yanda seriasiy arang 45 andarahan

labits as a filip guiterist teach is

On the Rational $K(\pi,l)$ - properties of Open Algebraic Varieties

Toshitake KOHNO
(University of Tokyo)

§ 1. Introduction

In this note we shall study the rational $K(\pi,1)$ - properties of a complement of a divisor. We shall say that a simplicial complex X is rational $K(\pi,1)$ if its minimal algebra is generated by the elements of degree ≤ 1 .

By using the spectral sequence of Morgan [1], we give the explicit form of the minimal algebra of \mathbb{P}^2 minus curves in § 3. The main theorem in this note will be the following.

Theorem: Let X be P^n minus a hypersurface D. Then the 1-minimal model of X, $\mathcal{M}_X(1)$, is formal. (i.e. there exists a quasi isomorphism $\Psi: \mathcal{M}_X(1) \longrightarrow H^*(\mathcal{M}_X(1))$

Applying this theorem and results in § 3, we have an algorithm to study the gap between the 1-minimal model \mathcal{M}_X (1) and the minimal model \mathcal{M}_X , which is closely related to the higher homotopy groups.

2. Preliminaries

In this section we review an outline of Sullivan's De Rham homotopy theory. For details, see [6], [8] and [73].

We denote by $\bigwedge_n(V)$ the free algebra on a vector space V whose elements are of degree n. Then $\bigwedge_n(V)$ is the polynomial algebra generated by V if n is even, and is the exterior algebra if n is odd.

Definition (2.1). By a Hirsch extension of a differential graded algebra (d.g.a.) A, we mean an inclusion $A \longleftrightarrow B$ of d.g.a. such that B is isomorphic to $A \otimes \bigwedge (V)$ and the differential of B sends $V \longrightarrow A_{k+1}$, where A_{k+1} is the degree k-part of A.

Definition (2.2). A d.g.a. M is a minimal algebra if:

- a) M is connected. i.e. $M_0 = \text{ground field.}$
- b) There is an increasing filtration : ground field = $M_0 \in M_1 \in M_2 \in ...$

such that M_j is a subalgebra of M_j , M_j \subset M_{j+1} is a Hirsch extention for each j, and $\bigcup_j M_j = M_s$.

c) The differential of M, d, is decomposable, i.e. $d: I(M) \longrightarrow I(M)$ is zero, where I(M) is indecomposable elements of M.

Definition (2.3). Let A be a differential algebra. An i-minimal model of A is a map $\mathcal{S}:\mathcal{M}\longrightarrow A$ of d.g.a. such that:

- a) M is a minimal algebra.
- b I(M)=0 in degree $\geq i+1$.
- c) f^* : $H(M) \longrightarrow H(A)$ is an isomorphism in degree $\leq i$ and injective in degree = i+1.

By the theorem of Sullivan [8] an i- minimal model exists and is unique up to isomorphism.

Definition (2.4). Let K be a simplicial complex. The Q-polynomial forms of K, $\mathcal{A}_{PL}^*(|K|)$, are collections of forms, one on each simplex, ω_σ on σ , such that $\omega_\sigma|_{\tau} = \omega_\tau$ for τ a face of σ ($\tau < \sigma$). Each ω_σ can be written as:

$$\sum P(x_0, \ldots, x_k) dx_{i_1} \wedge \cdots \wedge dx_{i_k}$$

where x_0 , ..., x_k are the bary centric coordinates for σ and P is a polynomial with Q - coefficients.

Definition (2.5). Let K be a simplicial complex. The minimal model of X = |K|, \mathcal{M}_X is defined to be a minimal model of $\mathcal{A}_{\mathrm{DT}}^*(X)$.

Theorem (Sullivan) If X is nilpotent,

$$\pi_k(\mathcal{M}_X) \cong \pi_k(X) \otimes Q$$
 for $k \ge 2$,

where $\pi_{\mathbf{k}}(~m_{\mathbf{X}})$ is the degree k part of the indecomposable elements of $m_{\mathbf{X}}$.

Definition (2.5) We shall say that X is rational $K(\pi,1)$ if $\mathcal{M}_{\chi}(1) = \mathcal{M}_{\chi}$, where we denote by $\mathcal{M}_{\chi}(1)$ the 1 - minimal model of X .

Let X be a plyhedron. We form the lower central series for $\pi_1(x) > \Gamma_2 > \Gamma_3$ $\pi_{1}(X)$:

$$\pi_1(\mathbf{X}) \supset \Gamma_2 \supset \Gamma_3 \cdots$$

where $\int_2 = [\pi_1(X), \pi_1(X)]$

and we define inductively $\Gamma_{i+1} = [\pi_1(X), \Gamma_i]$ We get the tower of nilpotent groups : i du geograficiado espes so vers gamen.

$$\rightarrow \pi_1(X) / \Gamma_3 \rightarrow \pi_1(X) / \Gamma_2 \rightarrow e$$

It is a central extension of $\pi_1(X) / \Gamma_{n-1}$ by the abelian group

$$\Gamma_{n}/\Gamma_{n+1}$$
 .

Then it is possible to "tensor" these nilpotent groups with This gives a tower of rational nilpotent groups, and is called a rational nilpotent completion of $\pi_1(X)$.

The 1 - minimal model of X , $\mathcal{M}_{X}(1)$ has the following canonical filtration;

$$Q = M_X(1)^0 < M_X(1)^1 < M_X(1)^2 <$$

where $\mathcal{M}_{X}(1)^{1}$ is the subalgebra generated by closed 1 - forms and $\mathcal{M}_{\chi}(1)^2$ is the subalgebra generated by the elements whose image under d is contained in $\mathcal{M}_{X}(1)^{1}$, and so on.

By dualizing, we get a tower of Q- Lie algebras;

$$\cdots \rightarrow \mathcal{L}_2 \rightarrow \mathcal{L}_1 \rightarrow 0$$

From the Sullivan's theorem [13], this tower of rational Lie algebra is the tower of nilpotent Lie algebra associated to the rational nilpotent completion of $\pi_1(X)$.

Proposition (2.6) If X is rational $K(\pi,1)$, X has a rational principal Postonikov decomposition:

$$\begin{array}{c} X \\ Y_{ln} \\ X \end{array}$$

$$\times \left(\pi_{l}(x) / \pi_{ln} \otimes Q_{-1} \right)$$

$$\times \left(\pi_{l}(x) / \pi_{ln} \otimes Q_{-1} \right)$$

which induces: $H^*(X) \approx \lim_{n \to \infty} H^*(\pi(x)/_{R} \otimes Q, Q) = H^*(\pi_1(X), Q)$ where $\widehat{\pi_1}(X)$ is a rational nilpotent completion of $\pi_1(X)$.

This is the direct consequence of Sullivan's de Rham homotopy theory and we omitt the proof.

§ 3 The structure of the minimal algebras of affine algebraic varieties

In this section we consider the following situation. Let V be a smooth projective variety ,and let D be a divisor with normal crossings. We shall study the minimal algebra of X = V - D. First, we filter D in the following way. We denote by D^D the set of poits $x \in D$ such that $\text{mult}_x D \geq p$. Let us denote by D^D the variety V itself.

Let $\widetilde{D}^p \to D^p$ be the normalization of D^p and let ϵ^p be the $\mathbb Q$ - local system over \widetilde{D}^p defined by the numbering of the divisors.

We denote by \mathcal{A}_{X}^{n} the \mathbb{Q} - vector space :

$$\bigoplus_{q-p=n}^{q-2p} H^{q-2p}(\tilde{D}^p ; \varepsilon^p)$$

We introduce the Q- differential graded algebra structure in the direct sur:

 $A_{x} \oplus A_{x}^{n}$

Namely, $d_1: A \xrightarrow{n} A \xrightarrow{n+1}$ is defined to be the d.g.a. homomorphism such that the following diagram is commutative.

$$\begin{array}{c} H^{q-2p}(D_{i_{1}} \cap \cdots \cap D_{i_{p}}) \xrightarrow{d_{1}} \bigoplus_{k} H^{q-2p+2}(D_{i_{1}} \cap \cdots \cap D_{i_{p}}) \\ \downarrow \alpha \\ \bigoplus_{k} H^{q-2p+2}(N_{k}, N_{k} - 0) \\ \downarrow \alpha \\ \bigoplus_{k} H^{q-2p+2}(D_{i_{1}} \cap \cdots \cap D_{i_{p}}) \\ \downarrow \alpha \\ \bigoplus_{k} H^{q-2p+2}(D_{i_{1}} \cap \cdots \cap D_{i_{p}}) \end{array}$$

where j: $D_{i_1} \sim D_{i_p} - D_{i_1} \sim k \sim D_{i_p}$ is the inclusion map with the tubular neighbourhood \mathcal{N}_k and Thom class \mathcal{T}_k , and α is a Q-homomorphism defined by:

$$\alpha(x) = \Sigma_k (-1)^{q-2p} x \circ \tau_k$$

for
$$x \in H^{q-2p}(D_{i_1} \cap \cdots \cap D_{i_p})$$
.

The product structure is induced from the wedge product of PL forms, namely:

for
$$[\omega_1] \in H^{q-2p}(D_{i_1} \cap \cdots \cap D_{i_p})$$
 and $[\omega_2] \in H^{q'-2p'}(D_{i_1} \cap \cdots \cap D_{i_p})$

the product $[\omega_1]^{ullet}[\omega_2]$ is defined to be

$$[j_1^*\omega_1 \wedge j_2^*\omega_2] \in H^{(q+q')-2(p+p')}(D_{i_1}^*\cdots \cap D_{i_{p'}}^*)$$

where j_1 and j_2 are inclusions:

By calculating the Morgan's spectral sequence [3] explicitly, we have the following structure theorem for \mathcal{M}_{χ} .

Theorem | [1.1]

Let $\mathcal{M} \to \mathcal{A}_{X}$ be the minimal model of \mathcal{A}_{X} .

Then ${\mathcal M}$ is isomorphic to the minimal algebra of X as ${\mathbb Q}$ -differential graded algebras.

By using these methods we shall study the minimal algebra of \mathbf{P}^2 minus curves. Let C be an algebraic curve in \mathbf{P}^2 . Let $\mu:(\hat{\mathbf{P}}^2,\hat{\mathbf{C}})\longrightarrow (\mathbf{P}^2,\mathbf{C})$ be its minimal resolution. In this case $\mathcal{A}_{\mathbf{X}}$ can be calculated in the following way:

$$A_{0} = H^{0}(\hat{\mathbf{P}}^{2})$$

$$A_{1} = (\bigoplus H^{0}(\hat{\mathbf{C}}_{j})) \oplus (\bigoplus_{k=1}^{n} H^{0}(\mathcal{E}_{k}))$$

$$A_{2} = H^{2}(\hat{\mathbf{P}}^{2}) \oplus (\bigoplus H^{0}(\hat{\mathbf{C}}_{j} \cap \hat{\mathbf{C}}_{j})) \oplus (\bigoplus H^{0}(\hat{\mathbf{C}}_{k} \cap \mathcal{E}_{m})) \oplus (\bigoplus H^{1}(\hat{\mathbf{C}}_{j}))$$

$$A_{3} = \bigoplus H^{2}(\hat{\mathbf{C}}_{j})$$

$$\hat{C}_{j} : \text{ proper transform of the irreducible component } C_{j}$$

$$\mathcal{A}_{4} = H^{4}(\hat{\mathbf{P}}^{2})$$

$$\mathcal{E}_{k} : \text{ exceptional divisor}$$

Let $\{b_j\}$ be basis of $H^0(\hat{C}_j)$ and let $\{\epsilon_k\}$ be a basis of $H^0(\mathcal{E}_k)$. $H^2(\hat{\mathbf{P}}^2)$ has (l+1) bases:

where β_k corresponds to an exceptional divisor ϵ_k .

Let
$$\{c_{j_1}, \ldots, c_{j_{2g}}\}$$
 be a basis of $H^1(C_j)$.

We observe that:

i) \mathcal{A} is generated by :

$$\{b_{j}\}, \{\epsilon_{k}\}, \alpha, \{\beta_{k}\}, \{c_{j_{1}}, ..., c_{j_{2g}}\}$$

ii) The differential d satisfies;

$$d\varepsilon_{k} = \beta_{k}$$

$$d\alpha = d\beta_{1} = \cdots = d\beta_{1} = 0$$

$$d\delta_{j} = \delta_{j} \propto -m_{1}\beta_{1} - m_{2}\beta_{2} - \cdots -m_{1}\beta_{1}$$

where $\delta_j = \deg C_j$ and m_j is the multiplicity of an infinitely near singular point.

iii) The product structure is induced from the intersection forms. Only non trivial parts are :

$$b_{i} \cdot b_{j} \neq 0$$
 iff $\hat{C}_{i} \cap \hat{C}_{j} \neq \emptyset$
 $b_{k} \cdot \varepsilon_{m} \neq 0$ iff $\hat{C}_{k} \cap \varepsilon_{m} \neq \emptyset$
 $\alpha^{2} + \beta_{j}^{2} = 0$

Let X be
$$\mathbb{C}^2 - \mathbb{I}_1 \cup \cdots \cup \mathbb{I}_m = \mathbb{F}^2 - \mathbb{I}_1 \cup \cdots \cup \mathbb{I}_m \cup \mathbb{I}_\infty$$

where $\{L_j\}$ are lines and L_{∞} is a line at infinity.

By blowing up at the poits p such that $mult_p$ $L_j > 2$

we may assume that each singular point is a node.,

Let \widehat{L}_j be the proper transform of L_j and we denote by ${}^b j$ the corresponding basis of \mathcal{A}^1 .

Let $m_{i,j}$ be the multiplicity of $L_{i,j}$ and we put

$$a_i = b_i + \Sigma_j m_{ij} c_{ij}$$

where $\epsilon_{i,j}$ is the corresponding generator of the exceptional divisor of the blowing up at $L_i \cap L_j$.

Let f_i be a defining equation of L_j and let ω_i be

$$\frac{1}{2\pi\sqrt{-1}} d \log f_i$$

The following theorem describes the structure of the 1- minimal algebra of X.

Theorem (3.1)

The 1-minimal model of X , $\mathcal{M}_{X}(1)$ is constructed in the following way :

$$\mathcal{M}_{X}(1) = \underset{k}{\underline{\lim}} \mathcal{M}_{X}(1)^{k}$$

where
$$\mathcal{M}_{X}(1)^{0} = \mathbb{Q}$$

 $\mathcal{M}_{X}(1)^{1} = \bigwedge (\omega_{1}, \dots, \omega_{m})$
 $\mathcal{M}_{X}(1)^{2} = \mathcal{M}_{X}(1)^{1} \otimes \bigwedge (\{\omega^{(2)}\})$

$$d\omega^{(2)} \text{ equals one of the elements of}$$

$$\omega_{p} \wedge \omega_{q} + \omega_{q} \wedge \omega_{r} + \omega_{r} \wedge \omega_{p}$$

$$(\text{ for } L_{p} \wedge L_{q} \wedge L_{r} \neq \emptyset)$$

$$\omega_{a} \wedge \omega_{b} \qquad (\text{ for } L_{a} \wedge L_{b} = \emptyset)$$

$$\mathcal{M}_{X}(1)^{k+1} = \mathcal{M}_{X}(1)^{k} \otimes (\{\omega^{(k+1)}\})$$

$$d\omega^{(k+1)} = \text{closed form of degree 2 in } \mathcal{M}_{X}(1)^{k}$$

$$\text{not in } \mathcal{M}_{X}(1)^{k-1} \qquad (k \ge 2)$$

proof We study the Q-d.g.a.
$$\mathcal{A}_{X}$$
. \mathcal{A}_{X} is generated by;
$$\{b_{j}\}\ \{\epsilon_{k}\}\ \ lpha\ ,\ \{m{\beta}_{k}\}$$

and they satisfy the following equations:

$$d\varepsilon_{k} = \beta_{k}$$

$$d\alpha = d\beta_{1} = \cdots = d\beta_{k} = 0$$

$$db_{j} = \alpha - \Sigma_{j} \stackrel{m}{=} i\beta_{j}$$

Let
$$\mathcal{M}_X(1)^J = \bigwedge (\omega_1, \ldots \omega_m)$$
, $d\omega_1 = \ldots = d\omega_m = 0$.
We define $\mathcal{S}: \mathcal{M}_X(1)^J \to \mathcal{A}_X$
by $\mathcal{S}(\omega_j) = \alpha_j = a_j - a_\infty$
To show that \mathcal{S} is a d. g. a. map we shall compute $d\mathcal{S}(\omega_j)$

$$d \mathcal{S}(\omega_{j}) = da_{j} - da_{\infty}$$

$$= d(b_{j} + \Sigma_{i} m_{ij} \varepsilon_{i}) - \alpha$$

$$= \alpha - \Sigma m_{ij} \beta_{i} + \Sigma m_{ij} \beta_{i} - \alpha$$

$$= 0$$

Therefore S is a d.g.a. map.

We define $\mathcal{M}_X(i)^2$ as in the statement of the theorem and we define $\mathcal{S}(\omega^{(2)})=0$. To prove that \mathcal{S} is a d.g.a. map, we claim that $\mathcal{S}(d\omega^{(2)})=0$.

If
$$L_{p} \cap L_{q} \cap L_{r} \neq \emptyset$$
,

$$g(d\omega^{(2)}) = \omega_{p} \wedge \omega_{q} + \omega_{r} \wedge \omega_{r} + \omega_{r} \wedge \omega_{p}$$

which is zero because we have the relation

$$(\alpha_p - \alpha_r) \cdot (\alpha_q - \alpha_r) = 0$$

In this way we define $\int (\omega^{(k+1)}) = 0$ and we have a d.g.a. homomorphism :

$$g: \underset{\longrightarrow}{\lim} \mathcal{M}_{X}(1)^{k} \longrightarrow \mathcal{A}_{X}$$

From the calculation of betti numbers it can be show that I is a quasi isomorphism up to dimension 2, which completes the proof.

§ 5. On the formality of 1- minimal models

The main theorem in this section is the following:

Theorem(5.1) Let X be P^n minus a hypersurface D. Then the 1 - minimal model of X, $\mathcal{M}_X(I)$ is formal. (i.e. there exists a quasi isomorphism:

$$\psi : \mathcal{M}_{\chi}(1) \longrightarrow H^{*}(\mathcal{M}_{\chi}(1))$$
.

By the theorem of Zariski, [14], we can take general P^2 such that :

$$\pi_1(\mathbb{P}^2 - \mathbb{C}) \longrightarrow \pi_1(\mathbb{P}^n - \mathbb{D})$$

is bijective, where $C = P^2 \cap D$. Applying the theorem of Sullivan (§2), We have the following LEfschetz type theorem.

Theorem (5.2) Let X be $P^n - D$. For a general P^2 $\mathcal{M}_{P^2-C}(1) \iff \mathcal{M}_{X}(1),$

where $C = P^2 \cap D$.

Therefore it is sufficient to prove theorem (5.1) in the case of $\mbox{\ensuremath{P}}^2$ minus curves.

Cororally (5.3) Let X be C^n minus hyperplanes H_j . Let ω_j be $\frac{1}{2\pi\sqrt{-1}}d\log f_j$ where f_j is a defining equation of H_j . Then the cohomology ring of the rational nilpotent completion of $\pi_i(X)$, $H^*(\pi_i(X);Q)$, is generated by $\{\omega_j\}$.

proof of Cor. (5.3) Since $\mathcal{M}_{X}(1)$ is formal, we have a formal structure:

 $\psi: \mathcal{M}_{\chi}(1) \longrightarrow H^{*}(\mathcal{M}_{\chi}(1))$

such that $\Upsilon(\omega_j) = [\omega_j]$, and $\Upsilon(x) = 0$ for x such that $x \in \mathcal{M}_X(1)$.

 ψ is a quasi isomorphism, hence $H^*(\mathcal{M}_X(1))$ is generated by $[\omega_j]$.

Let X be C² minus lines.

Cororally (54) X is rational $K(\pi,1)$ if and only if $\omega_{i_1}^{\wedge}\omega_{i_2}^{\wedge}\omega_{i_3}^{\vee}$ is exact for each $\omega_{i_1}^{\vee},\omega_{i_2}^{\vee},\omega_{i_3}^{\vee}$ $\varepsilon \mathcal{M}_{\chi}(1)^1$.

 $g : \mathcal{M}_{\mathbb{X}}^{(1)} \longrightarrow \mathcal{A}_{\mathbb{X}}$

induces an isomorphism up to dim. \leq 2. Therefore $\mathcal{M}_X(1) \longrightarrow \mathcal{A}_X$ is a minimal model if $\mathcal{M}_X(1)$ is acyclic in dim. \geq 3.

Cororally (5.5) We assume that if three lines L_p , L_q , L_r are in general position , there exists a line L_s such that : $L_s \cap L_r = \emptyset \quad \text{and} \quad L_s \supset L_p \cap L_q \; .$ Then X is rational $K(\pi,1)$.

 \underline{proof} First we consider the case that three lines \underline{L}_p , \underline{L}_q , \underline{L}_p are not in general postion. Then the following two cases occur.

 $\underline{\text{casel}} : \quad \underline{L_p} \land \ \underline{L_q} \land \ \underline{L_r} \neq \emptyset$

In this case:

$$\omega_{p} \wedge \omega_{q} \wedge \omega_{r} = d(\omega_{pqr} \wedge \omega_{r}).$$

case 2: There exist L_p and L_q such that $L_p \cap L_q = \emptyset$. In this case;

$$\omega_{\rm p} \omega_{\rm q} \omega_{\rm r} = d(\omega_{\rm pq} \omega_{\rm r})$$

If L , L , are in general position , from hypothesis we have $\omega_{
m pqs}$, and $\omega_{
m sr}$ such that :

$$d \omega_{pqs} = \omega_{p} \wedge \omega_{q} + \omega_{q} \wedge \omega_{s} + \omega_{s} \wedge \omega_{p}$$

$$d \omega_{sr} = \omega_{s} \wedge \omega_{r}$$

Therefore we have the following equation :

$$d(\omega_{pqs}^{\wedge}\omega_{r} + \omega_{q}^{\wedge}\omega_{sr} - \omega_{p}^{\wedge}\omega_{sr}) = \omega_{p}^{\wedge}\omega_{q}^{\wedge}\omega_{r}.$$

This completes the proof of the corofally.

Remark :If X is an $S^1 \vee ... \vee S^1$ -bundle over $S^1 \vee ... \vee S^1$, X is $K(\pi,1)$ and it is rational $K(\pi,1)$ by this corolally.

We divide the proof of the main theorem into several steps.

Step 1 By [!], we have a mixed Hodge structure on the complexified minimal model $\mathcal{M}_{X}(1)\mathbf{C}$ such that the differential d, preserves the bidegrees. In particular $\mathcal{M}_{X}(1)^{1}_{\mathbf{C}} = \bigwedge_{1}(A)$ where $A = H^{1}(V;\mathbf{C}) \oplus \mathrm{Ker} (H^{0}(\widetilde{\mathbb{D}}^{1};\mathbf{C}) \longrightarrow H^{2}(V;\mathbf{C}))$ and A has the following decomposition in the category of mixed Hodge structure:

$$A = A^{1,0} \oplus A^{0,1} \oplus A^{1,1}$$

The dual Lie algebra of $\mathcal{M}_X(1)$, $\hat{\pi}$, has the following presentation: $o \longrightarrow \mathcal{J} \longrightarrow \mathcal{F}(A^*) \longrightarrow \hat{\pi} \longrightarrow o$

where $\mathcal{J}(A^*)$ is a free Lie algebra generated by the dual of A, and \mathcal{J} is a homogeneous ideal generated by the elements of type: (-1, -1), (-2, -1), (-1, -2), (-2, -2).

If we assume that $H^1(V) = 0$, then $A = A^{1,1}$ and \mathcal{J} is generated by the elements of type; (-2, -2). Moreover $\mathcal{M}_{\kappa}(I)$ has the bigrading:

$$\mathcal{M}_{\mathbf{x}}(1)_{\mathbf{c}} \cong \bigoplus_{\mathbf{p} \geq \mathbf{d}} \mathcal{M}_{\mathbf{x}}(1)_{\mathbf{c}}^{\mathbf{p},\mathbf{p}}$$

Step2 By using the fact that , if \mathcal{L} is a free Lie algebra over k, $H^{j}(\mathcal{L};V)=0$ for any k - module V and $j\geq 2$, [9][10] , we have a vanishing :

$$H^{k}(\mathcal{M}^{p,p}) = 0$$
 for $p > k$.

where \mathcal{M} is the dual of the free Lie algebra $\mathcal{J}(A)$.

$$M = \mathbb{R}^{p,p} \xrightarrow{\mathbb{R}^{p,p}} \mathbb{R}^{p,p} \xrightarrow{\mathbb{R}^{p,p}} \mathbb{R}^{p,p}$$
 (if any case of each of

Let $Q^{p,p}$ be its cokernel.

We have an exact sequence:

$$0 \longrightarrow \mathcal{M}_{\chi}(1)_{c}^{p,p} \longrightarrow \mathcal{M}^{p,p} \longrightarrow \mathcal{A}^{p,p} \longrightarrow 0$$

Since d preserves the bidegrees, we have the following commutative diagram:

From the long exact sequence we have an isomorphism:

$$H^{k}(\mathcal{M}_{X}(1)^{p,p}) \cong H^{k-1}(\mathcal{Q}^{p,p}) \qquad p > k$$

Step 3 We have a following proposition:

Proposition (5.6)

If $H^k(\mathcal{M}_X(1)_C^{p,p}) = 0$ for p > k, $\mathcal{M}_X(1)$ is formal.

 \underline{proof} We defime V_k by the extention:

$$m_{\chi}(1)^k = m_{\chi}(1)^{k-1} \otimes \wedge (v_k)$$

In particular $V_1 = A$. Let $N = \bigoplus_{j \ge 2} V_j$.

Let x be the element of degree k in the ideal $\mathcal{J}(N)$ (ideal generated by N). Then x has a bidegree (p,p) such that p>k. Therefore under the assumption every closed form if degree k in $\mathcal{J}(N)$ is exact.

Hence $\mathcal{M}_X(1)_{\mathbb{C}}$ is formal. The decent from \mathbb{C} to \mathbb{Q} is due to Sullivan [13].

Step 4 We first claim that :

$$H^2(M_X(1)_C^{p,p}) = 0 \text{ for } p > 2$$

Let $x \in \mathcal{M}_X(1)_C^{p,p}$ be a closed form of degree 2 such that p>2. Then x has a bidegree (3,3), (4,4)..... By definition of $\mathcal{M}_X(1)$,

$$H^2(\mathcal{M}_{\chi}(1)) \longrightarrow H^2(\chi)$$

is injective. But $\mathcal{A}(X)_2 = H^2(v) \oplus H^0(\widetilde{D}^2) \oplus H^1(\widetilde{D}^1)$ therefore $H^2(X)$ has the following decomposition.

 $H^2(X) = H^{2,0} \oplus H^{1,1} \oplus H^{0,2} \oplus H^{2,2} \oplus H^{1,2} \oplus H^{2,1}$ Hence x must be exact.

Finally we have the following reduction lemma:

Lemma (5.7) Let V be a smooth projective variety such that $H^1(V;Q) = 0$. Let D be a divisor with normal crossings The 1-minimal model of X = V-D, $\mathcal{M}_X(1)$ is formal if each closed form $x \in \mathcal{M}_X(1)^2$ such that $x \notin \mathcal{M}_X(1)^1$ is exact.

We can show directly in the case of the non-singular model of plane curves.

Sthe above x is exact: which completes the proof of the main theorem.

REFERENCES

- 1. K.Aomoto, On the Acyclicity of Free Cobar Constructions II,
 Proc. of the Japan Academy Vol. 53 . 1977
- 2. A. Bousfield and D. Kan, Homotopy Limits, Completions and Localizations, Lect. Note in Math. 304 springer 1972
- 3. P. Deligne, Théorie de HodgeI, Actes du Congrès international des mathématiciens I; Nice, 1970.
- 4. ----, Théorie de HodgeII, Publ. math. I.H.E.S.40 1971 , 5 - 58
- 5. -----, Les immeubles des groupes de tresse généralisés Invent. Math. 17 1972, 273 - 302
- 6. P. Doligne, P.Griffiths, J. Morgan, and D. Sullivan
 Real Homotopy theory of Kahler manifolds,
 Invent. Math. 29, (1975) 245 274
- 7. A.-Durfee, Mixed Hodge structure on Local Cohomology, (this proceeding)
- 8. E. Friedlander. P. Griffiths. J. Morgan, Homotopy theoty of differential forms, Seminarie di Geometria 1972, Frenze
- 9. A. Haefliger, Whitehead products and differential forms, Lect. note in Math. 652 Springer 1976
- 10. D.J. Hilton, U. Stammbach, A course in Homological Algebra
 Springer GTM 4
- 11. J. Morgan, The Algebraic Topology on Smooth Algebraic Varieties, Publ. Math. I.H.E.S. 1978 i37-204
- 12. D. Sullivan, Differential forms and Topology of Manifolds
 Manifold, Tokyo, 1973
- 13. ----, Infinitesimal Computations in Topology,
 Publ. Math. I.H.E.S. 1977
 - 14.H. Hamm et Lê Dung Trang, Un théorem de Zariski du type
 Ilefschetz, Ann. Sci de l'Ecole Normale supérieure
 fasc. 3, 1973
 - 15. A. Hattori, Topology of Cⁿ minus a finite number of affine hyperplanes in general position