ON THE FRACTIONAL CALCULUS

SHIGEYOSHI OWA

I. INTRODUCTION.

There are many definitions of the fractional calculus. In 1832, J. Liouville defined the fractional integral of order α in [2]. Recently, T. J. Osler defined the fractional derivative of order α in [5] and [6]. Moreover, K. Nishimoto defined the fractional derivative and integral of order α in [4]. And in 1978, M. Saigo defined the integral operators in [12]. Furthermore in 1978, S. Owa gave the following definitions for the fractional calculus in [8].

DEFINITION I. The fractional integral of order α is defined by

$$D_{z}^{-\alpha}f(z) = \frac{1}{\Gamma(\alpha)} \int_{0}^{z} \frac{f(\zeta)d\zeta}{(z-\zeta)^{1-\alpha}},$$

where α is greater than 0, f(z) is an analytic function in a simply connected region of the z-plane containing the origin, and the multiplicity of $(z-\zeta)^{\alpha-1}$ is removed by requiring $\ln(z-\zeta)$ to be real when $(z-\zeta)$ is greater than 0. Moreover

$$f(z) = \lim_{\alpha \to 0} D_z^{-\alpha} f(z)$$
.

^{*} Department of Mathematics, Kinki University.

DEFINITION 2. The fractional derivative of order α is defined by

$$D_{z}^{\alpha}f(z) = \frac{1}{\Gamma(1-\alpha)} \frac{d}{dz} \int_{0}^{z} \frac{f(\zeta)d\zeta}{(z-\zeta)^{\alpha}},$$

where 0 < α < 1, f(z) is an analytic function in a simply connected region of the z-plane containing the origin, and the multiplicity of $(z-\zeta)^{-\alpha}$ is removed by requiring $\ln(z-\zeta)$ to be real when $(z-\zeta) > 0$. Moreover,

$$f(z) = \lim_{\alpha \to 0} D_z^{\alpha} f(z)$$

and

$$f'(z) = \lim_{\alpha \to 1} D_z^{\alpha} f(z)$$
.

REMARK I. The fractional derivative of order $(n + \alpha)$ is defined by

$$D_z^{n+\alpha}f(z) = \frac{d^n}{dz^n} D_z^{\alpha}f(z) ,$$

where 0 < α < 1 and n $\in \mathbb{N} \cup \{0\}$.

DEFINITION 3. Let E be a domain in the extended complex plane. The function f(z) is called univalent in E if and only if it is analytic except for at most one pole and $f(z_1) \neq f(z_2)$ for $z_1 \in E$, $z_2 \in E$ and $z_1 \neq z_2$. Let S denote the class of function

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

is analytic and univalent in the unit disk $U = \{|z| < 1\}$, S^* denote the subclass of S which is univalent starlike with respect to the origin in the unit disk U, and C denote the subclass of S^* which is univalent convex in the unit disk U.

THEOREM [([7]). Let the function

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

be in the class S. If the Bieberbach conjecture on the coefficients of f(z) is true for any $n \ge 2$, then

$$|f^{(n)}(z)| \le \frac{n!(n + |z|)}{(1 - |z|)^{n+2}}$$

for z **E**U.

REMARK 2. For n = 1, Theorem 1 means the Koebe distortion inequality. And Theorem 1 is already shown by F. Marty [3] for n = 2, 3 and by Y. Komatu and H. Nishimiya [1] for n = 4.

- 2. A CONJECTURE.
- S. Owa gave the following conjecture in [7].

CONJECTURE. Let the function

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

be in the class \S . Then, for any non-negative α and $z \in U$,

$$\left| D_{z}^{\alpha} f(z) \right| \leq \frac{\Gamma(\alpha + 1)(\alpha + |z|)}{(1 - |z|)^{\alpha + 2}}$$

Now, for the function

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n ,$$

we put

$$F(z) = \Gamma(2 + \alpha)z^{-\alpha}D_z^{-\alpha}f(z) \qquad (\alpha > 0)$$

and

$$G(z) = \Gamma(2 - \alpha)z^{\alpha}D_{z}^{\alpha}f(z) \qquad (0 < \alpha < 1).$$

Let S_G^* denote the class of univalent starlike functions

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

in the unit disk U such that $G(z) \in S^*$ and C_G denote the class of univalent convex functions

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

in the unit disk U such that $G(z) \in C$.

The following results hold for Conjecture.

THEOREM 2. If $f(z) \in C_G$, then for $0 < \alpha < 1$ and

$$\frac{\alpha^{2}(\alpha-1)+\sqrt{\alpha^{6}-2\alpha^{5}+\alpha^{4}-4\alpha+4}}{2\alpha(1-\alpha)} \leq |z| < 1,$$

$$|D_z^{\alpha}f(z)| \leq \frac{\Gamma(\alpha+1)(\alpha+|z|)}{(1-|z|)^{\alpha+2}}.$$

THEOREM 3. If f(z) is in the class S_G^* , then for 0 < α < 1 and

$$\frac{\alpha^{2}(\alpha-1) + \sqrt{\alpha^{6}-2\alpha^{5}+\alpha^{4}-4\alpha+4}}{2\alpha(1-\alpha)} \leq |z| < 1,$$

$$|D_z^{\alpha}f(z)| \leq \frac{\Gamma(\alpha+1)(\alpha+|z|)}{(1-|z|)^{\alpha+2}}.$$

3. Application of the fractional calculus for D(K).

DEFINITION 4. Let D(k) denote the class of function

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

which is analytic in the unit disk ${\sf U}$ and satisfying

$$\frac{f'(z)-1}{f'(z)+1} < k$$

for $0 < k \le 1$ and $z \in U$.

THEOREM 4 ([9]). Let the function

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

be analytic in the unit disk floor such that

$$\sum_{n=2}^{\infty} n^2 |a_n| < k$$
 (0 < k \le 1).

Then, for 0 < α < 1 and z $\in U$,

$$|D_{z}^{\alpha}f(z)| \geq \frac{1}{\Gamma(2-\alpha)|z|^{\alpha}} \left\{ -|z| + \frac{2(2-k)}{k} \log \left(1 + \frac{k}{2-k}|z|\right) \right\},$$

$$\left| D_{z}^{\alpha} f(z) \right| \leq \frac{1}{\Gamma(2-\alpha)|z|^{\alpha}} \left\{ -|z| - \frac{2(2-k)}{k} \log \left(1 - \frac{k}{2-k} |z| \right) \right\},$$

and

$$|D_{z}^{1+\alpha}f(z)| \leq \frac{1}{\Gamma(2-\alpha)|z|^{\alpha}} \begin{cases} \frac{2-k+k|z|}{2-k-k|z|} - \alpha \end{cases}$$

$$-\frac{2\alpha(2-k)}{k|z|}\log\left(1-\frac{k}{2-k}|z|\right).$$

THEOREM 5 ([9]). Let the function

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

be analytic in the unit disk \bigcup such that

$$\sum_{n=2}^{\infty} n|a_n| \leq k \qquad (0 < k \leq 1).$$

Then, for $\alpha > 0$ and $z \in U$,

$$\left|D_{z}^{-\alpha}f(z)\right| \geq \frac{\left|z\right|^{\alpha}}{\Gamma(2+\alpha)} \left\{-\left|z\right| + \frac{2(2-k)}{k} \log\left(1+\frac{k}{2-k}\left|z\right|\right)\right\},\,$$

$$\left|D_{z}^{-\alpha}f(z)\right| \leq \frac{\left|z\right|^{\alpha}}{\Gamma(2+\alpha)} \left\{-\left|z\right| - \frac{2(2-k)}{k} \log\left(1 - \frac{k}{2-k}\left|z\right|\right)\right\},\,$$

and

$$\left|D_{z}^{1-\alpha}f(z)\right| \leq \frac{\left|z\right|^{\alpha}}{\Gamma(2+\alpha)} \quad \left\{ \begin{array}{c} 2-k+k|z| \\ \hline 2-k-k|z| \end{array} \right. - \alpha$$

$$-\frac{2\alpha(2-k)}{k|z|}\log\left(1-\frac{k}{2-k}|z|\right).$$

THEOREM 6 ([9]). Let the function

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

be analytic in the unit disk \bigcup such that

$$\sum_{n=2}^{\infty} n^2 |a_n| < k$$
 (0 < k \le 1).

Then, for $0 < \alpha < 1$, 0 < K < (2 - k - k|z|)/(2 - k + k|z|), and $z \in U$,

$$|D_{z}^{2+\alpha}f(z)| \leq \frac{1}{\Gamma(2-\alpha)|z|^{\alpha}} \left\{ \frac{2(1-K)}{(1-|z|)^{2}} + \frac{2\alpha(2-k+k|z|)}{(2-k-k|z|)|z|} \right\}$$

$$-\frac{\alpha(1+\alpha)}{|z|} - \frac{2\alpha(1+\alpha)(2-k)}{k|z|^2} \log \left(1 - \frac{k}{2-k}|z|\right)$$

THEOREM 7 ([9]). Let the function

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

be analytic in the unit disk U such that

$$\sum_{n=2}^{\infty} n^2 |a_n| < k$$
 (0 < k \le 1).

Then, for $0 < \alpha < 1$, 0 < K < (2 - k - k|z|)/(2 - k + k|z|), and $z \in U$,

$$|D_{z}^{2+\alpha}f(z)| \leq \frac{1}{\Gamma(2-\alpha)|z|^{\alpha}} \left\{ \frac{2\alpha(2-k+k|z|)}{(2-k-k|z|)|z|} + \frac{2(1-K)(2-k+k|z|)}{(1-|z|)\{1+(1-2K)|z|\}(2-k-k|z|)} - \frac{\alpha(1+\alpha)}{|z|} - \frac{2\alpha(1+\alpha)(2-k)}{k|z|^{2}} \log \left(1 - \frac{k}{2-k}|z|\right) \right\}.$$

THEOREM 8 ([9]). Let the function

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

be analytic in the unit disk ${\sf U}$ such that

$$\sum_{n=2}^{\infty} n|a_n| < k$$
 (0 < k \le 1).

Then, for $\alpha > 0$, 0 < K < (2 - k - k|z|)/(2 - k + k|z|), and $z \in U$,

$$|D_{\mathbf{z}}^{2-\alpha}f(z)| \leq \frac{|z|^{\alpha}}{\Gamma(2+\alpha)} \left\{ \frac{2(1-K)}{(1-|z|)^2} + \frac{2\alpha(2-k+k|z|)}{(2-k-k|z|)|z|} \right\}$$

$$-\frac{\alpha(1+3\alpha)}{|z|} - \frac{2\alpha(1+3\alpha)(2-k)}{|z|^2} \log \left(1-\frac{k}{2-k}|z|\right)$$

THEOREM 9 ([9]). Let the function

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

be analytic in the unit disk \bigcup such that

$$\sum_{n=2}^{\infty} n|a_n| < k$$
 (0 < k \le 1).

Then, for $\alpha > 0$, 0 < K < (2 - k - k|z|)/(2 - k + k|z|), and $z \in U$,

$$|D_{z}^{2-\alpha}f(z)| \leq \frac{|z|^{\alpha}}{\Gamma(2+\alpha)} \left\{ \frac{2\alpha(2-k+k|z|)}{(2-k-k|z|)|z|} - \frac{\alpha(1+3\alpha)}{|z|} \right\}$$

$$+ \frac{2(1-K)(2-k+k|z|)}{(1-|z|)\{1+(1-2K)|z|\}(2-k-k|z|)}$$

$$-\frac{2\alpha(1+3\alpha)(2-k)}{|k|z|^2}\log\left(1-\frac{k}{2-k}|z|\right)\right\}.$$

THEOREM [0 ([9]). Let the function

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

be analytic in the unit disk $\boldsymbol{\mathsf{U}}$ such that

$$\sum_{n=2}^{\infty} n^2 |a_n| < k$$
 (0 < k \le 1)

and $a_2 \ge 0$. Then, for $0 < \alpha < 1$ and $z \in U$,

$$Re\{G'(z)\} \ge \frac{1 - |z|^2}{1 + \frac{4a_2}{2 - \alpha}|z| + |z|^2}.$$

Furthermore, this result is sharp for each value of a_2 , $0 \le a_2 \le (2-\alpha)/2$, by considering the functions

$$G_{a_{2}}^{i}(z) = \frac{1 - z^{2}}{1 - \frac{4a_{2}}{2 - \alpha}z + z^{2}}$$

COROLLARY [([9]). Under the hypotheses of Theorem 10,

$$Re\{G'(z)\} > \frac{1 - |z|^2}{1 + k|z| + |z|^2}$$

for $z \in U$.

THEOREM [[([9]). Let the function

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

be analytic in the unit disk ${\sf U}$ such that

$$\sum_{n=2}^{\infty} n|a_n| < k \qquad (0 < k \leq 1)$$

and $a_2 \ge 0$. Then, for $\alpha > 0$ and $z \in U$,

$$Re\{F'(z)\} \ge \frac{1 - |z|^2}{1 + \frac{4a_2}{2 + \alpha}|z| + |z|^2}.$$

Furthermore, this result is sharp for each value of a_2 , $0 \le a_2 \le (2 + \alpha)/2$, by considering the functions

$$F_{a_{2}}'(z) = \frac{1 - z^{2}}{1 - \frac{4a_{2}}{2 + \alpha} z + z^{2}}.$$

COROLLARY 2 ([9]). Under the hypotheses of Theorem 11,

$$Re{F'(z)} > \frac{1 - |z|^2}{1 + k|z| + |z|^2}$$

for $z \in U$.

THEOREM 12 ([9]). Let the function

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

be an analytic function in the unit disk $\boldsymbol{\mathsf{U}}$ such that

$$\sum_{n=2}^{\infty} n^2 |a_n| < k$$
 (0 < k \le 1)

and $a_2 \ge 0$. Then, for $0 < \alpha < 1$ and $z \in U$,

$$|D_{z}^{1+\alpha}f(z)| \leq \frac{1}{\Gamma(2-\alpha)|z|^{\alpha}} \begin{cases} \frac{1+\frac{4a_{2}}{2-\alpha}|z|+|z|^{2}}{1-|z|^{2}} \end{cases}$$

$$-\alpha - \frac{2\alpha(2-k)}{k|z|} \log \left(1 - \frac{k}{2-k}|z|\right)$$

Furthermore, this result is sharp for each value of a_2 , $0 \le a_2 \le (2-\alpha)/2$, by considering the functions

$$G_{a_{2}}^{\prime}(z) = \frac{1 - z^{2}}{1 - \frac{4a_{2}}{2 - \alpha} z + z^{2}}.$$

COROLLARY 3 ([9]). Under the hypotheses of Theorem 12,

$$|D_{z}^{1+\alpha}f(z)| < \frac{1}{\Gamma(2-\alpha)|z|^{\alpha}} \left\{ \frac{1+k|z|+|z|^{2}}{1-|z|^{2}} - \alpha \right\}$$

$$-\frac{2\alpha(2-k)}{k|z|}\log\left(1-\frac{k}{2-k}|z|\right)$$

for $0 < \alpha < 1$ and $z \in U$.

THEOREM [3 ([9]). Let the function

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

be analytic in the unit disk \cU such that

$$\sum_{n=2}^{\infty} n|a_n| < k$$
 (0 < k \le 1)

and $a_2 \ge 0$. Then, for $\alpha > 0$ and $z \in U$,

$$|D_{z}^{1-\alpha}f(z)| \leq \frac{|z|^{\alpha}}{\Gamma(2+\alpha)} \begin{cases} \frac{1+\frac{4a_{2}}{2+\alpha}|z|+|z|^{2}}{1-|z|^{2}} - \alpha \end{cases}$$

$$-\frac{2\alpha(2-k)}{k|z|}\log\left(1-\frac{k}{2-k}|z|\right)$$

Furthermore, this result is sharp for each value of a_2 , $0 \le a_2 \le (2 + \alpha)/2$, by considering the functions

$$F_{a_{2}}'(z) = \frac{1 - z^{2}}{1 - \frac{4a_{2}}{2 + \alpha} z + z^{2}}$$

COROLLARY 4 ([9]). Under the hypotheses of Theorem 13, we have

$$|D_{z}^{1-\alpha}f(z)| < \frac{|z|^{\alpha}}{\Gamma(2+\alpha)}$$
 $\left\{ \frac{1+k|z|+|z|^{2}}{1-|z|^{2}} - \alpha \right.$

$$-\frac{2\alpha(2-k)}{k|z|}\log\left(1-\frac{k}{2-k}|z|\right)$$

for $\alpha > 0$ and $z \in U$.

4. Application of the fractional calculus for $\ensuremath{\mbox{K}}_\alpha.$

DEFINITION 5. Let A denote the family of functions f(z) analytic in the unit disk U and normalized f(0) = 0 and f'(0) = 1. And let K_n denote the class of functions $f(z) \leftarrow A$ satisfying the following conditions

(1) Re
$$\left\{\frac{\{z^n f(z)\}^{(n+1)}}{\{z^{n-1} f(z)\}^{(n)}}\right\} \rightarrow \frac{n+1}{2}$$
 (z $\in U$),

where $n \in \mathbb{N} \cup \{0\}$.

REMARK 3. In particular, for n = 0 the conditions (1) become

$$\operatorname{Re} \left\{ \frac{zf'(z)}{f(z)} \right\} \rightarrow \frac{1}{2} \qquad (z \in \emptyset).$$

Therefore, the class K_0 equals the class $S^*(1/2)$ that denote the class of starlike functions of order 1/2.

DEFINITION 6. Let f*g(z) denote the Hadamard product of two functions $f(z) \in A$ and $g(z) \in A$, and in particular, we put

(2)
$$D^{\alpha}f(z) = \left\{\frac{z}{(1-z)^{\alpha+1}}\right\} *f(z).$$

REMARK 4. In definition 6, the relation (2) implies

(3)
$$D^{n}f(z) = \frac{z\{z^{n-1}f(z)\}^{(n)}}{n!}$$
,

where $n \in \mathbb{N} \cup \{0\}$.

REMARK 5. With this notation (3), we have that the necessary and sufficient condition for a function $f(z) \in A$ to be in the class $K_0 \equiv S^*(1/2)$ is

$$\operatorname{Re} \left\{ \frac{D^{1}f(z)}{D^{0}f(z)} \right\} \rightarrow \frac{1}{2} \qquad (z \in U),$$

the necessary and sufficient condition for a function $f(z) \in A$ to be in the class $K_1 = K$ is

$$\operatorname{Re}\left\{\begin{array}{c} \frac{D^{2}f(z)}{D^{1}f(z)} \end{array}\right\} \rightarrow \frac{1}{2} \qquad (z \in \emptyset),$$

and the necessary and sufficient condition for a function $f(z) \in A$ to be in the class K_n is

(4) Re
$$\left\{ \frac{D^{n+1}f(z)}{D^{n}f(z)} \right\} \rightarrow \frac{1}{2} \qquad (z \in U).$$

Moreover, in the notation (4) also a class K_{-1} can be defined as the family of functions $f(z) \in A$ satisfying the condition

$$\operatorname{Re} \left\{ \begin{array}{c} f(z) \\ \hline z \end{array} \right\} \rightarrow \frac{1}{2} \qquad (z \in \mathbb{U}).$$

REMARK 6. R. Singh and S. Singh showed some results for the subclass R_n of K_n in [13], where the subclass R_n means the class whose members are characterized by the condition

$$\operatorname{Re} \left\{ \begin{array}{c} \frac{D^{n+1}f(z)}{D^{n}f(z)} \end{array} \right\} \rightarrow \frac{n}{n+1} \qquad (z \in U).$$

THEOREM 14. Let the function

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$
.

Then, for $0 < \alpha < 1$, we have

$$D^{\alpha}f(z) = \frac{z}{\Gamma(1+\alpha)} D_{z}^{\alpha} \{z^{\alpha-1}f(z)\},$$

$$D^{0}f(z) = \lim_{\alpha \to 0} D^{\alpha}f(z),$$

and

$$D^{1}f(z) = \lim_{\alpha \to 1} D^{\alpha}f(z).$$

THEOREM I5. Let the function

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n .$$

Then, for $0 < \alpha < 1$, we have

$$D^{-\alpha}f(z) = \frac{z}{\Gamma(1-\alpha)} D_z^{-\alpha} \{z^{-\alpha-1}f(z)\},$$

$$D^{0}f(z) = \lim_{\alpha \to 0} D^{-\alpha}f(z),$$

and

$$D^{-1}f(z) = \lim_{\alpha \to 1} D^{-\alpha}f(z) .$$

DEFINITION 7. Let A denote the family of functions

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

analytic in the unit disk U. And let K_{α} and $K_{-\alpha}$ denote the classes of functions $f(z) \in A$ satisfying the following conditions

Re
$$\left(\begin{array}{c} \frac{D_z^{\alpha+1}\{z^{\alpha}f(z)\}}{D_z^{\alpha}\{z^{\alpha-1}f(z)\}} \end{array}\right) > \frac{1+\alpha}{2} \qquad (z \in U)$$

and

$$\operatorname{Re}\left(\begin{array}{c} \frac{D_{z}^{1-\alpha}\{z^{-\alpha}f(z)\}}{D_{z}^{-\alpha}\{z^{-\alpha-1}f(z)\}} \end{array}\right) \rightarrow \frac{1-\alpha}{2} \qquad (z \in \emptyset)$$

for $0 < \alpha < 1$, respectively.

THEOREM I6. The nacessary and sufficient condition for a function $f(z) \in A$ to be in the class K_{α} , 0 < α < 1, is

Re
$$\left\{ \begin{array}{c} \frac{D^{1+\alpha}f(z)}{D^{\alpha}f(z)} \end{array} \right\} \rightarrow \frac{1}{2} \qquad (z \in U)^{\alpha}.$$

THEOREM I7. The necessary and sufficient condition for a function $f(z) \in A$ to be in the class $K_{-\alpha}$, 0 < α < 1, is

$$\operatorname{Re} \left\{ \begin{array}{c} \frac{D^{1-\alpha}f(z)}{D^{-\alpha}f(z)} \end{array} \right\} \rightarrow \frac{1}{2} \qquad (z \in U) .$$

THEOREM [8. Let the function f(z) belong to the family \tilde{A} and satisfy the condition

$$\sum_{n=2}^{\infty} n(n + 2) |a_n| < 1.$$

Then, for 0 < α < 1, the function f(z) is in the class K_{α} .

Theorem [9. Let the function f(z) belong to the family χ and satisfy the condition

$$\sum_{n=2}^{\infty} (2n + 1)|a_n| < 1.$$

Then, for 0 < α < 1, the function f(z) is in the class $K_{-\alpha}$.

Recently, St. Ruscheweyh gave the following problems in [10].

PROBLEM I. What can be said about the classes K_{α} , if we replace the natural number n in (4) by an arbitrary real number $\alpha \geq 1$. Is it perhaps that $K_{\alpha} \subset K_{\beta}$ for $\alpha > \beta$?

PROBLEM 2. Is K_{α} closed under the Hadamard product ?

REMARK 7. The truth of Problem 2 is trivial for α = -1 and was proved by St. Ruscheweyh and T. Sheil-Small for α = 0, 1 in [11].

Now, we give some results for Problem 1 in a sense.

THEOREM 20. Let the function

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

belong to the class $\ensuremath{\mbox{\boldmath K}}_{\alpha+\delta}$ and satisfy the condition

$$\sum_{n=2}^{\infty} \frac{(2n + 3\delta + 4)\Gamma(n + \delta + 1)}{(n - 1)!\Gamma(\delta + 3)} |a_n| < 1$$

for 0 < α < 1 and 0 < α + δ < 1. Then the function f(z) is in the class $\mbox{\ensuremath{\mbox{$K$}}}_{\alpha}.$

COROLLARY 5. There exists the function f(z) of the class $K_{\alpha+\delta}$ such that is in the class $K_{\alpha},$ where 0 < α < 1 and 0 < α + δ < 1.

COROLLARY 6. For the family of functions

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

satisfying the following condition

$$\sum_{n=2}^{\infty} \frac{(2n + 3\alpha - 3\beta + 4)\Gamma(n + \alpha - \beta + 1)_{\beta}}{(n-1)!\Gamma(\alpha - \beta + 3)} |a_n| < 1,$$

if 0 < β < α < 1 and 0 < 2 α - β < 1, then $K_{\alpha} \subset K_{\beta}$.

THEOREM 21. Let the function f(z) belong to the class $\textbf{K}_{-\alpha+\delta}$ and satisfy the condition

$$\sum_{n=2}^{\infty} \frac{(2n+3\delta+1)\Gamma(n+\delta)}{(n-1)!\Gamma(\delta+2)} |a_n| < 1$$

for 0 < α < 1 and 0 < α + δ < 1. Then the function f(z) is in the class ${\textstyle K_{-\alpha}}$.

COROLLARY 7. There exists the function f(z) of the class $K_{-\alpha+\delta}$ such that is in the class $K_{-\alpha}$, where 0 < α < 1 and 0 < α + δ < 1.

COROLLARY 8. For the family of functions

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

satisfying the following condition

$$\sum_{n=2}^{\infty} \frac{(2n+3\alpha-3\beta+1)\Gamma(n+\alpha-\beta)}{(n-1)!\Gamma(\alpha-\beta+2)} |a_n| < 1,$$

if 0 < α < β < 1 and 0 < 2 α - β < 1, then $K_{-\alpha} \subset K_{-\beta}$.

Furthermore, we have the following results for Problem 2 in a sense.

THEOREM 22. Let the function f(z) belong to the family $\mbox{\ensuremath{\upalpha}}$ and satisfy the condition

$$\sum_{n=2}^{\infty} n(n + 2) |a_n| < 1.$$

Then, for 0 < α < 1, the Hadamard product f*f(z) is in the class $\mbox{\ensuremath{\mbox{\ensuremath{\alpha}}}}.$

COROLLARY 9. There exists the function f(z) of the class K_α such that the Hadamard product f*f(z) is in the class K_α , 0 < α < 1.

COROLLARY [O. If the function f(z) belongs to the class $\ensuremath{K_\alpha}$ and satisfies the condition

$$\sum_{n=2}^{\infty} n(n + 2) |a_n| < 1,$$

then the Hadamard product f*f(z) is in the class K_{α} , 0 < α < 1.

THEOREM 23. Let the function f(z) belong to the family λ and satisfy the condition

$$\sum_{n=2}^{\infty} (2n + 1)|a_n| < 1.$$

Then, for 0 < α < 1, the Hadamard product $f^*f(z)$ is in the class ${\mbox{\sc K}}_{\!\!\!-\alpha}.$

COROLLARY II. There exists the function f(z) of the class $K_{-\alpha}$ such that the Hadamard product f*f(z) is in the class $K_{-\alpha}$, 0 < α < 1.

COROLLARY I2. If the function f(z) belongs to the class $K_{-\alpha}$ and satisfies the condition

$$\sum_{n=2}^{\infty} (2n + 1)|a_n| < 1,$$

then the Hadamard product $f^*f(z)$ is in the class $K_{-\alpha}$, 0 < α < 1.

REFERENCES

- [1] Y. Komatu and H. Nishimiya: A remark on distortion for fourth derivative of functions regular and univalent in the unit circle, Sci. Rep. Saitama Univ., 6(1968), 3 4.
- [2] J. Liouville: Mémoire sur le calcul de différentielles à indices quelconques, J. École Polytech., 13(1832), 71 162.
- [3] F. Marty: Sur les dérivéss seconde et troisième d'une fonction holomorphe et univalente dans le cercle unité, C. R. Acad. Sci. Paris, 194(1932), 1308 1310.
- [4] K. Nishimoto: Fractional derivative and integral I, J. Coll. Engin. Nihon Univ., 17(1976), 11 19.
- [5] T. J. Osler: Leibniz rule for fractional derivative generalized and application to infinite series, SIAM J. Appl. Math., 16(1970), 658 674.
- [6] T. J. Osler: Fractional derivatives and Leibniz rule, Amer. Math. Monthly, 78(1971), 645 649.
- [7] S. Owa: A remark on distortion theorem, J. Fac. Sci. and Techn. Kinki Univ., 12(1977), 35 38.
- [8] S. Owa: On the distortion theorems I, Kyungpook Math. J., 18(1978), 53 59.
- [9] S. Owa: On applications of the fractional calculus, Math. Japonica, 25(1980), 195 206.
- [10] St. Ruscheweyh: New criteria for univalent functions, Proc. Amer. Math. Soc., 49(1975), 109 115.
- [11] St. Ruscheweyh and T. Sheil-Small: Hadamard products of schlicht functions and Pólya-Schoenberg conjecture, Comm. Math. Helv., 48(1973), 119 135.

- [12] M. Saigo: A remark on integral operators involving the Gauss hypergeometric functions, Math. Rep. Kyushu Univ., 11(1978), 135 143.
- [13] R. Singh and S. Singh: Integral of certain univalent functions, Proc. Amer. Math. Soc., 77(1979), 336 340.