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Composite Structures of a Class of Soliton Solutions

R. Hirota

Dept. of Appl. Math. Hiroshima Univ.

i§l; Introduction
. We have been investigating our proposition that nonlinear evolution
eqﬁations which exhibit solitons are decomposed into the fundamental
equations, the bilinear equations. Until now several types of the bilinear
equations have been found.
The first type involves only one dependent variable f and is expressed
with the binary operaters

Fco, De,..) 5 =0,

where F is a polynomial or exponential function of D, » ¢ etc., and Dx’ De

(r.i)

are the binary operators defined by

D1 ijc(zt) jaf)" a—x_ﬂ' E-t'—ﬁ—)]c(yt)j(z ),
t’:t
The nonlinear diffe;htial equations which are transformed into eq.(1.1l)
are
(1) KaV equation.
(ii) Boussinesq equation.

(iii) Kadomtsev-Petviashvili equation.

_/.._
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(iv) Model equations for shallow water waves.
(v) Higher order K4V equationms.
(vi) Toda equation.
(vii) Discrete analogue of the KdV equation.

(viii) Discrete-time Toda equation.

The second typg invdlves two dependent variables‘f' and £, and is
expressed as / ;
F(D,De, o) f-f=0 fr =12, (1.3)

The nonlinear evolution.equations transformed into eq.(1.3) are ‘

(i) Modified KdV equations.

(ii) Sine-Gordon equation.

(iii’ Modified Boussinesq equation.

(iv) Benjamin-Ono equation.

(v)  Self-dual nonlinear network equation.

(vi) Eguations describing a Volterra system.

(vii) Discrete~time nonlinear network equation.

In the present paper we shall discuss on the third type which involvs

four dependent variables f', f, g', and g»
Fii (2, DO F + P (0,097 = 0, (1.42)
Fsi (D, D) f°9 + Fyi (DD F-97= 0, (1.44)

for i=1,2. .

.§ 2. DNonlinear Schrddinger Equation and the Classical Heisenberg Ferromagnet
Let us start with the relation between the nonlinear Schrddinger equation

and the one dimensional classical Hiesenberg ferromagnet (Lakshmanan,
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Takhtjan, 1977). We have the nonlinear Schradingér‘équation and the Heisenberg

ferromagnet equation

i+t 2l =0, | (2.)
Se = 5xSex, ISI=1,

where the subscripts indicate partial differnceations with reépect to

: (:2_.’ »

indicated variables.

" e ,
According to the classical differntial geometry, the spatial variation
~
of a twisted curve are governed by the Serret-Frenet equations

driy=fo0 x o©
dx’?L -k O T

b o -T ©

where ¢ is the arc length parameter. The function's T(x, t) and)}(x, t)

(2:3)

- s

A
are the torsion and curvature, respectively while ?, % and b are the usual
tangent, normal, and binormal to the curve.

Hashimoto (1972), Lamb (1976) found that if the motion of the twisted

curve 1s described by

dit1=fo0o -xT Kk (%]

dt| A X " .
#l |kt o R-rq|™ (2.4)
~ k »~
b "‘kx "'—ixx"“rz O J. bJ

thén the comptability condition on egs.(2.3) and (2.4) gives the evolution

equations of ) and T which are combined to give the nonlinear Schrgdinger

equation

iy, + Yex "'2"1”21‘,# =0, (2.5)

where
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b ¢
\{f:KMf.[ijT(t,x')dx’J‘ (2-6)

On the other hand, eleminating ) and T out of eqs.(é.3) and (2.4) and
identifying the tangent vector Ewith the unit spin vector —5, one obtains the
Heiserfberg ferromagnet equation

— -— —

’St = S X Syx .

Now we shall analize the above relations using the bilinear formalism. First

(2.7)

% %
we introduce four dependent variables f , £, g and g, where X denotes

A
complex conjugate, and constuct the tangent vector t = (f,) tz, t 3 )

Lo 2177
AR TR

ts= ———i_ii);- ;’?j . (2.7)
b5t 1, = 1, (2.10)

b
Then the Seret-Frenet equation gives that\[/ is expressed with £ , f, g* and

(2. &)

Note that

g as follows. x
= (et dy! (2.11)
g kW[zjm x)dx’ ]

_ 2Dy f (2.12)
F5+¥7 - . x |
provide that the following céndition on £ , f, g and g are satisfied
b od e
Dyt s +9-9)=0. (2137
On the other hand, we know that the honlinear Schrodinger equation is

transformed into the bilinear form

(1D, +D)G-F =0, | 2. 14a)
DiFF =266 . @ 144)

though the transformation ‘ :
U=6/F, (2. 15)

where F is a real function.
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The equation (2.12) suggests the composite structure of the solitén
solution to the nonlinear Schrodinger equation, Actually we have proved that
F and G defiwed by

2_ ¥ ¥ 2.1€6a
Fr=fF+38, (216
GF=Dgf, (2.162)

. . * * ‘
satisfy eq.(2.14) provided that f°, f, g and g satisfy the following

bilinear equation

g(()c".‘)ca,?*.g)_—.o, (2.17a)
(VD +De ) FT§ -39 )= 0, (2:178€)
(¢Dy+Dg) F+ Z*= 0. (2-17¢)

Furthermore we find the classical Heisenberg ferromagnet equation in the

continuum limit

—_ — —_ )
is also transformed into eq.(2.17) through the transformation
JS =(SI,SZ,S3) ' (ZII?Q)

S, 1S, = —_i—_)c,.;:;,j ) (2.19¢
;33 - .%;%%i?;;gé ' (2.19¢)

The bilinear equation (2.17) plays the fundamental role in the

nonlinear Scthdinger equation and in the classical Heisinberg ferromagnet.

£§3. ’Pohlmeyer—Lund—Regge—Getmanov Equation
In this section, we consider the Pohlmeyer-Lund-Regge equation

Ot ~4im 000 ~ 2055— fepe=0.  (3.1a)

(Belan™ ) + (f,,fm‘e )¢ =0, (3.1¢)

which is transformed into the Getmanov equation
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Gt %Sj;*c; ~Pli-FP)I=0 (3.2

through the transfomation ‘ -
=200 el f? B (3.3)
The Pohlmeyer—Lund—Regge equation has been found through the geometrlcal
con31derat10n of the sine-Gordon equatlon and is known to be transformed
into the inverse scattering form. “
On the other hand, Getmanov transformed eq.(3.2) into the trilinear
eQuation ) v ‘
DDe BF =293, o  (34a)
F[(Dth'Uj'F]‘C'/z)Q*Dfoj'j (3.4¢)
through the transformation
=g/ F . F hung nead. 357
He found 2-soliton solution to it and conjectured N-soliton solutions;
We shall show in the appendix that F of eq.(3.5) has the same sStructure
as that of eq.(2.16)
‘FZ'=JC*JC"3*5 | (3,4)

and the trilinear equations are transformed into the bilinear equation
Dylf f+§%9)=0, (3.7a)
DuDe (¥ - FTg)+29"9 =0, (3.7¢)
(DD =1 F-§7= 0. (3.7¢)

The bilinear equation D (fl f + g'. g) = 0 suggests that the quantity

defined by

= —’%2'—2:7—% | (3.8)

would play a similar role to that in the nonlinear Schrodinger equation.
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In fact,"+‘defined by eq. (3'8) is found to satisfy the equation
- 2
Yo = ¥ (=112 RS
‘whlch is much 51mp1er than the Pohlmeyer-Lund—Regge—Getmanov equation.

The Pohlmeyer-Lund-Regge equation reduces to the sine-Gordon equation

Oxe = 4im 0 coo © ~ (310)
ifp=o. '
It is known that the sine-Gordon equation is transformed in£6 the
bilinear form
DiDe(f-f=9-9)=0, (3. Ha.)
(DxDe=1) =0, (3.11€ )
through the transformation
o=2lai’(s/f). G
For real f and g, eq.(3.7 b) and (3.7 ¢) is the same as eqs.(3.il a), (3.11 b)
except the second term 2g*g in eq.(3.7b).'This suggesfs us another
' géneralization of the sine-Gordon equation to the complex one.
We introduce a set of bilinear equation
Dx()c*:)c.,j*,g)_—_ 0, (3.13a)
DuDy (FT§-9%9) = | (3.13¢)
(Dxpt—l)f*j 0, (3. /3c)
and construct a compoex sine-Gordon equation through the dependent varlable

transformation

}:&gf(p)-cooa wa»(io(), - (8.14a)
g:wr(ﬁ)%-»@ wf(t"ﬁ), (3.14¢)

where j? 0> o and ﬁ are real functions of x and t.

Substituting eq.(3.1L4) into egs.(3.13) and eliminating f) and o/ we

obtain
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i

P (3.1
Or ¢ 4Mn49 WBQ.'FZFT' 0, 3.15a)

(B tant0), + (BeTam?¢)y = 0. (3.15¢)

which is the same equation as the Pohlmeyer-Lund-Regge equation except the
second term in eq.(3.15 a) where we have (1/4)sink g in stead of (1/2)sin2§ .
The difference is crutial in the nonlinear evolution equation. Any scale
transformation never transform eq.(3.1) into eq.(3.15).

Herézafter we call eq.(3.15) "complex sine-Gordon equation.”

Now we have two nonlinear evolution equations as generalizations of the
siné_ﬁordon equation. One is the Pohlmeyer-Lund-Regge equation and another
is the complex sine-Gordon equation. We met with the similar . situations
before. The first case is concerned with the higher order KAV equation. There
are three types of fifth order KAV equation, the fifth order KAV equation of
Lax, the Sawada-Kotera equation and Kaup's equation. They differ only in the
coefficients of nonlinear terms. The second case is concerned with the model
equations for shallow water waves. Among them the fifth order KdV equation
of Lax, Kaup's equation and one of the model equatio for shallow water waves
afe'obtained through the inverse scattering formalism. The others are obtained
through the bilinear formalism.

One of other generalization of the nonlinear evolution equations is to
construct the differnce-differnce eéuations. Difference analogues of the
nonlinear evolution equations were first constructed by using the inverse
scattering formalism, and then by using the bilinear formalism. We have

~constructed a discrete sine-Gordon equation using the bilinear equation
(3.10).

Taking the similarity between egs.(3.7) and (3.11) into account, it is



possible to construct difference analogues of the Pohlmeyer-Lund-Regge

equation and of the complex sine-Gordon equation. We shall'describe them in

the:forth coming paper.

‘§ 4. Landau-Lifshitz Equation

The Landau-Lifshitz equation |
Se=5<3xt3x45 4.1)
Where§=(5:, Si, Sy, sl =1, 4, 2)
g =diagh g d, §< 84S, 43)

describes nonlinear spin waves in a ferromagnet propagating in a direction
orthogonal to the anisotropic axis.
Sklyanin and Borovik have succeed in representing eq.(L.l) as a

compatibility condition |

Le =My [L,M]=0, 4.4
for the set of two equations for 2x2 matrices qb{ggt’; A )

CP,(‘LCP, L=L(3:0 (4.5a)

P=MP, M=M(5:2> 4 56>

vhere ) 1is the spectral parameter.

Bogdan and Kovalev have succeed in transforming eq.(4.l) into the

trilinear form

,ff*)c';fiDt+D;—a(ng)]3~f}+g*{1>;3.3_ac,-g)f.f}=o) 4 La)
j*{[*(Dt’fsz‘Q(w&)J?'f b+ D f-at-£)99 l=0, (4,‘./&)

through the transformation

-
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5‘%33 %)

.§l+1‘)§z_
i

a = (T3-7, )/2, o 4sa)

8= (HR-T/R-T)> (458

: They have obtained 2-soliton solution and,conjecicuredf/l\]-_sdliton solutions.

Ve have transtormed eq.(h.1) into the bilinesr form. |
D7 f +§"7§) =-0‘,“ o 9
(Do E-gtg) =0, 4ag)
G0tDf g0 £y o f) ra L #g-Fg=0. (h10)



