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New exponents and Betti numbers
of complement of hyperplanes

Hiroaki TERAOX

(International Christian University)

§O."InthodUCtioh_

The aim of this article is to report the results in
[81[9]10] and to give the outlines of their proofs.

~For ?urther details see the original papers.

We define an n-arrangement as a finiteﬂfé@il; of
hyperplanes through the origin O in En+1; Lef X bé an
n—arrangement; By x| denote we the union of all hyper-
planes beloﬁging to X. Ouréﬂbject here is the Poincaré

polynomial P, (t) of M = En+T\IX[; Let QéEEEZO,..;;zﬁ]<,7;jZ

be a defining equation of \x\.
(0.1) Definition. e say that X is free if

D(X):= {germ 0 at O of holomorphic vector . -

field such that §.Q€Q Q]

is a free ®-module, -where G)= G%n+1 o
’
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A germ of hélomoﬁphic vector fieid at 0 is said
to be homogeneous of degree d, denoted by dm39==d, if
f has a local expression |

9=.zn’°i§%.‘.

i=0 i

at the origin such that all f{'s are homogeneoué polynomials
and all non-zero fi'S'have the same degree d;v A little
observation iéads us to the existence of a system of
homogeneoﬁs free basis {60,;;;,6n§ for D(X) if X is a
free n—arrangement; "It is easy to see that the set
{deg@o,;;;,degen} of non-negative integers depends only

on X;

(0.2) Definition. We call (degeo,.;;,degen) the

exponents of a free n—arrangement X.

Let (d ,dA) be the exponents of a free n—arrange-

O,.o.

ment X., Then our main result here is:

. N .
A 1 ] H . h J = .
Main Theobem. DM(t) i!o(1+dlt)'

Let GCZGL(n%1;m) be a finite unitary reflection
groups acting on m”+1; Then the set of the reflecting
hyperplanes of the unitary reflections in G makes an

n-arrangement X, Such an arrangement is called a unitary

reflection arrangement, Then we can prove that X is free.

Moreover its exponents coincide with the exponents of G

-2 -



Which were recently introduced by Orlik-Solomon ([3]);

In this special case our Main Theorem is nothing other

than the main result in‘[3l; For details see C1o].
Especially when G ié real, ourvMain Theorem was

first proved by Brieskorn ([17] Theorem 6(ii)).

Remérk; The class of the free arrangements is far wider

than that of the unitarereflection arrangementé; In

fact many examples suggest that the freeness of arrange-

‘ment is a combinatorial property ([61).

In Sect; 1, we study an n-arrangement by a
combinatorial method. Our mainrtooi for it is the
Mobius function on the iattice associated with the n-
arrangement; We shall geve a characterization of the
Mobius function (1;5); For this purpose we need a
notion called i~cumulativeness which plays a main role
in the proof of Main Theorem; At the end of»Sect; 1,
we state Proposition A concerning the cumulativeness
of product of MoSbius functions.

In Sect. 2, we try to compute the Hilbert poly-
nomial H(Q/J(X);¥), where J(X) stands for the Jacobian
ideal of the defining equation Q of |X}. Assume that

X is a free n—arrangement.. Then we have an explicit

formula (2.9) for H(Q/J(X);») by using the exponents of
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X. This formula and Prépésitionrélin sect. 2,\wﬁich
asserts thé cumulafiveness of‘fhe’cbefficiéhtsbof
H(Q73(X);»), 1ea6‘us to the proof of Main Theorem
uhich is in Sect. 3. |

Our key results for ihe proof are a chéracterizatioh
of the MGbius function (1;5),,Proposition A, B and.thek

explicit formula (2.9) for H(0/7J(X);»).

Let X be a finite family of hyperplanes in gt

orZPn+1(E). The intersection of éll hy@erplanes'

belonging to X may be void. VWe can define the-notion
of the freeness for X also in this case. .loreover we
can define the exponents of X if'X is free and prove

that
PLt) = T (1+d,t).
: - i=0 o

n+1 n-+1 ‘
Moo= Y H . i . . and d P
(v = "N gg;h, or T ‘(E)s.gng'vdna (dgyenerd )
N 1IN/

are the exponents of X,) This gives a generalization
6f Main Theorem. For the full explanation on this

generalization, see [2]."



§1. Combinatorial study of an n-arrangement
Let X be an n-arrangemnent in this section,

(1.1) Definition. Let

L(X):= {f\l—i; ACX},

HeA

where we interpret that

n+1 _ \ H.
T L £:hﬁ

Define the join and meet operations in L(X) by

syt = snt,

and sAt (\H (H runs over a set

{Lex; Losut}) for s,te LX),

Then L{X) becomes a lattice which is called the .

lattice associated with an n-arrangement X.

Write s3t if svt =t (s,t€L(X)).

(1.2) Definition., Define the MObius function H on

L(X) inductively defined by

H(mﬂ+1) = A
(s) = - (t).
P = -2

t¥s "

o]
!
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(1.2} ©Sefinition. The rank of s€L(X), denoted by
r(s), is- the lengfﬁ of the longest chain in L{X) below

s, Thus

r(s) = codimmn+1s;

For any integer 120, put

BiLex) = — |pfesof .
- - seL(X
r{s)=1i

For any s&L(X), define a new n=—arrangement
)g:={H€X;scH}.
Put_i(x):=-{xs; sel_UO}. Consider the mappings

Poot : d(x) —>z (120)

corresponding Y€U4(x) to f&(L(Y)).
We will give a characterization of these mappings

r‘i"l. (i20). For this purpose we need
‘(1.4) Definition. For a mapping

g A0 — 2z,
define a new mapping

riq ;)4(%)-———) Z.
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by (P (Y) = q(¥) = = _alv )
s€eL(Y)
r(s)=i

for any Ye;4()<) and any integer i2Z 0O, Denote
rir. ----- roq by Riq.

We say that g is i-cumulative (i20) on- X if
(RiQ)(X) = 0,

(1.5) Theorem. (A characterization of M,eL (1iZ20))

Assume that the mappings
A (X)) —>Z (j = 0,1,2,...)

satisfy the following conditions:

I. qo(¢) = 1.
II. a;(X;) = 0 if s€LX) and r(s) <j (j=0).

IIT. The alternating sun of q,(¥) (J = 0,1,2,...)

is zero if Yé}‘(x)\{d)}.

Iv. q; is j-cunulative on any vesdd(x) (j = 0,:..,1).
Then o, = K. | = Oyeue,i .

hen OJ vrS-L (] , ,1) on)i(X) |

Proof. see [8].

Define the mappings

¢ :)4()() —> Z (j20)
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N+

by a;(v) = by (ved(x)y,

where the right handside stands for the j—th Betti
number of En+1‘\\Y\. Then it is not too difficult to
show that the conditions I-IV in (1.5) hold true for

any 120 (cf. [1] Lemma 3). Thus we have
(1;6) Theoremn, For any n-arrangement,’we have

+1 : o .
b (EINIXD) = Lo (5= 0,1,2,.00).

This theorem was first proved by Orlik-Solomon

C21.
. .. o~ . - . n+-

Let X be a finite family of hyperplanes in @
or IPn+1(E). The intersection of all hyperplaens
belonging to X may be void. Put

wo=ce"™INUH oor P UH.

© HeX HeX

tle have a formula for P, (t) by using the MSbius functions
; : e S S IVES ’ .

also in this case, For further details of this

generalization, see [9]. =

Assume that QGJR[zO,...,zA], e product of . real
linear forms, is a defining equation of a free n-
arrangement X, By combining Main Theorem with (1.6)

and the Zaslavsky's result ([11] p. 1¢ Theorem A), we

have
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:ﬁ:{connected component of ‘IR‘M"'\’{Q = 0}}

n+1 S n ‘ G
= S e x]) =TT (a0
i= i=0 »

This equality was proved when n = 2 in [Z]; K§ Saito
proved )

. ) N - n f
_ﬁ:{connected component of ]Rn'H\{Q = O}}S T\'(‘I+di)
. i=0
in E{];

For an arbitrary multi-index I = (I(1),;;.,I(k))

composing of k non-~negative integers, define

Moot ) —> z

k S K
by MeoL(Y) = ;\;\;Hl(j)oL(Y'}f befine |1} - %I(,:”’

One reason why the notion of i-cumulativeness
plays an important role in oup _theory is the following"

Proposition A. fieL is |I|-cumulative,

The proof, which is omitted here, is purely

combinatorial (éee [8]):
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§2. The Hilbert polynomial of (/J(X).

From now on we denote Gmn-l-'l simply by ‘9’.
H

o}
Let Q be a defining equation of |><\. By 9Q

denote we the Jacobian ideal of 0 in @O (i.e.,

[$]

2Q = (?Q/azo,...,aQ/azn)G). Then 2Q depends only on

X. Define the Jacobian ideal J(X) of X by

9Q if X ¥
oo - ¢
if X =¢.

(2,1) Definition. Introduce a decreasing filtration

©),, =Moo (n20)

k

on an @-module &k (k>0); Then this filtretion
((Gk)m)mzo makes @k to be angf-bonne filtered (3-module
(see [5]).

By the natural projection 6-—>G/J(X), we can
introduce angf~bonne filtration on O/J(X).

" On the other hand, D(X) can be embedded in Gn+1
by the correspondence -

n . o

%‘Fi(?/azi) > (fgre.e,f ) (F,€Q (1 =0,..0,n)).
Denote this mapping by 0{: D(X) ——9@"+1. So one can
induce an##f~bonne filtration on D(X).

From now on we regard @n+1’ O, Q/7J(x) and D(X) as

- 10 -



M-bonne filtered @-modules in the above manners.

(2.2) Definition, Let M = (Mn)nzo be an#f~bonne

(decreasingly) filtered (9-module. A polynomial

H(M;)) is characterized by the property that:

H(;») € QW] equals the dimension of Q/#22 T-vector

space f'.s?))/{=.4»+_1 for sufficiently large M,

We call H(M;») the Hilbert polynomial of

M= (M)

n' nz0°
(2;3) Definition, Let M = (Mn)nzo be a Ti er"ed
(.4,
~modulé M = (M i ! =t
O-module. Then M(k) (1 (k)n)nz_o s another[@ module
defined by M(k)n =M . for kK€Z, k20, Then it is

-.easy to see that
H(M(k) ;) = H{M; k)
for k&€Z, kZO,
Let m‘=.ﬂ:)~< = degQ. Then we have an exact sequence

(2.4) 0 —> 000 @™ L5 ©/Q0) (m-1)

s QL)) (m=1) —> 0,
where

. n .
B(Tgreeast) = izzofi(aofazi) (f, €@ (i =0,...,m)

- 41 -
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and Y is the natural projection. Each mepping above

is strictly compatible with each filtration., Thus we

o
)

Lve

RH©7J (%) ;¥+m=1) .
= HO/Q@:04m=1) = HE T30 + HID(XO ;).

For our convenience, put

(F+1) = (F4m) (0)

m

1T(m)

)

and = 1

for any polynomial f and m>»0, Then

H@» =»(M

and thus

)
ot
[
]
]
o
[&:]
L
ct
(o]
[&)]
(0]
(]
(o
=
QO

HIG/Q@ 5 0+m=1)

=) (M 2 o)

n . .
B i.__2 \

L]

Let X be free with its exponents (do,...,dn)

throughout this section., “Then we have

-2 -
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’ n
HD(X) 5 = > w-d) ("M,
i=0
and thus

(2.5) H(©O/J(X) ;p+m=1)

n . P 0
m-)ﬂn—1) N :2:(m+;—?)»£n i) _ (n+1)a§n) +':§E(V’di)(n)
. ' 1=0

]

rw—Zd)))‘n 1) +Z{(m+1 2) s (=) z( )} (n—l)

On the other hand we know that
degH(OQ/J (X) ;D) =~deg(9/a0;)‘)) = dim Spe“c(:Q/aQ)—ﬂs n-2
if X ¥¢. If x =@, then
H(G/Jix_);))) = 6L
Thus we have proved

(2.6) Proposition, ;m¢= _E di”

Define P,(X) (i = 2,0e.,N)EZ by
HIO/7J(X)50) = Z P (X)) 770
N -

Then we can explicitly compute



(2.7) P, (X)

i-2 d.+-- +d +i=-j— C' +d —'1
0 n
= ;g {( 1) ( i %) + (=1) :E = }} )_

[ S

because of (2.8). and (2;6);

(2.8) Definition. Let k}i1. Let T = (I(1),;;;,I(k))
be a multi-index composing of k non-negative integers;
Define

k

]L T(i) dorevsrdy)s

where G"jé (DE:O,;;;,tn] (j20) is the elementary
symmetric polynomial of degree j; When k = 1, we
write 07(X) instead of G, (X) (j=20). Thus (2.6)

(J
asserts that #x = G}(X).

The following key\lemma is not difficult to be

verified:

(2.9) Lemma. For each integer i (2<i<n), there
exist real numbers c(I;i) (r€1li]), which are

independent of X, such that

PAX) + e O (X) = = c(T3i)0%(X).
i (i-1)1 ¥Yi Iezti] I

- 44 -
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Here

T =T = (T(1),...,T(K)); OST(N<E (J = 1,...,K),
Kk ;
S un=il.
J=1 ¢

Since X is free, any element iﬂJA(X) is also free

(see[8] (5.5). This we can define the mappings

Pj :‘#(X) —>» Z (2% j<n)
Y \———)ij'.
The following is the most important proposition for the

proof of Main Theorem:

Proposition B. F’J is j-cumulative (2< j< n).

Our proof is difficult and long. Seeifé](5;10);
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§3, Proof of Main Theorem

In this section we shall prove HMain Theorem, The
crucial results for our proof are (1.5), Proposition A
(81), Proposition B (8%2) and (2;9).

The following is stronger than Main Theorem:
(3.1) Theorem., Let i20, Then we have

1) G}(X) = F1°L(X) for any free n-arrangement X,

2) GE :)4(X)-——>:Z is i-curulative for any free

‘n-arrangement X,

Proof. Vhen i<, we can verify 1)i and Zfivbecause of
(2.6).

Let i>2. Assume that N = 0,1,+..,i=1) hold
true. Let X be a free n-arrangement. Recall (2,9),
then we have

1 - Tes '
Pi(X) + -(—l-::]-)—T LAX) = ZC(-L,I)(FI"L)(X)-

1 Te1 i)

By Proposition A, we know that FIOL is lI‘—cumulative;
since |I|< i for 1 €I[i], we can see that luI°L is
iecumulative./ Thus we have the i-cumulativeness of fg
because the sum of two i-cumulative mappings 1is also
i-cumulative., This is 2)1;

Next assume 2)j (j = 0,1,...,1). Let X be a free
n—arrangement, Then the assumption implies that the

- 16 -
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mappings
o, : A —> 2z (jz0)

satisfy the condition IV in (1.5). Moreover it is not
too difficult to see that the mappings G} (j20) also
satisfy the conditions I, II and III in (1;5); Thus we

~can apply (1;5) and have

03 = Pyt
on;J(X). This is 1)1. ' Q.E.D.

(3;2)-vThe,obsenvation so far shows that the following
four data concerning a free n-arrangement X are

equivalent;
o)

which ‘is equivalent to the polynomial

(1) The set of the exponents (d ,;;;,dn) of X,
n i n .
=>0.00t% = T (+d; 1),
i=0 i=0
(2) The Hilbert polynomial H(Q/J(X);») togéther

with #X, which is equivalent to the data
(*X, PZ(X)"‘..’Pn(x)‘),”'

o on .
(3) The polynomial zf(rgoL(X))tl,
. i=0 _' ,

- 17 -
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(4) The Poincaré polynomial of M = En+1‘\|x‘,"

which is equivalent to the data. o

(bo("\’,i),b_‘(M),o‘-,b ("A“)}))-;

n+1
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