ELLIPTIC UNIT AND CLASS NUMBER CALCULATION (情円単数 × 類数 a 計算1-7112)

By Ken NAKAMULA

Department of Mathematics, Tokyo Metropolitan University

In this note, an effective method will be introduced to calculate the class numbers and fundamental units of certain non-galois number fields, utilizing so called "elliptic units".

Introduction

For a real abelian number field, G. Gras and M.-N. Gras [3] has introduced an effective method to calculate its class number and fundamental units together, utilizing cyclotomic units. Their method is based on an index formula for the class number, related to cyclotomic units, given by H.W. Leopoldt [5]. For a finite abelian extension over an imaginary quadratic number field, a similar index formula for the relative class number, related to elliptic units, has been given by R. Schertz [11, I]. Moreover, for a non-galois number field of which the galois closure over Q is an abelian extension over an imaginary quadratic number field, Schertz [11, II] has given a similar index formula. So we consider the following problems:

PROBLEM 1. Let L be a finite abelian extension over an imaginary quadratic number field Σ, and denote respectively by h and h' the class numbers of L and Σ . Find an effective method to calculate h/h' and fundamental units together, utilizing elliptic units of L.

PROBLEM 2. Let K be a non-galois number field of which the galois closure over Q is an abelian extension over an imaginary quadratic number field, and denote respectively by h and h₀ the class numbers of K and the maximal absolutely abelian subfield of K. Find an effective method to calculate h/h₀ and fundamental units of K together, utilizing elliptic units of K.

The fomulas in [11] are too complicated to deal with these problems in general. So we set the following problem:

PROBLEM 3. Notations being as above, simplify the index formulas for h/h', Satz(3.5) of [11, I], and h/h₀, Satz(2.3) of [11, II], so as to be more appropriate for Gras' method to apply to Problems 1 and 2.

As to Problem 3, during the preparation of this manuscript after the talk, the author obtained a simplification of the formula in Satz (3.5) of [11, I] by a similar manner as in [5]. The simplified formula, which will be stated in §1, makes it possible to use Gras' method for Problem 1, though it is not sufficiently effective yet, see [8]. R. Gillard and G. Robert have given in [2] several index formulas analogous to Satz (3.3) of [11, I], however their view-point is different from ours.

A solution of Problem 2 in case K is cubic or quartic over Q will be given in §2. In such a case, the index formula is simple and the problem is reduced to a calculation, starting from an approximate value of an elliptic unit, of a generator of an infinite cyclic group. The cal-

culation is done by some arithmetic and requires no geometrical algorithm. We shall give some numerical examples in §3.

Notations

For a number field k, we denote respectively by \mathbf{E}_k , \mathbf{W}_k , \mathbf{W}_k and \mathbf{D}_k the group of units of k, the torsion part of \mathbf{E}_k , the number of elements of \mathbf{W}_k and the discriminant of k.

§1. Leopoldt's decomposition

Let L be an abelian extension of degree n over a number field Σ with the galois group A of L/ Σ . Denote by Ψ and Λ the group of characters of A and the set of Q-irreducible characters of A respectively. Every $\lambda \in \Lambda$ is the sum of the Q-conjugates of a character $\psi \in \Psi$, so we denote $\lambda = \psi$. For $\psi \in \Psi$, the intermidiate field of L/ Σ fixed by $\operatorname{Ker}(\psi)$ depends only on Ψ , so the field is denoted by Σ_{ψ} .

In case $\Sigma=\mathbb{Q}$ and L is totally real, Leopoldt [5] has given a decomposition of the class number \overline{h} of L as follows:

(1)
$$Q_{\Lambda} \overline{h} = (E_{L}: \prod_{1 \neq \lambda \in \Lambda} H_{\lambda}) \prod_{1 \neq \lambda \in \Lambda} (H_{\lambda}: C_{\lambda}).$$

Here Q_{Λ} is a natural number given by

(2)
$$Q_{\Lambda} = \sqrt{n^{n-2}/ \prod_{\lambda \in \Lambda} d_{\lambda}}, \quad d_{\lambda} = |D_{\mathbb{Q}(\psi)}| \quad \text{with} \quad \psi \in \Psi, \quad \tilde{\psi} = \lambda,$$

and H_{λ} consists of $\varepsilon \in E_{\Sigma_{\lambda}}$ such that $N_{\Sigma_{\lambda}/k}(\varepsilon) = \pm 1$ for all proper subfields k of Σ_{λ} , the group of proper λ -relative units in [5], and the subgroup C_{λ} of H_{λ} is generated by a unit η_{λ} , the generating λ -relative cyclotomic unit in [5], and its conjugates together with ± 1 . The product $\prod_{1 \neq \lambda \in \Lambda} H_{\lambda}$ is the direct product modulo ± 1 . In (1),

th factor Q_A is easily calculated by (2), and $(E_L: \overline{\prod}_{1 \nmid \lambda \in \Lambda} H_{\lambda})$ is a divisor of $2^{a-1}Q_A$, where a is the number of elements of Λ . For every $\lambda \in \Lambda$, $\lambda \nmid 1$, the generating λ -relative cyclotomic unit η_{λ} is known numerically explicitly. Therefore we can calculate \overline{h} by Gras' method in [3], which consists of the following steps:

- (i) to give an upper bound $B(\eta_{\lambda})$ of $(H_{\lambda}:C_{\lambda})$, $B(\eta_{\lambda})$ can be calculated from η_{λ} , $\lambda \in \Lambda$, $\lambda \neq 1$;
- (ii) for $\xi \in H_{\lambda}$ and for each $\nu \in \mathbb{N}$, to look for $\varepsilon \in H_{\lambda}$ such that $\varepsilon^{\nu} = \xi$, $\lambda \in \Lambda$, $\lambda \neq 1$;
- (iii) for $\xi \in \prod_{1 \neq \lambda \in \Lambda} H_{\lambda}$ and for each $\nu \in \mathbb{N}$, to look for $\varepsilon \in E_L$ such that $\varepsilon^{\nu} = \xi$,

By (i) and by $(E_L: \prod_{1 \neq \lambda \in \Lambda} H_{\lambda}) \leq 2^{a-1}Q_A$, the calculation completes in a finite number of steps and an upper bound of the number of steps is also known. By (ii) and (iii), fundamental units of L are obtained explicitly in the form of their minimal polynomials over Q_A , and Q_A is calculated at the same time.

In case Σ is an imaginary quadratic number field, let \overline{h} and h' respectively be the class numbers of L and Σ . For $\lambda \in \Lambda$, $\lambda \neq 1$, put

$$n_{\lambda} = [\Sigma_{\lambda} : \Sigma], \qquad w_{\lambda} = w_{\Sigma_{\lambda}},$$

and let f_{λ} be the smallest natural number contained in the conductor of Σ_{λ}/Σ , \overline{w}_{λ} be the number of elements of W_{Σ} congruent to 1 modulo the conductor of Σ_{λ}/Σ , and set

$$c_{L} = (w/w_{L}) + \frac{1}{1 + \lambda \in \Lambda}, f_{\lambda} = 1 (12n_{\lambda}) + (n_{\lambda}) + \frac{1}{1 + \lambda \in \Lambda}, f_{\lambda} = 1 (w_{\lambda} + w_{\lambda}) + \frac{1}{1 + \lambda \in \Lambda}, f_{\lambda} = 1 (12n_{\lambda}) + \frac{1}{1 + \lambda \in \Lambda}, f_{\lambda} = 1 (12n_{\lambda}) + \frac{1}{1 + \lambda \in \Lambda}, f_{\lambda} = 1 (12n_{\lambda}) + \frac{1}{1 + \lambda \in \Lambda}, f_{\lambda} = 1 (12n_{\lambda}) + \frac{1}{1 + \lambda \in \Lambda}, f_{\lambda} = 1 (12n_{\lambda}) + \frac{1}{1 + \lambda \in \Lambda}, f_{\lambda} = 1 (12n_{\lambda}) + \frac{1}{1 + \lambda \in \Lambda}, f_{\lambda} = 1 (12n_{\lambda}) + \frac{1}{1 + \lambda \in \Lambda}, f_{\lambda} = 1 (12n_{\lambda}) + \frac{1}{1 + \lambda \in \Lambda}, f_{\lambda} = 1 (12n_{\lambda}) + \frac{1}{1 + \lambda \in \Lambda}, f_{\lambda} = 1 (12n_{\lambda}) + \frac{1}{1 + \lambda \in \Lambda}, f_{\lambda} = 1 (12n_{\lambda}) + \frac{1}{1 + \lambda \in \Lambda}, f_{\lambda} = 1 (12n_{\lambda}) + \frac{1}{1 + \lambda \in \Lambda}, f_{\lambda} = 1 (12n_{\lambda}) + \frac{1}{1 + \lambda \in \Lambda}, f_{\lambda} = 1 (12n_{\lambda}) + \frac{1}{1 + \lambda \in \Lambda}, f_{\lambda} = 1 (12n_{\lambda}) + \frac{1}{1 + \lambda \in \Lambda}, f_{\lambda} = 1 (12n_{\lambda}) + \frac{1}{1 + \lambda \in \Lambda}, f_{\lambda} = 1 (12n_{\lambda}) + \frac{1}{1 + \lambda \in \Lambda}, f_{\lambda} = 1 (12n_{\lambda}) + \frac{1}{1 + \lambda \in \Lambda}, f_{\lambda} = 1 (12n_{\lambda}) + \frac{1}{1 + \lambda \in \Lambda}, f_{\lambda} = 1 (12n_{\lambda}) + \frac{1}{1 + \lambda \in \Lambda}, f_{\lambda} = 1 (12n_{\lambda}) + \frac{1}{1 + \lambda \in \Lambda}, f_{\lambda} = 1 (12n_{\lambda}) + \frac{1}{1 + \lambda \in \Lambda}, f_{\lambda} = 1 (12n_{\lambda}) + \frac{1}{1 + \lambda \in \Lambda}, f_{\lambda} = 1 (12n_{\lambda}) + \frac{1}{1 + \lambda \in \Lambda}, f_{\lambda} = 1 (12n_{\lambda}) + \frac{1}{1 + \lambda \in \Lambda}, f_{\lambda} = 1 (12n_{\lambda}) + \frac{1}{1 + \lambda \in \Lambda}, f_{\lambda} = 1 (12n_{\lambda}) + \frac{1}{1 + \lambda \in \Lambda}, f_{\lambda} = 1 (12n_{\lambda}) + \frac{1}{1 + \lambda \in \Lambda}, f_{\lambda} = 1 (12n_{\lambda}) + \frac{1}{1 + \lambda \in \Lambda}, f_{\lambda} = 1 (12n_{\lambda}) + \frac{1}{1 + \lambda \in \Lambda}, f_{\lambda} = 1 (12n_{\lambda}) + \frac{1}{1 + \lambda \in \Lambda}, f_{\lambda} = 1 (12n_{\lambda}) + \frac{1}{1 + \lambda \in \Lambda}, f_{\lambda} = 1 (12n_{\lambda}) + \frac{1}{1 + \lambda \in \Lambda}, f_{\lambda} = 1 (12n_{\lambda}) + \frac{1}{1 + \lambda \in \Lambda}, f_{\lambda} = 1 (12n_{\lambda}) + \frac{1}{1 + \lambda \in \Lambda}, f_{\lambda} = 1 (12n_{\lambda}) + \frac{1}{1 + \lambda \in \Lambda}, f_{\lambda} = 1 (12n_{\lambda}) + \frac{1}{1 + \lambda \in \Lambda}, f_{\lambda} = 1 (12n_{\lambda}) + \frac{1}{1 + \lambda \in \Lambda}, f_{\lambda} = 1 (12n_{\lambda}) + \frac{1}{1 + \lambda \in \Lambda}, f_{\lambda} = 1 (12n_{\lambda}) + \frac{1}{1 + \lambda \in \Lambda}, f_{\lambda} = 1 (12n_{\lambda}) + \frac{1}{1 + \lambda \in \Lambda}, f_{\lambda} = 1 (12n_{\lambda}) + \frac{1}{1 + \lambda \in \Lambda}, f_{\lambda} = 1 (12n_{\lambda}) + \frac{1}{1 + \lambda \in \Lambda}, f_{\lambda} = 1 (12n_{\lambda}) + \frac{1}{1 + \lambda \in \Lambda}, f_{\lambda} = 1 (12n_{\lambda}) + \frac{1}{1 + \lambda \in \Lambda}, f_{\lambda} = 1 (12n_{\lambda}) + \frac{1}{1 + \lambda \in \Lambda}, f_{\lambda} = 1 (12n_{\lambda}) + \frac{1}{1 + \lambda \in \Lambda}, f_{\lambda} = 1 (12n_{\lambda}) + \frac{1}{1 + \lambda \in \Lambda}, f_{\lambda} = 1 (12n_{\lambda}) + \frac{1}{1 + \lambda \in \Lambda}, f_$$

where ${\cal S}(\cdot)$ is Euler's function. Further let ${\cal Q}_A$ be given by (2) and ${\cal H}_\lambda$ be the group of units $\epsilon \epsilon E_{\Sigma_\lambda}$ such that ${\cal N}_{\Sigma_\lambda/k}(\epsilon) \epsilon W_k$ for all proper intermidiate fields k of ${\cal S}_\lambda/{\cal S}$. Then, using the results of [9] and

[12], we can find a unit $\eta_{\lambda} \in H_{\lambda}$ related to elliptic modular functions in an explicit form. Moreover, denoting by E_{λ} the subgroup of H_{λ} generated by η_{λ} and its conjugates together with $W_{\Sigma_{\lambda}}$, we obtain the following decomposition of the relative class number h/h:

(3)
$$c_{L}Q_{\Lambda}(\overline{h}/h') = (E_{L}: \prod_{1 \neq \lambda \in \Lambda} H_{\lambda}) \prod_{1 \neq \lambda \in \Lambda} (H_{\lambda}: E_{\lambda}).$$

Precise definition of η_{λ} is ommitted here, see [8]. In (3), the product $\prod_{1 \neq \lambda \in \Lambda} H_{\lambda}$ is the direct product modulo W_L and the index $(E_L: \prod_{1 \neq \lambda \in \Lambda} H_{\lambda})$ is a divisor of $w_L^{n-1}Q_A$. We can use Gras' method to (3) almost similarly as in case $\Sigma = \mathbb{Q}$ and L is real, though it is not sufficiently effective yet only because the ground field Σ and the elliptic units η_{λ} are more complicated.

§2. Certain non-galois cases

In this section, we give an answer to Problem 2 in certain cases, introducing an effective algorithm to calculate the class number and fundamental units together.

<u>Cubic Case</u> (see [6]). Let K be a real cubic number field with $D:=D_{K}<0 \qquad \text{and} \qquad E_{K}=<-1, \epsilon_{1}> \quad \text{with} \quad \epsilon_{1}>1.$

Then the galois closure of K/\mathbb{Q} is a cyclic cubic extension over the imaginary quadratic number field $\Sigma=\mathbb{Q}(\sqrt{D})$, and the condition of Problem 2 is satisfied. Indeed we have the following formula for the class number h of K, see [10]:

(4) $h=(\langle \epsilon_1 \rangle : \langle \eta_e \rangle)$, $\eta_e > 1$, where η_e is given explicitly as in (2) of [6] or (1.15) of [10]. We

illustrate the process of the calculation of $\,h\,$ and $\,\epsilon_{\,l}\,$ from an approximate value of $\,\eta_{\,s}^{\,}.$

For every positive unit $\xi \neq 1$ of K, let $X^3-s(\xi)X^2+t(\xi)X-1$

be the minimal polynomial of ξ over Q.

LEMMA. If
$$\xi \in E_K$$
 and $\xi > 1$, we have
$$|s(\xi) - \xi| < 2\sqrt{1/\xi} \text{ and } t(\xi) = (1/\xi) + \xi(s(\xi) - \xi).$$

This lemma enables us to calculate the minimal polynomial of η_e over Q from an approximate value of η_e since $s(\eta_e)$ and $t(\eta_e)$ are in Z. From Artin's lemma in [1], we see the following:

PROPOSITION 1. Let
$$\xi \in E_K$$
 and $\xi > 1$, then
$$(\langle \varepsilon_1 \rangle : \langle \xi \rangle) < B(\xi) := 3\log(\xi)/\log((|D|-24)/4).$$

REMARK. It is always true that (|D|-24)/4>1.

Proposition 1 gives an upper bound $B(\eta_e)$ of h, which can be calculated from the value of η_e , on account of (4). Therefore we can calculate h and the minimal polynomial of ϵ_1 together, if we have a way to check whether $\sqrt[\gamma]{\eta_e} \in K$ or δK and to decide the minimal polynomial of $\sqrt[\gamma]{\eta_e}$ when $\sqrt[\gamma]{\eta_e} \in K$, for each $\nu \in \mathbb{N}$, $\nu < B(\eta_e)$. The following proposition gives such a way.

For s, teZ, define a recursive sequence
$$r_v = r_v(s,t)$$
 ($v \in \mathbb{N}$) by
$$r_1 = s, \quad r_2 = sr_1 - 2t, \quad r_3 = sr_2 - tr_1 + 3,$$

$$r_v = sr_v - 1^{-tr}v - 2^{+r}v - 3 \quad \text{if} \quad v > 3.$$

PROPOSITION 2. For $\xi \in E_K$, $\xi > 1$, and for $v \in \mathbb{N}$, let ε be the positive real v-th root of ξ . Then $\varepsilon \in K$ holds if and only if there exists $s \in \mathbb{Z}$ such that $|s-\varepsilon| < 2\sqrt{1/\varepsilon}$, $r_v(s,t) = s(\xi)$ and $r_v(t,s) = t(\xi)$, where $t \in \mathbb{Z}$ is the nearest to $(1/\varepsilon) + \varepsilon(s-\varepsilon)$. Further, if $\varepsilon \in K$, then the above s and t are unique so that $s = s(\varepsilon)$ and $t = t(\varepsilon)$.

Quartic Case (see [7]). Let K be a real, not totally real, quadratic extension over a real quadratic number field K_2 with

 $\text{D:=D}_{K}<0\,,\quad d_2:=\text{D}_{K_2}>0\quad\text{and}\quad \text{E}_{K_2}=<-1\,,\ \eta_2>\ \text{with}\quad \eta_2>1\,.$ Further let H be the group of $\epsilon\epsilon E_{K}$, $\epsilon>0$ such that $\text{N}_{K/K_2}(\epsilon)=1\,.$ Then we see

H=<-1, ϵ_1 > with ϵ_1 >1

and

 $E_K=H\times<\epsilon_2>$ (direct product) with $\epsilon_2=\eta_2$, $\sqrt{\eta_2}$ or $\sqrt{\epsilon_1\eta_2}$. In this case, the galois closure of K/Q is a cyclic quartic extension over the imaginary quadratic number field $\Sigma=\mathbb{Q}(\sqrt{Dd_2})$, and K_2 is the maximal absolutely abelian subfield of K. Let h and h₀ be the class numbers of K and K_2 respectively. Then we have the following formula, see [7]:

(5) $h/h_0=(1/2)(E_K:H\times<\eta_2>)(H:<\eta_e>)$, $\eta_e>1$, where η_e is given explicitly as in (4) of [7]. Therefore h/h_0 is calculated as a result of the determination of ϵ_1 and ϵ_2 from η_2 and η_e . The most important point of our algorithm is the determination of ϵ_1 from an approximate value of η_e . It is done similarly as in Cubic Case utilizing the fact that the minimal polynomial of every $\epsilon \in H$, $\epsilon > 1$, has the form

 $X^4-s(\varepsilon)X^3+t(\varepsilon)X^2-s(\varepsilon)X+1$, $|s(\varepsilon)-\varepsilon-(1/\varepsilon)|<2$, and that the absolute value of its discriminant is smaller than $4((\varepsilon^2+7)^3-8^3)$.

We do not explain the algorithm more, see [7] in detail.

REMARK. In Problem 2, we may assume (h_0 and) fundamental units of the maximal absolutely abelian subfield of K is known, because they are obtained by Gras' algorithm. In Quartic Case, we have assumed

that n_2 is given in the form of its minimal polynomial over Q.

§3. Examples

Notations being the same as in §2, we give some numerical examples in <u>Cubic Case</u>. Assume that the discriminant D of K is given. Then we can compute approximate values of the elliptic units η_e of cubic fields with the same discriminant D, using the results of [4], as described in [6]. In particular, if $\mathbb{Q}(\sqrt{D})=\mathbb{Q}(\sqrt{-3})$, then $K=\mathbb{Q}(\sqrt[3]{m})$, a pure cubic field, and we can determine m in the course of the computation of η_e .

(i) D=-3.62, K=Q(
$$\sqrt[3]{2}$$
); $n_e \sim 3.8473$.

By Lemma,

$$s(\eta_e) = \begin{cases} 3, & -2.9999, \\ 4, & resp. & t(\eta_e) < \begin{cases} 0.8474, \end{cases} \end{cases}$$

hence $s(\eta_e)=3$ and $t(\eta_e)=-3$. By Proposition 1, $B(\eta_e)\sim1.3277,$

thus

h=1,
$$\varepsilon_1 = \eta_e : X^3 - 3X^2 - 3X - 1$$
.
(ii) D=-3.92, K=Q($\sqrt[3]{3}$);
 $\eta_e \sim 12.4920$.

By Lemma,

$$s(n_e)=12$$
, $t(n_e)\sim-6.0660$,

hence $t(\eta_e)=-6$. By Proposition 1, $B(\eta_e)\sim1.8925$,

thus

h=1,
$$\varepsilon_1 = \eta_2 : X^3 - 12X^2 - 6X - 1$$
.

(iii) D=-3.10², K=Q($\sqrt[3]{10}$);

 $\eta_e \sim 23.30224706,~s(\eta_e)=23,~t(\eta_e)=-7,~B(\eta_e)\sim 2.23084832,$ are obtained similarly as above. Let $\xi=\eta_e$ and $\nu=2,$ and use Proposition 2, then

and $r_2(4,-4)=24$, $r_2(5,1)=23$ and $r_2(1,5)=-9$. Hence $\sqrt{\eta_e}$ K, and thus h=1, $\epsilon_1=\eta_e: X^3-23X^2-7X-1$.

(iv) D=-3.142, K= $\mathbb{Q}(\sqrt[3]{28})$;

 $\eta_e \sim 142.8810688, \ s(\eta_e) = 143, \ t(\eta_e) = 17, \ B(\eta_e) \sim 3.008033956.$ Similarly as in (iii), we see that $\sqrt{\eta_e}$ &K. Let $\xi = \eta_e$ and $\nu = 3$ in Proposition 2, then

$$\varepsilon \sim 5.22767141$$
, s= $\begin{cases} 5, & \text{resp. } t=\begin{cases} -1, \\ 6, & \text{t} \end{cases}$

and $r_3(5,-1)=143$, $r_3(-1,5)=17$. Therefore $\sqrt[3]{\eta}_e \in K$, and thus h=3, $\epsilon_1^3=\eta_e$, $\epsilon_1:X^3-5X^2-X-1$.

- (v) $D=-3.18^2$, then we similarly obtain
- (a) $K=Q(\sqrt[3]{6})$; h=1, $\varepsilon_1=\eta_e^{-326.9908343:X^3-327X^2-3X-1}$.
- (b) $K=Q(\sqrt[3]{12})$; h=1, $\varepsilon_1=\eta_2\sim 164.9818529: X^3-165X^2-3X-1$.
- (vi) D=- $4\cdot9^2$, then there is only one cubic field with the discriminant $-4\cdot9^2$;

 $\eta_e \sim 57.26225761$, $B(\eta_e) \sim 2.812497649$, h=1, $\epsilon_1 = \eta_e : X^3 - 57X^2 - 15X - 1$.

(vii) D=-4·13², then there is only one field; $\eta_e \sim 705.0326250, \quad B(\eta_e) \sim 3.862523967,$ $h=3, \; \epsilon_1^3 = \eta_e : X^3 - 705X^2 - 23X - 1, \; \epsilon_1 : X^3 - 9X^2 + X - 1.$

And the discriminant of ϵ_1 is -4D.

References

- [1] E. Artin, Theory of Algebraic Numbers, Lecture Note, Göttingen, 1959.
- [2] R. Gillard & G. Robert, Groupes d'unités elliptiques, Bull. Soc.
 Math. France, 107 (1979), 305-317.
- [3] G. Gras & M.-N. Gras, Calcul du nombre de classes et des unités des extension abéliennes réelles de Q, Bull. Sc. Math. 2^e série, 101 (1977), 97-129.
- [4] H. Hasse, Arithmetische Theorie der kubischen Zahlkörper auf klassenkörpertheoretischer Grundlage, Math. Zeitschrift, 31 (1930), 565-582.
- [5] H. W. Leopoldt, Über Einheitengruppe und Klassenzahl reeler abelscher Zahlkörper, Abh. Deutsche Akad. Wiss. Berlin, Math.-Nat. Kl. 1953 Nr. 2, 48 pp., 1954.
- [6] K. Nakamula, Class number calculation and elliptic unit

 I. Cubic case, to appear in Proc. Japan Acad.
- [8] K. Nakamula, On elliptic units and a class number decomposition, in preparation.
- [9] G. Robert, Unités élliptiques, Bull. Soc. Math. France, mémoire 36 (1973), 77 pp.
- [10] R. Schertz, Arithmetische Ausdeutung der Klassenzahlformel für einfach reelle Kubische Zahlkörper, Abh. Math. Sem. Universität Hamburg 41 (1974), 211-223.
- [11] R. Schertz, Die Klassenzahl der Teilkörper abelscher Erweitlungen

imaginärquadratischer Zahlkörper, I, J.reine angew. Math. 295 (1977), 151-168, II, ibid. 296 (1977), 58-79.

[12] H. M. Stark, Class fields and modular forms of weight one,
"Modular functions of one variable" V (1976, Bonn), 277-288 —
Berlin Heidelberg New York, Springer-Verlag, Lecture Notes in
Mathematics, 601.

Ken NAKAMULA

Department of Mathematics

Tokyo Metropolitan University

2-1-1 Fukazawa, Setagaya

Tokyo, 158 JAPAN