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 Normal forms of non-degenerate quasihomogeneous

functions with inner modality ¢ 4.

Etsuo Yoshinaga Yokohama National University
Masahiko Suzuki University of Tsukuba
O.Introduction

In this note, we shall study the local classifications of
quasihomogeneous functions with isolated singularity and their
deformations. The studies of this kind were already dealt with by
Arnol'd ([1J), saito ([(2)) and others. In 1, we shall classify
quasihomogeneous functions with isoiated singularity by Arnol'd's
inner modality and have the normal forms for inner modality equal
to 2,3 and 4 (Theorem A, in 1). In 2, we shall calculate the defor-
mations of gquasihomogeneous functions obtained by our classifications
and make sure of our supposition on the boundary of the class of
quasihomogeneous functions with inner modality equal to 0,1,2 and
3. This note was written to give a short explanation of the contents

of our paper (31].

1.Classification

In [2], X.Saito introduced the following invariant.

Definition. Let f be a quasihomogeneous function of type (1;r1,...,rn)

with isolated singularity. Then the invariant s(f) is defined by

j‘n

n

ring Rf:a 0 . O/(bf/ax1,...,bf/bxn)}.
c,

R v i1 . .
s(f):= max{i1r1+...+inrn|x1 eeeX is a base of the quotient
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He classified quasihomogeneous functions with 8 ¢ 1. The hyper-
surface singularities with s = 1 are called simple elliptic singu-
larities. The duality between r(f)= r; and s(f), s(£)+2r(f)=n, is
important. Arnol'd introduced the invariant m,s which is called

inner modality, by developping Saito's s(f).

Definition. Let f be as above. Then the inner modality mo(f) is

defined by
mo(f):= # of basis monomials of Ry with generalized degree 2 1.

He classified quasihomogeneous functions with m, = O and 1.
Our results are the classification of quasihomogeneous functions
with m, = 2,3,4 and the study of some deformations of them. At first,

we shall classify quasihomogeneous functions with m, = 2,3 and 4.

The keys are the following two points :

_1°. To formulate inner modality directly by weights.

20. To deal with arithmetical calculations by a computer.

Let's begin with No.1., Let f be a quasihomogeneous function of

i = Ai/N. Put D:=Nd=N(N—22Ti)

=nN—2?1Ai and d:=n-2£ri. Since 4 is just Saito's invariant s, it is

the highest of generalized degrees of the basis monomials of Rf.

‘type (1;r1,...,rn), where O*iri<-% and r

Propositioﬁ 1. If mo(f) < 4, we héve the following assertions :
(1) corank(f) € 4.
(2)}1ri > (2n-3)/4, where n=corank(f).
(3) m () = #{c €x%Tk;r, ¢ a-1}.

Proof. Let's make a randam choice to prove them. According to

Arnol'd, the following equation holds: :
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D N-Ay
Aglz) = D pad = T E—=1,
f j=1'3 i=1,%

where ”j is the number of basis monomials of Rf with generalized
degree equal to j/N. IfLr, » (2n-3)/4 and j ¢ D-N, for any k ¢ N?
such that Lk, A, = j,

i%i X X

the generalized degree(x11...xnn)=j/N§n-2Eri-1g%.
Since the generalized degree of any non-zero element of (bf/bx1,...,

k

Af/bxn) is higher than %, the monomials x11...x n

n such that ZkiA =

i
j are linearly independent in‘Rf. Therfore, ifZZri 2 (2n-3)/4 and

j ¢ D-N, we have
n .
My = #lk € ¥ ok Ay = 3.
On the other hand, the coefficients of Xf are symmetric and

by = Mp-y- So m (f) = jEN My = jzg:D-N M3 Therefore, if Zr; 2 (2n-3)/4,

my(£) = T #k € ¥k, = §) = #{k ¢ ¥ Lk, < a-1).

j$D=N ,
Next, put n:= corank(f). Each generalized degree of Xy is less

htan 4. Note that the generalized degree of any non-zero element of
(af/ax1,...,bf/bxn) is higher than % andvxi's and 1 are menber of

basis monomials of R,.. Note that m (f) = L. My and if ng 5,
. f Y jSD=N J =

from the hypothesis mo(f) < 4, there is an index i such that the
generalized degree of X4 is not less than-d-1, i.e.

r; 2 d-1 = n—223r1-1 2 n/3-1.
The last inequality results from the inequality Lr; < n/3 by Saito.
So ri2 n/3-1 > 5/3=1 = 2/3. It's a contradiction to r; < %. Therefore
if m (£) < 4,

n = corank(f) < 4.

Now if we can prove the assertion (2),4we can prove the

assertion (3) from (2) and the above arguments. We shall show that

the assertion (2) holds in each case of corank(f) = 2,3 and 4. Now

-3 -
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we are going to prove only the case of corank(f) = 2 because the
csaea of corank(f) =3, 4 can be proved in the similar way. Suppose
that r,+r,< (2n-3)/4 = 1/4. Put M:={1,x1,x2,x§,x§}. Then the gener-
alized degree of any element of M is lower than 4. So M is the subet
of basis monomials of R.. If mo(f) < 4, From the equation mo(f) =

L fij, the highest of the generalized degrees of all elements

Jj$D~-N
of M is not lower than d-1. There-fore the generalized degree of x

2
1
or xg<1s higher than d-1. If the generalized degree of x% is higher
than d-1, we have \
2r, 7 4-1 = 1-2(r1+r2), 4(r1+r2) 2 4r,+2r, 2 1 and ro+r, 2 1/4,
but it's a contradiction to r1+r2< 1/4. And also the same contra-
diction occurs in the case of xg. Therefore, if corank = 2 and mo(f)
{ 4, we have T +T, 2 1/4. This completes the proof of Proposition 1.

Next we proceed to No.2. Let r, € R and O<r1§ Ty eeeSTpe
Put :=1Ekiri[ k, € N}. Here we shall arrange elements of W in order.
For any elements a and b of W, we describe a { b by a ¢—b. Then we

have the following diagram :

0 <« re 2r & 3r1< 4r14 5r1

For any subset S C W, we denote the second least element of S by

Min(2)s, Let's put :



D3:=Min 2r Th s E2:Z=max 2r1, Ty s

1’

) :=§Min{E2, 3 if n = 2,
Min\Ez, 3ryy rs'( if n= 3, 4,

h {Min(z){Ez, 3T, if n = 2,
Min{24E,, 3r,, r4) if n = 3,4,
Min{E;, 41 ,T,+r,) if n = 2,3,

D5:={Min{E3’ 4Ty, T 4T, r4\ if n = 4,

Then we have the following inequality from the above diagram :

2 D32 Dy

and the other elements of W are greater than or equal to DS’

0<r <D

1 5?

Therefore we have the following proposition :

Proposition 2. Let f be a quasihomogeneous function of type (1;

r1,...,rn), where 0<r1§...§rn< %. Then we have :

m,(f) = 0 & a-1<0 and Tr, » (2n-3)/4.

mo(f) = 1< 0£4d-1 <r, and the same condition.
m,(f) = 2= 148 d-1< Dy and the same condition.
m (f) = 3= D3§ d-1<'D, and the same condition.
mo(f) = 4§::) D4§ d-‘I<D5 and the same condition.
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If the function germ of f has an isolated singular point, we

: . . m m .
can see easily that f contains the monomial x;x. or x, for each i.

14
Therefore we have the following propositions.

Proposition 3. Every guasihomogeneous function of two variables of

corank 2 with isolated singularity contains one, at least, of the

three systems of monomials in the following table :
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Class Monomials r, r,
I xa, yb 1/a 1/b
I xy, y° (b-1)/ab 1/b
I %%y, xy®  (b-1)/(ab-1) (a-1)/(ab-1)

Proposition 4. For corank = 3; we _have the seven systems.

Proposition 5. For corank = 4, the nineteen systems.

As for Proposition 4 and 5, see pages 193-195 in Inv. math.55
(1979).

Now, it is necessary to determine exponents a, b(a,b,c or a,b,
c,d) according to Proposition 2 softhat functions with systems of
monomials given in Proposition 3-5 may have inner modality 2,3 and
but its calculations are beyond us and we had to use a computer.
In using a computer, we have to determine the upper limits of ex-
ponents for given inner modality and it can be done easily by use
of Saito's inequality. Then we have determined quasihomogeneous fﬁnc-
tions corresponding to the exponents obtained by a computer. In this
way, we succeeded in determining all the quasihomogeneous functions
with inner modality < 4. As for the lists of quasihomogeneous func-

tions with inner modality = 2, 3 and 4, see pages 187—188 in Inv.
math.55 (1979).

Theorem A. (1) We have 20 normal forms with inner modality = 2.
3.
4.

it

(2) 24 normal forms with inner modality

(3) 28 normal forms with inner madality

In the next section, we consider the deformations of quasi-

homogeneous functions obtained by Theorem A.
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2.Deformations

We consider the boundary of each group of quasihomogeneous
functions with fixed inner modality. According to Saito, isolated
hypersurface singularities except simple singularities Ak’ k’Ek are
deformed into one of simple elliptic singularities Eg,ﬁ#,ﬁé. This
fact shows that simple elliptic singularities are, in a sense, the
boundary of simple singularities. In the category of gquasihomogene-
ous functions, we shall develop this concept and define the boundary

of quasihomogeneous functions with fixed inner modality,

Definition. A quasihomogeneous function f is a boundary of quasi-
homogeneous functions with inner modality k if mo(f) = k+1 and

# of basis monomials with generalized degree > 1 is less than k+1.

We suppose that this boundary will be an actual boundary in
the sense of deformations. In order to make sure of it for boundary
of each group of quasihomogeneous functions with inner modality =
0,1,2 and 3, we have determined normal forms of boundaries in the
similar way about quasihomogeneous functions with inner modality =
0,1,2,% and 4. And we have calculated the defdrmations of quasihomo-
geneous functions with inner modality = 1,2,%,4 and made sure that
our supposition is true in the case of boundaries of quasihomogeneous

functions with inner modality = 0,1,2 and 3.

Theorem B. For k = 0,1,2 and 3, guasihomogeneous functions with
inner moda]itx = k+1 are deformed to the boundary of quasihomogene-

ous functions with m, = k.
4
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3.Modality and Inner modality

In this section, we consider the relationship between modarity
and inner modarity. Arnol'd defined modality for general functions
with isolated singularity separately from inner modality for quasi-

homogeneous functions.

Definition. The modality of a germ of a function f with isolated

singularity at O is the smallest number m such that a sufficiently

small neighbourhood of jf(0) in the jet space J(n,1) is cyered by
0O

a finitely many m-parameter families of orbits.

Arnol'd conjectured that modality will be equal to inner modality
for quasihomogeneous functions. He made sure that this conjecture
is true for inner modality = O and 1. Since the inequality,
inner modality < modality, we can prove Arnol'd's conjecture for

inner modality 2,3 and 4 if we can calculate modality of quasihomo-

geneous functions with inner modality = 2,% and 4. Arnol'd's calcu-
lations can cover quasihomogeneous functions with inner modality < 2.
From this, we can prove by our classification that his conjecture

is true for inner modality = 2.

Theorem C. Quasihomogeneous functions with inner modality g 2 have

the same modality as their inner modality.
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