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ELLIPTIC UNIT AND CLASS NUMBER CALCULATION

("‘i H g %( r B} n’ﬁ%ln\)Z)

By Ken NAKAMULA

Department of Mathematics, Tokyo Metropolitan University

In this note, an effective method will be introduced to calcu-
late the class numbers and fundamental units of certain non-galois

number fields, utilizing so called "elliptic units".
Introduction

For a real abelian number field, G. Gras and M.-N. Gras [3] has
introduced an effective method to calculate its class number and fun-
damental units together, utilizing cyclotomic units. Their method is
based on an index formula for the class number, related to cyclotomic
units, givenlmrH.W.Ieopolaf[S]. For a finite abelian extension over
an imaginary quadratic number field, a similar index formula for the
relative class number, related to elliptic units, has been given by R.
Schertz [11, I]. Moreover, for a non-galois number field of which the
galois closure over @ 1is an abelian extension over an imaginary quad-~
ratic number field, Schertz [11, II] has given a similar index formula,

So we consider the following problems:

PROBLEM 1. Let L DYe a finite abelian extension over an imag-

inary quadratic number field I, and denote respectively by h and h'
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the class numbers of L and I. Find an effective method to calculate

n/h' and fundamental units together, utilizing elliptic units of L.

PROBLEM 2. Let K be a non-galois number field of which the

galois closure over @ is an abelian extension over an imaginary gquad-

ratic number field, and denote respectively by h and hy the class

numbers of K and the maximal absolutely abelian subfield of K. Find

an effective method to calculate h/h; and fundamental units of K to-

gether, utilizing elliptic units of K.

The fomulas in [11] are too complicated to deal with these prob-

lems in general. ©So we set the following problem:

PROBLEM 3. Notations being as above, simplify the index for-

milas for h/h', Satz(3.5) of [11, I], and h/hg, Satz(2.3) of [11, II],

so as to be more appropriate for Gras' method to apply to Problems 1

and 2.

As to Problem 3, during the preparation of this manuscript after
the talk, the author obtained a simplification of the formula in Satz
(3.5) of [11, I] by asimilarmanner as in [5]. The simplified formula,
~which will be stated in §1, makes it possible to use Gras' method for
Problem1, though it is not sufficiently effective yet, see [8]. R. Gillard
and G. Robert have given in [2] several index formulas analogous to Satz
(3.3) of [11, I], however their view-point is different from ours.

A solution of Problem 2 in case K is cubic or quartic over @
will be given in 52. In such a case, the index formula is simple and the

problem is reduced to a calculation, starting from an approximate value

of an elliptic unit, of a generator of an infinite cyclic group. The cal-
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culation is done by some arithmetic and requires no geometrical algo-

rithm. We shall give some numerical examples in §3.

Notations

For a number field k, we denote respectively by Ek’ Wk, wk
and Dk the group of units of %k, the torsion part of Ek’ the number
of elements of Wk and the discriminant of k.

§1. Leopoldt's decomposition

Let L be an abelian extension of degree n over a number field
I with the galois group A of L/XZ. Denote by ¥ and A the group
of characters of A and the set of @-irreducible characters of A
respectively. Every AelA is the sum of the Q-conjugates of a charac=
ter Ye¥, so we denote A=. For ye¥, the intermidiate field of L/X
fixed by Ker(y) depends only on @, so the field is denoted by Zm.
In case I=Q@ and L is totally real, Leopoldt [5] has given

a decomposition of the class number h of L as follows:

(1) Qb= (EL’Trﬂ;xeAHA) Tl%AeA(HA:C ).

Here.'Q,A is a natural number given by

_ /n-2 ' _ R _
(2) QA.—/n /"ITMAd./\, d)\—|Dm<w)! with ye¥, P=A,

and HA consists of EeEZA such that NZk/k

fields k of 1I,, the group of proper A-relative units in [5], and

(e)=t1 for all proper sub-

the subgroup CA of HA is generated by a unit UND the generating

A-relative cyclotomic unit in [5], and its conjugates together with

+1. The product | 1xrepfy 18 the direct product modulo *1. In (1),
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th factor Q is easily calculated by (2), and (EL:WWZ%AEAHX) is
g divisor of 23—1QA, where a is the number of elements of A. For
every A€lA, AX1, the generating A-relative cyclotomic unit ny is known
numerically explicitly. Therefore we can calculate h by Gras' meth-
od in [3], which consists of the following steps:
{ i) to give an upper bound B(nx) of (HA:CA)’ B(ni) can be
calculated from nk’ Aeh, Ax1;
(ii ) for geH, and for each velN, to look for eeH, such
that e =€, Aed, AXl;
(iii) for geWT;%leAHA and for each veXll , to look for EEEL
such that sv=£,

By (i) and by (EL: 1¥AeAHA)<2a_1QA’ the calculation completes in

a finite number of steps and an upper bound of the number of steps is
also known. By (ii) and (iii), fundamental units of L are obtained
explicitly in the form of their minimal polynomials over J, and QAH

is calculated at the same time.

In case X 1is an imaginary quadratic number field, let h  and

h' respectively be the class numbers of L and ZI. For AleA, AX1, put
nx=[ZX:Z], WA=WZA,

and let fl be the smallest natural number contained in the conductor

of ZX/Z, vy

the conductor of ZA/Z’ and set

be the number of.elements of W.. congruent to 1 modulo

z

_ $(n.) | — 8
e, =/ ) Tlsen, £,=1 (120, )72 Mhen, £,51 Wx"x)g i

where () is Euler's function. Further let Q, Dbe given by (2) and

Hk be the group of gnlts eeEZA such that NZA/k

intermidiate fields k of ZA/Z' Then, using the results of [9] and

(e)ewk for all proper

~
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[12], we can find a unit nAeH related to elliptic modular functions

A

in an explicit form. Moreover, denoting by E the subgroup of HA

A

generated by n and its conjugates together with WZ , Wwe obtain the

A
A
following decomposition of the relative class number h/h':

(3) CLQA(Eyh')=(EL:171¥A6AHA)WT;#A€A(HA:EA)'

Precise definition of n, is ommitted here, see [8]. 1In (3), the
product ll#xeAHx is the direct product modulo WL and the index
n-1

. . . .
(EL'IlixxeAHA) is a divisor of v QA' We can use Gras' method to

(3) almost similarly as in case I=Q and L is real, though it is

not sufficiently effective yet only because the ground field I and

the elliptic units n are more complicated.

A

§2. Certain non-galois cases

In this section, we give an answer to Problem 2 in certain cases;
introducing an effective algorithm to calculate the class number and
fundamental units together.

Cubic Case (see [6]). Let K be a real cubic number field with

D: =D} <0 and EK%<-1,el> with e;>1.
Then the galois closure of K/@ is a cyclic cubic extension over the
imaginary quadratic number field 2=0(/ D), and the condition of Problem
2 1is satisfied. Indeed we have the following formula for the class
number h of K, see [10]:

(k) h=(<€1>:<ne>), ne>1, _
where n_ is given explicitly as in (2) of [6] or (1.15) of [10]. We
illustrate the process of the calculation of h and e€; from an ap-

proximate value of ne.
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For every positive unit &%1 of K, let
x3-s(£)x2+t(g)x-1

pe the minimal polynomial of & over Q.

LEMMA. If EcE, and £>1, we have

|s(g)-g]<2/1/E and t(£)=(1/£)+&(s(E)-E).

This lemms enables us to calculate the minimal polynomial of g
over @ from an approximate value of e since ,s(ne) and t(ne) are

in Z . From Artin's lemma in [1], we see the following:

PROPOSITION 1. Let geEK and &>1, then

(<e1>:<£>)<B(£):=31og(€)/log((|D|-24)/k).

REMARK. It is always true that (|D|-24)/k>1.

Propositiqn ; gives’an upper bound B(ne) of h, which can be
calculated from the value of n_, on account of (L). Therefore we can
calculate h gnd the minimal polynomial of €7 together, if we have
a way to check Whether> ‘Vﬂ;EK or &K and to decide the minimal poly-
nomial of Vﬁ; when VE;EK, for each vell, v<B(ne). The following
proposition gives such a way.

For s, teZ , define a recursive sequence rv=rv($,t) (veXW ) by

ry=s, T =sr1—2t, r_ =sr —tr1+3,

2 3 772

r =sYv -t if v>3.

v v~-1 I'\)-241.\)—3

PROPOSITION 2. -For EeEK, g>1, and for vell , let € Dbe the

Positive real v-th root of €. Then eeK holds if and only if there

exists seZ such that. [s-e|<2/1/e, rv(s,t)=s(€) and ’rv(t,S)=t(£),
Where teZ is the nearest to (1/e)+e(s-e). Further, if eeK, then

the above s and t are unigue so that s=s(e) and t=t(e).
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Quartic Case (see [7]). Let K be a real, not totally real,

quadratic extension over a real quadratic number field K, with

D:=DK<O, d2:=DK2>O and EK2=<—1, ny> with ny>1.

Further let H be the group of e€€¢E,, €¢>0 such that N

K (e)=1.

K/Ko
Then we see
H=<-1, €;> with e;>1
and
E, =Hx<ep> (direct product) with ep=ng,V/ny or Vein,.
In this case, the galois closure of K/B is a cyclic quartic extension
over the imaginary quadratic number field Z=Q(/5EZ), and Kjp is the
maximal absolutely abelian subfield of K. Let h and hg be the class
numbers of K and K, respective}y. Then we have the following for-
mila, see [T7]:
(5) h/hg=(1/2) (B rHx<n>) (H:<n >),  n_>1,
where L is given explicitly as in (4) of [7]. Therefore h/hoﬂ is
calculated as a result of the determination of €7 and €, from np
and N The most important point of our algorithm is the determination
of g€; from an approximate value of n, It is done similarly as in
Cubic Case utilizing the fact that the minimal polynomial of every
eeH, €>1, has the form
X*-s(e)X3+t(e)X2-s(e)x+1, |s(e)-e-(1/e)]<2,
and that the absolute value of its discriminant is smaller than
4((e2+7)3-83),
We do not explain the algorithm more, see [7] in detail.
REMARK. In Problem 2, we may assume (hg a.ncD fundamental units

of the maximal absolutely abelian subfield of K 1is known, because

they are obtained by Gras' algorithm . In Quartic Case, we have assumed
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that n» 1is given in the form of its minimal polynomial over Q.
§3, Examples

Notations being the same as in §2, we give some numerical ex-
amples in Cubic Case. Assume that the discriminant D of K 1is given.
Then we can compute approximate values of the elliptic units N, of
cubic fields with the same discriminant D, using the results of [4],
as described in [6]. In particular, if Q(v/D)=R(vV=3),then K=q(¥m), a
pure cubic field, and we can determine m .in the course of the compu-
tation of g »

(1) D=-3-62, K=0(2);

ne~3.8h73.
By Lemma,
3, -2.9999,
S(ne)={u resp. t(n)~{
, . 0.847k,
hence .s(ne)=3 and t(ne)=—3. By Proposition 1,

B(n)~1.3277,

thus
= 3 . 3_ 2_ —
h=1, e;=n_:X3-3X2-3X-1.
(ii) D=-3.92, k=0(73)};
ne~12.u920.
By Lemma,
s(n,)=12, t(n,)~-6.0660,

hence t(ne)=—6. By Proposition 1,
B(ne)~1'8925’
thus

h=1, €1=ne:X3—12X2—6X-1.
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36
(iii) D=-3-102, K=@(710);
ne~23.3022h7o6, s(ne)=23, t(ne)=—7, B(ne)~2.2308h832,
are obtained similarly as above. Let g=ne and v=2, and use Proposition
2, then '
4, -k,
e~k.827240107, s={ resp. t={
5, 1,
and ry(k,-b)=2h, r,(5,1)=23 and r2(1,5)=;9. Hence /n ¥K, and thus
h=i, el=ne:X3-23X2—7X—1.
(iv) D=-3-142, K=Q(728);
n_~142.8810688, s(n_)=113, t(n_)=17, B(ne)~3.oosb33956;
Similarly as in (iii), we see that /ﬁ;kK. Let g=n_, and v=3 in
Proposition 2, then
e~5.227671h1, s={5’ resp. t={
6, N,
and r3(5,-1)=1h3, r3(-1,5)=17. Therefore ?ﬁ;eK, and thus
h=3, 813=ne, £1:X3-5%X2-%X-1.
(v) D=-3:182, then we similarly obtain
(a) K=R(¥6); nh=1, e1=ne~326.99083h3zx3-327x2-3x-1.
(b) K=w(¥12); h=1, e1=n_~164.9818529:X3-165X2-3%~1.
(vi) D=-4+92, then there is only one cubic field with the dis-
criminant =492,
ne~57.26225761, B(ne)~2.812h976h9,
h=1, e;=n_:X3-5TX2-15%-1. |
(vii) D=-4:132, then there is only one.fiéld;
n ~T705.0326250, B(ne)~3.862523967,'
h=3, e13=ne:x3-705x2-23x-1, e1:X3-9%X2+x-1.

And the discriminant of e is -kD.
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