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On the Rational K(x,l) - properties
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Lo e

§ 1. Introductlon

......

perfles of a complement of a lelsor. We shall say that a
31mp11c1al complex X , is ratlonal K(7Z 1) 1f 1ts mlnimal
algebra ls generated by the elements of degree :s]. et o

By u31ng the spectral sequence of Morgan.[”], we glve mmv.;;
the explicit form of the mlnlmal algebra of 22 minus curves

in & 3. ?he magnjtheppemrin,thisvnqte will be the following.

Theorem : Let X Ybe P* minus a hypersurface D.

Then the l-minimal model of X, 774(1), is formal. (i.e.

there exists a quasi isomorphism ¥ : -mx(.l) — H*( m X(l))

Applying this theorem and results in $§ 3, we have an
algorithm to study the gap between the l-minimal model 7V7XJ1)
and the minimal model '%Wx:, which is closely related to the
higher homotopy groups. |
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2. Preliminaries

In this section we review an outline of Sullivan's De
Rham homotopy theory. For detafls, see [6], 18] and 3],

We denote by /\n(V). the free algebra on a vector space
V whose elements are of degree n . Then N\ (V) 1is the
polynomial algebra generated by V if n is even, and is the

exterior algebra if n is odd.

Definition (2.1). By a Hirsch extension of a differential
graded algebra ( d.g.a. ) A, we mean an inclusion A ¢« B
of d.g.a., such that B is isomorphic to A éblﬁﬁv) and the
| differential of B sends v -~9- Ak+1 ’ where Ak+1 is the
degree lslpart of A. ' '

Definition (2.2). A d.g.a. M is a minimal algebra

a) M is connected., i.e. My = ground field.
b) ‘There is an increasing filtration :
ground field = My C M) CMy € aeisen

such that Mj is a subalgebra of M, Mj C Mj+1 is a Hirsch
extention for each j, and \U. MJ = M,

c) The differential of M, d, is decomposable, i.e.
d : I(M) —> I(M) is - zero, where I(M) is indecomposable
elements of M, ‘

Definition (2.3). Let A Dbe a differential algebra.
An i~ minimal model of A isamap L : M ——> A of

d.g.a. such that :
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a) Mis a minimal algebra,
b I(M)= 0 in degree Z i+l.
c) §*: H(M)

and injective in degree= i+l,

H(A) 4is an isomorphism in degree < i

By the theorem of Sullivan [8] an i- minimal model exists

and is unique up to isomorphism,

Definition (2.4). Let K be a simplicial complex.
The Q- polynomial forms of K, fl*PL(lKl ), are collections of

forms, one on each simplex, «)% on 0 , such that Wrlr = Wr for
T a face of ¢ ( T<e ). Each ) can be written as:

. Z‘ P(‘xo‘goccvoo ,xk)dXz‘A - N\ dx‘_‘t
where X5, eeee ,X aré the bary centric coordinates ‘for o

and P is a polynomial with @ - coefficients. -

Definition (2,5).  Let K be a simplicial complex.’

The minimal model of X = IKI, My is defined to be a minimal

model of A¥p(X).

Theorem ( Sullivan ) If X is nilpotent,
T () = 7 (X)e e 'f'o.r‘ k Z 2,
where 7rk( /(4 X) is the degree k part of the indecomposable
elements of mX . ‘ (
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Definition (2.6) Ve shall say that X is rational K(m,1)
if %ﬂx(l) = 7”X' , where we denote by"ﬂfx(l)‘ the 1 - minimal

model of X o

Let X be a plyhedron. We form the lower central series for

ﬂl(X) ‘ | , o
ﬂl(X)Dr23f3 ceaee

and we define inductivély’ : ["1+1 = [ ﬂl(X) /‘ ]

We get the tower of nllpotent groups :
o MO /ry e M@ Sy e
It is a central i e ’ v the e
extepslnn of‘ “l(X)‘//f'n—l by the abelian group
F " ey - )' ’ . ) u N
Then it is possible to " tensor " these nilpotent groups with

Q. This gives a tower of rational nllpotent groups, and is called a

rational nilpotentcompletion of nl(X)

The 1 - minimal model of X , My(1) ha s the following

canonical filtratibn H
Q= M,1)° ¢ M e M )2 C o
where ‘%ﬂ (1)1 is the subalgebra generated b3 closed 1 - forms

and %ﬂ (1)2 is the subalgebra generated by the elements

whose image under d is contained in ﬁﬂx(l)l and so on.
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By dualizing, we get a tower of Q- Lie algebras ;
.- o(’ -—> ,,C —> 0
2 1

From the Sullivan's theorem [13 ] , this tower of rational Iie
algebra is the tower of nilpotent ILie algebra associated to the

rational nilpotent completion of nl(X).

Proposition (2.6) If X is rational K(%, 1), X has’

a rational principal Postonikov decompositlon s

J, .
=K ( g ¢ )'ﬁ Q.i) o

T 1

ff‘*sg‘x(ﬂﬂﬂﬁéa.l)

which induces: " (x) & 1lm H ('R'(X}f—@Q Q) -_H ( 7q(x), Q)

where 7?1(X) is a rational nllpotent completlon of 7Z (X).

This is the direct consequence of Sullivan's de Rham

homotopy theory and we omitt the proof.

§ 3 The structure of the minimal algebras of

affine algebraic varieties

In this section we consider the following situation.
Let V be a smooth projective variety ,and let D be a divisor
with normal crossings. We shall study the minimal algebra of
X =V - D. First, we fllter D in the follow1ng way.
We denote by DP the set of poits x € D such that mult D z-pl
Let us denote by DO the variety V 1tself. | 4

S/
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Let D® — DP be the normalization of DP and let P be
the § - local system over DP defined by the numbering of the
divisors.

We denote by A )zz the @ - vector space :

B BIIRB oB)

We introduce the Q- differential graded algebra structure in the

direct sur :

Ry BAZ

n n+l . »
Namely, d; : A4 X—-)A x . 1is defined to be the d.g.a. homo-

morphism such that the following diagram is commutative.

q-2p - d Q-2p+2 e
H (Diln -~ Dy ) 1 ?H (Diln AN Dy )

P P
' lee |
DuI P2y, M - 0) *
k ‘ k" Yk " d ) J.
n |

Q-2P+2(p. A -- . ..n D. D. oo AD)

k@H ( lf‘ /l\f ’a) lp ’ llr\ fl.p
where J: D, A --- ~ D, D. ~-- . ---~ D,
14 lp —_— 1y /1? lp

is the inclusion map with the tubular neighbourhood /V k and

Thom class T kr and o is a Q- homomorphism defined by :
= -1)9-2P
oL(x)l = I (_1) xv'Z'k

for x & Hq_ZP(Di A= AD ).
1 . P

The product structure is induced from the wedge product of
PL forms, namely:

for [w,] ¢ B32P(D, A .-~ D, ) and
,1 lp

[CU2] € Hq"._ep'(Di:n SN Di ’)
1 P

&6 -
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the product [w‘i]'[we] 'is defined to be

_ 1y ' :
[ j;w L A j; o] e H(q+q )-2(2+2')(p. A -~ D, - )

i, lp‘
where ,jl and 3’2 are inclusions :
D.An--nD .
g po—41 D D
| / - Thnratipn EN """Di'kp
Di' N\ e AN Di' 32 . )
1 TP .

By caluulating the Morgan's spectral sequence [3 ] - explicitly,

we have the following structure theorem for mx.

Theorem @ [ 4]
et M — A x be the minimal model of "QX‘

Then 77! is isomorphic to the minima]ialgebra of X as. Q ~differen-

tial graded algebras.

By using these.methods we shall study the minimal algebra
of P2 minus curves. Let C be an algebraic curve in P2.
K A~ ~ : Lo T
Let pm: ( I’2 » C) —> ( ]?2 4 C) Dbe its minimal resolution.

In this case ﬂX can be calculated in the following way :

A 4 = B

A | =@®C5)) @ ( B & (ek))

A, = (P e (GBH (T c ))ea(eBH (ckns ) ® (DE (c )
' e A ? T opreper transform oé T

A 3 = @ Hz(cj) ? frrecucible gm«pmwt 9,

H 4 H4(§2) 8k . aa,bfl'a‘la( divi'son
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O . .
Let {bj} ‘be basis of H (?‘,j) and let {ek} be a basis of

HO(Ek). Hz(iz) has (l-_n-l){bases:

Ly Byt By

where S x corresponds to an exceptional divisor €

Let {c. e....c. |} De a basis of H(C.).
J]_ 328 _ Jd

We observe that :

1) JQ is generated by

{ bj}’ {Ek}a ol & {/Bk}r { cji.‘-. 'c'ng}

ii) The differential d satisfies ;

dey= By

where & 5 deg 'CJ. and my is the multiplicity of an infinitely

near singular point.

iii) The product structure is induced from the intersection forms.

Only non trivial parts are :
Pal

by-by #0 iff C;nCy # 4
b -E #0 iff C € # ¢

d2+ﬁj2=0
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Let X be €% - LV Dy =P - LV VLY 1L

where |{ Lj} are lines and IL_ is a line at infinity.
By blowing up at the poits p such that mu_'u:l’> Lj>' 2

we may assume that each singular point is a node.,
Let fj be the proper transform of LJ. ~and we denoté by
b:j the corresponding basis of Al .

- Let mi.j be the multiplicity of Lin La.ancl we put |

_ w_here -ei-,j. i'sb the corrésponding‘ ge;;eré.tor Qf thé_exceptionél divisor
of the blowing up at' L~ Ly |
Let 'Fi be a defining equ;atidn_-of I‘j and let 'wi be
1 ,
— d log fi

The following theorem describes the structure of the 1- minimal

algebra of X.

Theorem (3.1}
The 1- minimal model of X , mx(l)_ is constructed in the

following way :
. . k.
M (1) = Lin M (1)

where ’}ﬂx(l)o = Q
Mg = A (@W,--- W)

M y(1)% = M@ N (P )

4
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dw‘z’ equals one of the elements of

W w AW ’a)AAwl
WpA@a+ Y rt Tp p

( for L AL

p anr;! g )

cuaAan g ( for Laf‘Lb: g )

k+l k (k+1
M (1= M@ ({0 ™)

awd ¥+ = c10sed form of degree 2 in ")ﬂx(l)k
not in M (1) (kz2)
proof We study the @- ~d.g.a. AX‘ ')QX is generated by;

Uvgh led o, 1Ay

and they satisfy the following equations :
de, = ﬁk_

b.= o - F.m.B.
db 5 Ly mi5P;

. I . - ,
Let mx(l) =/\(col,..cum), d«j = - - -- =dw=0 .
We define e ’mx(l)l —-‘ﬂx
by (W) = e = a-a,
To show that £is a d. g. a. map we shall compute d,?(ij‘)

10
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d P (wy) = day-da,
=d(bj+zimij€i:)—d
= - . -t
oo ~Imisp 4 Zm g ﬂi

= (0]
Therefore §° is a d.g.a. map. .
We define ’n’lx(i)‘?’ as in the statement of the theorem and

we define £ (™) = O. 'I.‘ovprove that S is a d.g.a. map , we

claim that § ( dw®) = O.

If LPnan Lr#‘ g ,

P(dw?) = wPAwq+ wq/\wr+wr(‘wp

which is zero because we have the relation

(olp-_o[r)'(O(q“ ®.) =0

In this way we define § (wfk+l')) = O and we have a d.g.a.

homomorphism

.P/ : {glmx(l)k""’ﬂx

From the calculation of betti numbers it can be shoX that
® is a quasi isomorphism up to dimension 2, which compl~tes-

the proof.

11
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8 5. on the formality of 1~ minimal models

The main theorem in this section is the following:

Theorem(5,1) Let X be P minus a hypersurface D.

Then the 1 - minimal model of X , M(1) is formal,
(i.e. there exists a quasi isomorphism :

¢oroMm (1) ——  H (M 1) .

By the theorem of Zariski, [14] , we can take géneral P
such that :
T (PP -0) —s T (P -D)

is bijective, where C= P2A[> o Applying the theorem of

Sullivan (§2H, We have the following LEfshetz type theorem,

Theorem (5,2) Let X be P - D, For a general p2

Mp2_o(1) «=— M, (1),

where C = Pzn D,

Therefore it is sufficient to prove theorem (5.1) in the

case of P2 minus curves,

Cororally (5.3) . Let X be € minus hyperplanes

. @, 1 . R | ini
HJ. Let 3 be prerd d log fJ where fJ is a defining

equation of Hj‘ Then the cohomology ring of the rational
Pay
nilpotent completion of 7 (X), H*(ZG(X);Q), is generated by

[w j]'

12
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proof of Cor, (5.3) Since mx(l) is formal, we have a
formal structure : ' : :
v omQ) —— E (1)
such that 1Y(wj) = [w j]' and ¥(x) = 0 for x suzh that
x & M),

¥ is a quasi isomorphism, hence‘ H*( mxkl)) is generated
by [w JJ. '

Tet X be €2 minus lines.

Cororally (5:4) X is rational K(=m,1) if and only if

W. AW . A W . . - ) w; , @ w .
i, i, :!.5 is exact for »each 14 ‘, i, ? J.5
; 1

€ mx(l) .
‘proof . As we proved in the previous section

£ MR 5 Ax
induces an isomorphism up to dim. < 2. Therefore mx(l) ———éﬁx

is a minimal model if N7 X(1) is acyclic in dim. > 3.

Cororally (5.5) We assume that if three lines Lp; Lq_, I‘r

are in general position , there exists a line I’s such that :
Lsn LI_=¢ and LSD Lpn,Lq.

Then X is rational K(=m,l1).

13
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proof | First we consider the case that three lines Lp, Lq,

Lr are not in general postion. Then the following two cases occur.

e L
casel Lpn Lq n L, # 4

In this case :

w w = d( W A Q@ . -
w.p/\ q/\ T ( : )

case 2 : There exist Lp and Lq such #hat LP,-\ ‘Lq = 4.

In this case ;

= w w
w W W= d( AW )

P Pq
If Lp Lq Lr are in general position , from hypothesis
? ? .
we have w_PQﬁ’ and W gp Such that :
W = W AW w WA
4 “oas p" Pt Y h¥st 50
d W = W gn@,

Therefore we have the following equation :

w
d( A(Ur-!-a)q/\cdsr

pas - C(Jp/\wsr ) = w ACOqA @ .,

This completes the proof of the cororally.

Remark :If X is an S'V..V s -bundle over SJ_'V--- v s )
X is K(w,1) and it is rational K(i,1) by this coroXally.

We divide the proof of the main theorem into several

steps.

14
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Step 1 By [I1], we have a mixed Hodge structure on
the complexified minimal model ’mx(l)c- such that the diffe:éential

d, preserves the bidegrees. In particular ,mx(l);; N\, (8)

where A = ‘»Hl(V;,C);Q Ker ( Ho(ﬁl;C) —_— H2(V;,C)) and A has
the following decomposition in the category of mimed Hodge st‘ruc-

ture :

11,0

A=A OlQAll

® A
A
The dual Lie algebra of mX(l), .. 7T, has the following

presentation: ' ~
S0 > 4 > F(A*Y) —— T —> 0

where F(A') is a free Lie algebra ’genera’ted‘by’the dual of A,
and J is a homoge neous ideal generated by the elements of
type : (-1, '1)’, » (-2, -1), (-1, - 2), (-2, -2). |

If we assume that H(V) = 0, then A =AMl ‘and J is
generated by the elements of type; (. -2, =2 ) . o
Moreover (1) has the bigrading : -

M 1), = D M),

Pzc
Step2 %By‘ ;ﬁskng»nt}ie’; :fact_-."?i‘that‘; 'y if,Z "is a free Lie
algebra over k, Hj(,,z V) O for any k - module i

and jZ 2, [91C010) , we ‘have a vanlshing

H ( zﬂfP'P) =0 for”‘ p> k.
where M is the::dual of the free Lie algebra . j(A’) o

We have an ‘injective homomorphism

(o L

15
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Tet QPP ve its cokernel.

We have an exact sequence:

0 — mx(l)g.p — PP — A PP —0
Since d presermes the bidegrees , we have the following commu-

tative diagram :

0 —» mx(')‘irp —_ mpyp > thp > O

k
dl- 41
0 —)M,(I)C‘p’p — M PP

b,P
—_— — ,
K=1 k+1 Q k+1 ©

From the long exact sequence we have &n isomorphism:

HY (M (1)PP) = 81 (PP P>k

Step 3 We have a following proposition :
Proposition (5.6)

1f H(M ,(1)B'P) =0 for p>k, My(1) is formal.

roof We defime V, by the extention:
brool , k

m (1% =MW e A (v)
In particular Vy; = A, TLet N = @D Vj .
. jzz2
Let x be the element of degree k  in the ideal

J (W) ( ideal generated by N ), Then x has a bidegree
(p,p) such that p>k . Therefore under the assumption
every closed form if degree k in 9 N is exact.

Hence M (1), is formal. The degesent from € to Q

is due to Sullivan (13},

16
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Step 4 We first claim that :
1 MyWIEP ) =0 for p>2
Let x¢ ’mx(l)g’p be a closed form of degree 2 such

that p> 2 ., Then x has a bidegree (3,3), (4,4).....
By definition of mx(l), |

2 2

R2( M (1) —  HA(X)

is injective. But A(X), = H:(v) @ H(P?) @ g (31)
therefore HZ(X) has the following decomposition.

H2(X) - H2,0 @ Hl,l ® H0,2 ® H2’2@' H1,2@ H2,1

Hence x must be exact.

Finally we have the following reduction lemma:

Lemma (5.7) Let V. be a smooth projective variety

such that gt (V;Q) = 0, Let D be a divisor with normal crossings
The 1l-minimal model of X = V=D, ’)ﬂx(l) is formal if each
closed form x € M X(1)2 such that x &'mx(l)1 is exact.

We can show directly in the case of the non-singular model

>the above x 1is exact? which completes the proof of the

main theorem,

17
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