3) (Appendix II. cf. Alinhac

[1]. Also [7]).
Ideas ?

Our discussions are based on the R+—action of the form:

g>\ : (X',X",Y',Y",g,t,r,s) >

s Y 2y T 2 e a2 612 3 2y

A > 0, and their natural restrictions, also denoted by g to
smaller sets of arguments. This R _-action is closely connected

with the critical set of Az(x,g,t). The homogeneity associated

10
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to the R _-action gy is called (strong) semi-homogeneity. Thus,

p(x,y,&,t,r,s) is (strongly) semi-homogeneous of degree d if

(85P) (X,¥,E,1,1,5)

' X_l/zx” 1 A'l/zyn,kg,x_l/z

= p(x', Y /2. 2

t,A T, )

Ad p(x,y,&,t,r,s).

Actually building of the phase functions of Lemma is based
on such considerations. In particular, each ¢§ is (strongly)

semi-homogeneous of degree 1-i/2.

In this way, we expand everything into (strongly) semi-homo-
geneous parts, and apply, say, the method of indeterminate coef-
ficients. That such a procedure makes sense is assured by the
asymptotic properties of the solutions ut = ui(x',y",g,t) of the

ordinary differential equations:

1
RN e
/-1 t2+p sV G

p = p(x',y",8), enjoying the asymptotic expansions:

{D 1h* = o,

ui ~ (t2+p)_1/2T(t)1/2{|g|l/ZT(t)}U_(X' ,g,)}:?:ou;(xv ,Y”,E,t) R

when y" # 0. Here

li(x’ g) = __1_+
M ’ 2 72 Tbh(x',0,¢

+ .
and ug are determined from:

11
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1 /T AN (x!,0,£,0),

7 3
NtTvp o3+ T2 B",0,%,0)
yto+p :

o /T
TP (x",0,8,0)

Nf =

2 %
Dtuj—l'

The details are again transferred to [7].

The above asymptotic results are valid when handling the
amplitude functions in the domain (ly”|2+r2)|£] >n > 0. To
complete our construction, we need a further modification of the
R, -action g, and related symbol classes. Again we can say that

for the operators of type (3) this remaining part becomes simpler.
Appendix I

Let P represent one of the operators (1) ~ (5), o(P) its

principal symbol, and I, the critical set of o(P), i.e., the

p
double characteristic points. Let HP be the Hessian matrix of
o(P) at ZP and FP the Hamilton map (fundamental matrix). Then
if J is the matrix representation of the symplectic structure

of T*(UxR),

For the operator (1): I, = {t =¢g, =20, £ # 0J.

P
0 0
FP = R AR . eigenvalues:
: 0 -1 ‘ |
0 - 0, x1&1.
L] 2 ’
- -l 0

12



For the operator (2): I

P

0 0
£]% o

F = e 0o 00000 00

0

For the operator (3): ZP

0. 0
0 1
F, = | 0 :
P 0 0
0+ 0

For the operator (4): I

For the operator (5): I

.
¢ O
o -

o0 00800000000 i

Secocsssecescece ]

e e 000000

0

s 0000 e e

0 -1

(o]
o

: 0 :

Fo ~ 0: "yt :
P + -A"(x',E) 0 -
0 - 0 :

13

o

44

x =0, & # 0}.
eigenvalues:
0, tlg].
r =0, £ # 0}.

eigenvalues:

0, =[g].

x=y=1¢=0, & # 0}.

0 eigenvalues:
o0 e 00000 e 0, ilg"
+/-1|¢g].

b(x',0,£,0)% 0
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where
SXTLAT(X'LE)XT> = o, (x',E3X").

Eigenvalues: 0, *b(x',0,£,0).

Appendix II

Related to the operator (3) we introduce the following
micro-localized subclass (EH,P)n” of (EH)O.

Let P be of the form (5). Let

nl

Iv

1 (7a)

and T an open cone in R™\{0} in which &' # 0, & = (£',£"). We

call the operator P of class (EH,T) if P satisfies (7a) and

nH

{x",tb(x,8,t)} =0 when x" = 0, & ¢ T (7b)

in addition to (6), (6a), (6b), (7), (8) restricted to & e T.

An example of operators of class (EH,F)n” is:
2 2. 2.2 . .
Dy - (t +x2)DXl +eoe, (3")
X = (xl,xz), (x' = X1 x" = xz), n=2,n"=n"=1,T-={g"# 0}.

Note the operators (3) and (3') are symplectically related.

We indicate how Theorems 1 and 2 are simplified (although
micro-locally) for operators of class (EH,F)n" (See [7]. Compare
with [1]).

Let

07 (t,5) = 0y(t,s) + <x",g">

14



29

where

+ y + =
9,0p = *tb(x',-3,.,00,3,,07,8",t),

ot

0!t=s = <X'-Y'$E'> - <Y",€">-

We use an analogous notation I(p;@i)u to (9), replacing 0" by 0.

Theorem 1lbis. Let P be of class (EH,F)n". If U and T are suf-

ficiently small, there exist pairs of amplitude functions:

. . +
pli(t,s) . S1/4—31/4+|m |/2+O’

. . +
qli(t,s) €‘51/4-31/4+]m |/2+0’

i = 0, 1, such that the oscillatory integrals:
Ei(t,s)u =

= ), TN (E,s)507 (t,s))u + I, I(atT(t,s);0" (¢,8))u,

u e E'(U), give a pair of micro-local parametrices in UxT,

0<s <t < T. Here pii(t,s) and qii(t,s) are chosen independent
of x" in U. pii(t,s) are supported in |g| > Ny (|y"|2+52)|£[ >
> n;, and qii(t,s) in |g| > UL (|Y"|2+52)|€[ <Ny My > 0, j =
= 0,1,2.

To describe the wave-front sets in these cases, we observe
the following. Let (Xg(y,c,t,r),Eg(y,g,t,r)) be the solutions

of the Hamilton-Jacobi systems:

o + _£

XO = +th(XO,Q0,t),
LR + _*

EO = ith(X ,:O,t)

15
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with the initial condition:

+ _+

(X5,56)|t=r = (y,2), ¢z e T.
Then (7b) implies
+
By(t,riy',z) =
+ - 4
= {(XO(Y"O’C’t’r)’:O(y"OQC’t’r)’y"O’C)}'

rThus, if gi(t,r;Ul,Fl) denotes ﬁi(t,r;Ul) micro-localized to

those 7 ¢ [jecT, we have a simplified version of Theorem 2.

Theorem 2bis. Let P be of class (EH,F)n". For sufficiently

small Uy ccU, T, eccT, and T > 0, we have for 0 < s <t < T

WF(Ei(t,S))IU T C\/i
171
Here WE(E. (t,s))] is the restriction of WF(E. (t,s)) to
1 lerl i

(T*U\{O})XUIXFI.
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