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ON THE FRACTIONAL CALCULUS 57

SHIGEYOSHI OwA

_. 1. INTRODUCTION,

There are many definitions of the fractional calculus.
In 1832, J. Liouville defined the fractional integral of order
o in [2]. Recently, T. J. Osler defined the fractlional derivative
of order o in [5] and [6]. Moreover, K. Nishimoto defined the
fractional derivative and integral of order a in [4]. And in 1978,
M. Saigo defined the integral operators in [12]. Furthermore in
1978, S. Owa gave the following definitions for the fractional

calculus in [8].
DEFINITION I, The fractional integral of order o is defined

by

1 A f(zg)dg
I'(a) (z - )t~

D;“f(z) =

where o is greater than 0, f(z) is an analytic function in a

simply connected region of the z-plane containing the origin, and

o-1

the multiplicity of (z - T) is removed by requiring In(z - )

to be real when (z - ) is greater than 0. Moreover

f(z) = 1lim D;af(z)
o =+ 0
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DEFINITION 2. The fractional derivative of order a is defined by

1 d f(z)dc

D:f(z) = T o
I'(l - o) dz (z -z)

where 0 < o < 1, f(z) is an analytic function in a simply connected
region of the z-plane containing the origin, and the multiplicity of
(z - £)™% is removed by requiring 1n(z - z) to be real when

(z - z) > 0. Moreover,

£(z) = 1im D%*f(z)
a >0 2
and
£1(z) = 1im D%f(z)
a+1 %
REmMArRK I. The fractional derivative of order (n + a) is
defined by
el
n+ao, o]
DZ f(z) = 5 sz(z) R
dz

where 0 < a < 1 and néNU{O}.

DEFINITION 3. Let E be a domain in the extended complex plane.
The function f(z) is called univalent in E if and only if it is
analytic except for at most one pole and f(zl) # f(zz) for zléé»E,

z2éE and z; # z,. Let S denote the class of function

o

f(Z) =z + E anzn

n=2
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. . *

is analytic and univalent in the unit disk U = {|z]| < 1}, §
denote the subclass of § which is univalent starlike with respect
¥*
to the origin in the unit disk |}, and ( denote the subclass of §

which 1s univalent convex in the unit disk [J.

THEOREM T (L71), Let the function

f(z) = z + a, %z

n=2

be in the class §. If the Bieberbach conjecture on the coefficients

of £(z) is true for any n > 2, then

nl(n + |z])

(1 - Izl)n+2

|f(n)(z)[

A

for z &lJ.

REMARK 2. For n = 1, Theorem 1 means the Koebe distortion
inequality. And Theorem 1 is already shown by F. Marty [3] for

n =2, 3 and by Y. Komatu and H. Nishimiya [1] for n = L.

2. A CONJECTURE.

S. Owa gave the following conjecture in [T7].

CONJECTURE. Let the funection

0

f(z) = z + E anzn

=2
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be in the class §. Then, for any non-negative o and zéE[L

T(a + 1)(a + |z])
]ZI)G+2

D% (z)] <
A = (1 -

Now, for the functilon

0

f(z) = z + E anzn ,

n=2
we put
F(z) = T(2 + a)z %D, %f(2) (¢ > 0)
and
G(z) = .T(2 - u>z“D§f(;) (0 < a<1)

*
Let SG denote the class of univalent starlike functions

00

f(z) = z + E anzn

n=2

*
in the unit disk || such that G(z)& S and Cg denote the class
of univalent convex functions

0

f(z) = z + E‘ anzn

n=2

in the unit disk | such that G(z)& (.
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The following results hold for Conjecture.

THEOREM 2. Ir f(Z)éE'CG, then for 0 < a < 1 and

az(a - 1) + A/ a6 - 2@5 + au - bo + 4
~ < lz| <1,

T(a + 1)(a + |2z])

(l - IZl)OL+2

IDor(z)] <

3* .
THEOREM 3, If £(z) is in the class SG’ then for 0 < o < 1

and

az(a - 1) + ﬁ/ u6 - 2&5 + au - Yo + 4

< lz] <1,

20(1 - a)

T(a + 1)(a + |z|)

|D§f(z)| <

(l _ IZ[)OH'Q

3., APPLICATION OF THE FRACTIONAL CALCULUS FOR D(K).

DEFINITION 4, Let D(k) denote the class of function

f(z) = z + E anzn
n=2
which is analytic in the unit disk |} and satisfying

fr(z) - 1
< k
fr(z) +1
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for 0 < k < 1 and z &\.

THEOREM 4 ([91), Let the function

[es)

f(z) = z + E anzn

n=2

be analytic in the unit disk |J such that

00

E n’la_| < k
n

(0 <k <£1).
n=2
Then, for 0 < a < 1 and ZéU:
D% ()] - o] ¢ 20 (1
DXf(z)| > -lz] + ————— log +
z = T2 - a)|z]® k
. [ 1 2] 2(2 - k) (
D f(z)| < -lz| - ——— losg -
>, s r(2 - a)lz|® k
and
1 2 - k + k|z|
ID1+0Lf(Z)I < = - QO
“ r(2 - a)lz| 2 - k - k|z|

2a(2 - k) k
- — log (;1 - IZI
k|z| 2 - k

—6-
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THEOREM 5 ([9]1), Let the function

f(z) =z + E anzn

be analytic in the unit disk |J such that

00

§ i nla | <k (0 < k<1).

n=2

Then, for o > 0 and z éELL

-0 |Zld’ 2(2 - k)
D, f(2)] 2 ————— -lz] + ———— log <:1 +

T(2 + a) k

\

k
Izl)
-k

-0 IZ|OL 2(2 - k) k
D%8(2)| ¢ ———— 4 -|z] - ——— 1og (:1 - |z
(2 + o) k 2 -k

and
|z|® 2 - k + kl|z]|
D% (2)] & ——— -
r(2 + a) 2 - k - k|z]

20(2 - k)
- log (:1 - lzj)
kiz| 2 -k

THEOREM 6 ([9]), Let the function
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0

f(z) = z + E anzn

n=2

be analytic in the unit disk | such that

o0

E nglanl < k (0 < k < 1).
n=2
Then, for 0 < o <1, 0 < K< (2 -k - k|z|)/(2 -k + k|z]),
and z &,
' 1 2(1 - K) 2a(2 - k + k|z])
[Diﬂxf(z)[ < o 2 +
r(2 - a)|z] (1 - |z]) (2 -k - kx|z|)|z]
o(l + a) 20(1 + a)(2 - k) k
- 5 log (ll - ——————|ZE)
| z] k|z] 2 -k

THEOREM 7 ([91), Let the function

o0

f(z) = z + E anzn

n=2
be analytic in the unit disk |J such that

0

E n’la_| <k
n

n=2

(0 < k < 1).

Then, for 0 < a < 1, 0 < K< (2 -k - k|z|)/(2 - k + k|z]),

and z & U,



b5

1 20(2 - k + k|z|)

D2 (2)| < -
r(2 - a)|z| (2 - k - k|z])]|z]

2(1 - K)(2 - k + k|z])

(1 - Jz]){1 + (1 - 2K)|z]}(2 - kx - k|z]|)

a(l + a) 2a(1 + a)(2 - k) k
- - 5 log (;1 - |z |
lz] k|z] 2 -k
THEOREM 8 ([91), Let the function
£(z) = z + E anzn
n=2
be analytic in the unit disk |/ such that
g nla | <k (0 <k <1).
n=2
Then, for a > 0, 0 < K < (2 - k - k|z|)/(2 - k + k|z]),
and z & U,
z|* 2(1 - X) 20(2 - k + k|z])
ey ! . 2]
T(2 + a) (1 - |z (2 - k¥ - xlz])]z]
a(l + 3a) 20(1 + 3a)(2 - k) k
- — 1 _
|z ] x|z |° og( 2 - kIZD
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THEOREM 9§ ([91), Let the function

o0

f(z) = z + E anzn

n=2

be analytic in the unit disk | such that

[od

§ nla | <k (0 <k < 1).

n=2

Then, for o > 0, 0 < K < (2 - k - k|z|)/(2 - kx + k|z]),

and zéE[L

ID2"%s(2)| < =I” 20(2 - k + k|z|) all + 30)
z T T(2 + a) (2 - x - klz])]|z] |z ]
, 2(1 - K)(2 - k + k|z])
+

(1 - Jz) {1 + (1 - 2K)|z]|}(2 - k - k|z])

2a(1 + 3a)(2 - k) k
- 5 1og C - ]ZD
k| z] 2 -k

THEOREM 10 (L[91), Let the function
f(z) =z + E anz’rl

n=2

be analytic in the unit disk |J such that

-10-



E n2|an; <k (0 < k < 1)

n=2
and a, > 0. Then, for 0 < a < 1 and z &L,
1 - |z|?
Re{G'(Z)} 2 P
2 2
1+ lz] + |z]
2 - 0

Furthermore, this result is sharp for each value of 855

0<a,=x (2 - a)/2, by considering the functions
1 - 22
! -
Ga2(Z) ta, 2
1 - z + z
2 - a

CoroOLLARY I ([91), Under the hypotheses of Theorem 10,

1 - |z

Re{G'(z)} > 5
1+ k|z| + |z

for z &U.

THEOREM II ([91), Let the function

o)

f(z) = z + E anzn

n=2

be analytic in the unit disk || such that

0

E nla | < k (0 <k <1)

n=2

and a, > 0. Then, for a > 0 and z &\,

-11-
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Re{F'(z)} > —

Furthermore, this result is sharp for each value of a2,

0 < a, < (2 + 0)/2, by considering the functions

1 -~ 22

Féz(?) = Y

COROLLARY 2 ([9]), Under the hypotheses of Theorem 11,

| 1- |z]?
Re{F'(z)} >

1+ k|z] + |z]°
for z & .

THEOREM [2 ([91), Let the function

00

f(z) =z + E ahzn

n=2

be an analytic function in the unit disk |] such that

E n2]an| < k (0 <k <1)

n=2
and a, > 0. Then, for 0 < a < 1 and z & U,
L
N 1+ E—|z| + |z]°
D2 (2)] < 3 .
r(2 - a)lz] 1 - |z]

-12-



2o0.(2 - k) k
-0 - — Jog (:1 - — |z|
k|z] : 2 -k
Furthermore, this result is sharp for each value of 855

0 < a, < (2 - 0)/2, by considering the functions

1l - zZ
1 =
Gae(z) - La

COROLLARY 3 ([91), Under the hypotheses of Theorem 12,

2
1 1+ klz| + |z]
]D§+af(z)’ < ) 5 - o
r(2 - a)l|z| 1 - |z]

2a(2 - k) k '
- log (ll - -*---IZ[)
k|z| 2 - k

for 0 < o < 1 and ZQELL

THEOREM I3 ([91), Let the function

[ee)

£f(z) =z + E aﬂzn

n=2
be analytic in the unit disk | such that

o]

E nla | <k (0 <k <1)

n=2

-13-
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and a, > 0. Then, for a > 0 and z &,

ha
.|ZIOL 1+ —_2'——121 + lzllg

DI %r(2)| < 2 * o - a

r(2 + a) 1 - |z]?

2a(2 - k) _
- log (1— |z|>
k[z[ 2 -k

Furthermore, this result is sharp for each value of a5

0 < a, = (2 + a)/2, by considering the functions
1 - 22
1 =
Fae(z) ta, 2
1 - 7z + zZ
2 + a

COROLLARY 4 ([91), Under the hypotheses of Theorem 13,
we have
2] 1+ klz] + |2]°

l-a
()] <« ———— - o
2 12 T2 + a) 1 - |z|°

|D

2a(2 - k) k
- log (ll - ——————-IZE)
k|z| ’ 2 -k

for o > 0 and zéU.

-14-



4, APPLICATION OF THE FRACTIONAL CALCULUS FOR K.

DEFINITION 5. Let A denote the family of functions f(z)

i

analytic in the unit disk | and normalized £(0) = 0 and £'(0) = 1.

And let Kn denote the class of functions f(z)éA satisfying

the following conditions

{an(z)}(n+l) n+1

> — (z&l),

1) R
( © (2% Le(zy)1 () 5

where n& N\ /{0}.

REMARK 3, In particular, for n = 0 the conditions (1)
become

zf1(z) 1

Re —_— > — ( .
f(z) 2 Zé

¥*
Therefore, the class KO equals the class § (1/2) that denote

the class of starlike functions of order 1/2.

DEFINITION 6. Let f¥g(z) denote the Hadamard product of

two functions f(z)éA and g(z) &A, and in particular, we put

(2) D%f(z) = i

(1 - Z)oc+1 *(z).

- ReMARrRk 4. In definition 6, the relation (2) implies

(3)  Dir(z) = 2 (2" e (2 ()
3 Z - n! b

where n & N \/{o}.

-15-
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REMARK 5. With this notation (3), we have that the
necessary and sufficient condition for a function f(z)é&A’to be
*
in the class KO_"—'-"-_S (1/2) is

Dlf(z)

1
Re —— > (z&),
p%f(z) 2 €
the necessary and sufficient condition for a function f(z)& A
to be in the class Ki=K is
p2f(z) 1 éEU)
Re s > — (z 5
plr(z) 2
and the necessary and sufficient condition for a function f(z) GEA

to be in the class Kn is

ptle(z) 1 cu
%) Re —_— > — (z ).

Df(z) 2
Moreover, in the notation (l) also a class K_1 can be defined
as the family of functions f(z)& A satisfying the condition

f(z) 1
Re { ——— > — z&l).

Z 2

REMARK 6. R. Singh and S. Singh showed some results for
the subclass Rn of Kn in [13], where the subclass Rn means the

class whose members are characterized by the condition-

Dn+1f(z)

n
Re Y ——— > — zE.

an(z) n+ 1

-16~



THEOREM 1[4, Let the function

o2}

f(z) = z + E anzn

n=2

Then, for 0 < o < 1, we have

Z
D% (z) = —————— DX2*TE(2)}
(1 + a)
pOf(z) = 1im D%*f(z),
a ~ 0
and
DIf(z) = 1im Df(z).
o > 1

THEOREM I5, Let the function

[e2]

f(z) = z + E anzn

n=2
Then, for 0 < a < 1, we have

Z
D™ (z) = Epase D% {z"% 1 r(2)},
T -o

pOr(z) = 1im D% (z) ,
o > 0
and
-1 _ . -0
D "f(z) = 1lim p™%p(z)
o+~ 1

-17-
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DEFINITION 7. Let K denote the family of functions

n
+ E
Z a. .z

n=2

f(z)

analytic in the unit disk |J. And let Ku and K_a denote the

classes of functions f(z)é}ﬁ satisfying the following conditions

Da+l{sz(z)} 1 +a
Re Z P ( h
D%zt (2)} 2 1€
and
DIz 7% (2)} 1 - a e
Re > — 7
D;a{z_a—lf(z)} o

for 0 < o < 1, respectively.

THEOREM 16. The nacessary and sufficient condition for

a function f(z)ek to be in the class Koz’ 0 <a <1, is

pItor(z) 1 ey
Re —_— > — (z ) .
D%f(z) 2
THEOREM I7. The necessary and sufficient condition for

a function f(z)fE-K to be in the class K—a’ 0 <o <1, is

1-a

D% (2) 1
R —_— > — (Z U)
© D~%f(z2) ?) S

-18-
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THEOREM I8, Let the function f£(z) belong to the family A

and satisfy the condition

0

E n(n + 2)|an| < 1.

n=2

Then, for 0 < a < 1, the function f(z) is in the class Ka‘

THEOREM 19, Let the function f(z) belong to the family K
and satisfy the condition

E (2n + 1)]an|’< 1
n=2

Then, for 0 < a < 1, the function f(z) is in the class K—a'

Recently, St. Ruscheweyh gave the following problems in [10].

ProBLEM I. What can be said about the classes Ka’ if we
replace the natural number n in (4) by an arbitrary real number

o > 1. Is it perhaps that Kac: KB for a > B ?
PROBLEM 2. Is Ku closed under the Hadamard product ?

REMARK 7. The truth of Problem 2 is trivial for o = -1
and was proved by St. Ruscheweyh and T. Sheil-Small for o = 0, 1

in [111.
Now, we give some results for Problem 1 in a sense.

THEOREM 20, Let the function

~-19-
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o

f(z) = z + E anzn

=2

belong to the class Ka+6 and satisfy the condition

= (2n + 36 + W)I'(n + 6 + 1)
E la_ | <1
(n - 1)IT(8 + 3) n

n=2

for 0 < a <1 and 0 < a + &§ < 1. Then the function f(z) is
in the class Ka'

COROLLARY 5, There exists the function f(z) of the class
Ku+6 such that is in the class Ka’ where 0 < a < 1 and

0 <o+ 6 < 1.

COROLLARY 6. For the family of functions

oo

f(z) = z + § anzn

n=2
satisfying the following condition
[ee]

(2n + 30 - 38 + WI'(n +0a - B + 1)
E la | <1,
(n - 1)!T(a - B + 3) ‘

n=2

if 0 < B <a < 1and 0 < 2a - B < 1, then KQC:.KB-

THeoREM 21, Let the function f(z) belong to the class

K—a+6 and satisfy the condition

o]

(2n + 38 + 1)T'(n + §)
D> 2yl <1

n=2 (n - 1)IT(8 + 2)

-20-
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for 0 <o <1 and 0 < oo + § < 1. Then the function f(z) is in the

class K—a'

COROLLARY 7. There exists the function f(z) of the class

K;a+6 such that is in the class K—a’ where 0 < o < 1 and

0 <o+ 6 < 1.

COROLLARY 8, For the family of functions

0

f(z) = z + E f anzn

n=2

satisfying the following condition

(2n + 300 - 38 + 1)T(n + a - B) :
EZ la_| <1,
(n - 1)!T(a - B + 2) n

n=2

if 0 <a < B <1and 0 < 20 - B < l,vthen K_a(: K-B'

Furthermore, we have the following results for Problem 2

in a sense.

THEOREM 22, Let the function f(z) belong to the family X

and satisfy the condition

o]

E n(n + 2)|an[ < 1.

n=2

Then, for 0 < a < 1, the Hadamard product f¥f(z) is in the

class Ka‘

-21-
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COROLLARY 9. There exists the function f(z) of the class
Ka such that the Hadamard product f¥f(z) is in the class Kd,

0 < a < 1.

CoroLLARY 10, If the function f(z) belongs to the class

Ku and satisfies the condition

[oe]

E n(n + 2)[an| <1,

n=2

then the Hadamard product f¥f(z) is in the class Ku 0<aq <1
, .

THEOREM 23. Let the function f(z) belong to the family

K and satisfy the condition

E (2n + 1)|an| < 1.
n=2

Then, for 0 < a < 1, the Hadamard product f¥f(z) is in the

class K_a.

CorOLLARY II. There exists the function f£(z) of the class
K—a such that the Hadamard product f¥f(z) is in the class K—a’

0 <o < 1.

CORQLLARY 12, If the function f(z) belongs to the class

K_, and satisfies the condition

E (en + 1)[a | < 1,
n=2

then the Hadamard product f¥f(z) is in the class K 0 <a<1.

-

-22-
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