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81. Introduction

In this note, we shall study the dynamics of an analytic

dynamical system £ : R2 > R2 defined by

(1) f(x,y) = ( -y+2x-x3 r X ).

Dynamical system £ is obtained by discretizing an ordinary

differential equation for nonlinear oscillation of the form :
(2) -—= + x~ = 0.

Evidently, this equation is of Hamiltonian type and can be
integrated analytically. However, in executing the integration,
if we employ numerical methods, some difficulty arises. Can the
numerical integration be performed for a long range of time ?
Numerical solutions may diverge ? How can we get an error estimate
for long time range of solutions ?

We employ, as the first step, the usual finite difference
scheme :
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By putting Atxn = u, and Vv, = U, _qr we obtain the scheme :
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so that the dynamics is given by the mapping (1).



Note that the mapping (1) = preserves the volume in R2, i.e.

det (df) = 1 and that f is invertible. The inverse map f-lb:

R? » R?2 ig given by the following :

- 3
(5) £l x,y) = (y, =x + 2y -y° ).
Both f and f—1 are defined by polynomials, hence are analytic.

§2. Saddle connection curves

Let £ : R2 > R2 be an analytic diffeomorphism of the plane.

We call a point x 1in R a saddle point of £ if x is a
fixed point of £ and that one of the absolute values of the
eigenvalues of the Jacobian matrix df at the point is greater
than one and the other is smaller than one.

For a saddle point x in RZ, we denote»by Wi ( resp. by
Wg ) the stable manifold ( resp. the unstable manifold ) associat-
ed to x.

Let Ei ( resp. E; ) denote the eigenspace of linear map
dfx : TxR2 > TxR2 corresponding to the eigenvalue whose absolute
value is smaller than one ( resp. greater than one ). Stable
manifold Wi (resp. unstable manifold Wi ) is an injectively
immersed one-dimensional manifold and is tangent to Ez ( resp.

Ei ) at the saddle point.

Let h : I ~» R2 be an embedding of the unit interval into

R2. We call h a saddle connection if the following conditions

i), ii), and iii) are satisfied.

i) the image of two boundary points p = h(0) and g = h(1)
are saddle points of £.
ii) the image h(I-{0,1}) contains no fixed point of f£f.
iii) the image h(I) is invariant under f£f.

We have the following theorem.



THEOREM If an analytic diffeomorphism £ : R2 > R2 can be

extended to an autonorphism F : C2 -> C2 of the two dimensional
conplex vector space considered as complex manifold, then there

does not exist any saddle connection.
Ssee [l] or [2] for the proof.

§3. Elliptic periodic point

We call a point p € R2 an elliptic periodic point of £
if there is a positive integer k such that fk(p) = p and that
the eigenvalues of the Jacobian matrix d(fk) at the point are
imaginary. It is known that almost all elliptic periodic points
are stable if mapping £ 1is an area preserving analytic diffeo-
morphism. More precisely, let A denote the eigenvalue at the
2 2m+2 £ 1

fixed point p of £ and suppose that A,A%,...,A
for some positive integer m, then one may assume the mapping fk»

has the form :

X, =X cos w -y sinw + O2m+2
Y, = X sin w + y cos w + O2m+2
m
w o= I Yk(X2+Y2)k
k=0

where (x,y) 1is a local coordinate around p obtained by power

series convergent near the origin and O denotes a convergent

power series in x,y with terms of ordeimgﬁeater than or equal
to 2m+2 only. If at least one of the coefficients Yyree-r¥y
is not zero, then the fixed point p is a stable fixed point.
In fact, in any neighborhood of p there exist an invariant
circle surrounding the fixed point p. This result was obtained
by A.N.Kolmogorov, V.I.Arnold, L.C.Siegel and J.Moser. See [3]

for the detail.
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§4. Periodic points of the dynamical system

In this section we examine periodic points of dynamical
system (1)

Let p be a fixed point of fk for some positive integer
k. Let Al,xz
d(fk) at p. As f 1is an area and orientation preserving
diffeomorphism we see that xlxz = det(d(fk)) = 1. We classify
the periodic points according to the eigenvalues kl and Az as

denote the eigenvalues of the Jacobian matrix

follows: )

1) Al and Az are real and distinct.

2) kl and Az are distinct and imaginary.

3) Al = Az = +1.
In the case 1) the periodic point is a periodic saddle point
and is said to be hyperbolic. In the case 2) we have Al = XZ

and the periodic point is called elliptic. 1In the case 3), we
call the periodic point parabolic if the eigenspace is one-
dimensional.

There is only one fixed point of £, the origin, which is
parabolic. 1In fact, we have x =y = 0 directly from £(x,y)

=(x,y). The Jacobian matrix of f is given by
2-3x% -1
daf = .
1 0

The eigenvalues at the origin are given by the equation
Az - 2A + 1 = 0, which has double root A = 1. The eigenspace
for the eigenvalue is the diagonal line {x=y}.

There is one periodic orbit of period two, {(2,-2),(-2,2)1},
which is hyperbolic. = There are two orbits of period three :
{(0,v3),(-/3,0),(¥3,-/3)} and {(0,-V/3), (/3,0), (-/3,/3)}. They
are hyperbolic. There are two orbits of period four : {(v2,0),
(0,v2),(-/2,0),(0,-¥2)} and {(/2,¥2),(-V2Z,¥2), (-/2,-V2), (/Z,-/2)},

which are hyperbolic.



There are at least two orbits of period six. The orbit
{(1,0),(1,1),(0,1),(-1,0),(-1,-1),(0,—1)} is elliptic.
Hyperbolic periodic orbit of period six is computed as follows.

Let D denote the diagonal line { x =y }. .Let S denote
the set of points (x,y) which are mapped by f to the points
symmetric with respect to D, i.e., S = {(x,y)|f(x,y)=(x,¥)}.
More explicitely, S is the curve defined by the equation y =
X - x3/2. Let Q denote the coordinate transformation (x,y) >
(y,x), reflection with respect to D. Then we see that £ = Qo
foQ. Let T denote the transformation (x,y) =+ (-x,-y). Then
we have f = TofoT., Let X denote the x-axis {y=0} and Y
the y-axis {x=0} . Let L be the anti-diagonal line {y=-x}.
Any point (0,y) in Y is mapped by f to a point (-y,0) in
X. Let p = (x,0) be a point in X and suppose that p is
mapped by f® into D for some positive integer m. Then p
is a periodic point of period 4m+2. In fact, f2m(p) = fm(fm(p))
= Qof_moQofm(p) = QOf—mofm(p) = Q(p) and that Q(p) belongs to
Y hence £l (p) = foQ(p) = T(p), therefore £ T 2(p) = g2l
T(p) = Tof?™loqor(p) = Tof?™1(p) = Tom(p) = p.

Similarly, if fm(p) belongs to S then p 1is a periodic
point of period 4m+4. Note that if all the points fi(p) (i =
l,...,m) are in the first quadrant { x > 0, y > 0 } then the
orbit of p does not intersect with the antidiagonal line L
(with the exception p=(0,0) ).

Now consider the orbit starting from a point in L. Let
g = (x,-x) Dbe a point in L. If fm(q) belongs to D, then g
is a periodic point of period 4m. If fm(q) belongs to S
then g 1is a periodic point of period 4m+2.

By this procedure, we can find infinitely many periodic
orbits of even periods. For a hyperbolic periodic point of period
six, we have the equation in a :

a?{ (a?-3)3+21-4 = (a?-4) (a®-50%+702-1) = 0.

The real root o = 0.4008905... gives a hyperbolic periodic



point (a,-a).
Let PB= 0.277489%94... be a real root of equation

B2{(p%-3)3-1}+2 = 0.

Then the point (B,-B) is an elliptic periodic point of period
eight. The eigenvalues of d(f8) at (B,-B) are A =exp(+mdi),
where 9= 0.5819047...

Numerical observation shows that we may apply Moser's
thecrem on the existence of invariant circles around elliptic
fixed points.

There are also hyperbolic periodic points of period eight.
Let Y= 0.53228493... be a real root of equation

Yz{(Y2-2)3-2}+2 = 0.

Then the point (?,0) is a hyperbolic periodic point of period
eight. Eigenvalues of d(f°) at (y,0) are real and distinct :
Al = 5.5152932... ‘and Az = 0.18131301...

Numerical observation shows that the stable manifold and
the unstable manifold of this hyperbolic periodic point interseét
transversally, which implies the existence of homoclinic points.
These invariant manifolds surround the elliptic periodic points
of period eight mentioned above. 1Inside the domain surrounded
by these invariant manifolds there are many invariant circles
around the elliptic periodic points. _

» We observed numerically that some orbits starting near the
hyperbolic periodic points give quite a chaotic plot of points
of the orbit but they diverge after hundreds of thousands of
iterations. We observed also that there are invariant circles
inside the domain contaning the origin and limited by stable and
unstable manifolds of the hyperbolic periodic points. There are
elliptic periodic points-and hyperbolic periodic points in the
domain limited by the invariant circle observed numerically.

The existence of invariant circle means that if we start the
iteration of the dynamical system with a initial point in the

e



domain inside the circle, the orbit never diverge however long
a period one may continue the iteration.
Let &= 0.36502000... be a real root of eguation

62{(8%2-2)3-11+1 = 0.

Then the point (&,0) 1is an elliptic periodic point of period
ten. The eigenvalues of d(flo) at (6,0) are
A= exp(+mdi), where 9= 0.21696420...
Figure 1 is the plot of several orbits near this point.
Invariant circles of period ten are observed numerically. Let
€ = 0.18099892... be a real root of equation in € :

R=0-10% Rr=ce(3-¢?), Q=-ct2rr’.

Then the point (eg,—-€) 1is a hyperbolic periodic point of
period ten. There seems to exist an invariant annulus containing
these two orbits of period ten, one of which is hyperbolic and
the cther is elliptic (see figure 2). Figure 3 illustrates
several orbits near this hyperbolic periodic point. Near this
point are observed chaotic orbits. By the theorem obtained by
the author, there exist no invariant curves connecting hyperbolic
periodic points. If a stable manifold and an unstable manifold
of hyperbolic périodic points intersect, the sét of intersection
points cannot contain any portion of regular curves. This fact
suggests strongly the existencé of homoclinic points which are
observed numerically. ‘

Finally we remark that the orbit structure of this dynamical
system reminds us of the picture of the orbit structure concerning
the three body problem considered by H.Poincaré in his book [4].
He dared not illustrate the configuration. A figure of this
dynamical system was given by Arnold and Avez [5]. Similar
phenomena observed numerically in Hamiltonian dynamical systems
and in dynamics of a Cremona transformation are reported by

Hénon and Heiles [6].
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