On relations between the Brown-Peterson cohomology theory and the ordinary mod p cohomology theory

Nobuaki Yaqita

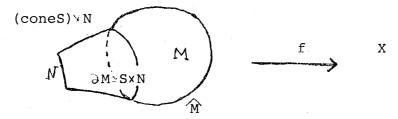
Musashi Institute of Technology

§1. Introduction. We recall the bordism theory with singularities

Let S be a close (weakly complex) manifold. An S-manifold

(manifold with singularities of type S,) means

 $\widehat{M} = M \cup (coneS) \times N$ where M is an open manifold with $\partial M \cong S \times N$ and N is a close manifold.



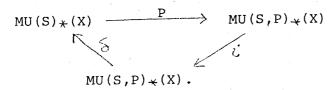
The bordism group $MU(S)_{*}(X)$ is a group of bordism classes of maps $f:M \longrightarrow X$.

Define a bordism operation Q_S by

$$Q_{S}(\hat{M},f) = [N,f|N].$$

We will show that this operation exhibits relationship between BP*(X) and H*(X;Zp) .

§2. BP(S)*(X). A main reference of this section is [1][6] Let MU* $Z[x_1,...]$ and let $x_pi_{-1}=v_i$ (, where we take v_i as a Milnor manifold, i.e., $c_{4p}i_{-1}(v_i)=p \mod p^2$). For each sequence $S=(P_1,...)$, P_i ; close manifold, Sullivan(5)also defined MU(S)*(X). The most important tool of this theory is the following Sullivan exact sequence.



From this exact sequence, if S is regular, then

 $\mathrm{MU}(\mathrm{S})^{\star}(\mathrm{S}^0) \simeq \mathrm{MU}^{\star}/(\mathrm{S}) = \mathrm{MU} /\mathrm{ideal}(\mathrm{P}_1, \ldots)$.

Hence $MU(...,x_i,... i=p^{j-1})_{*}(X)_{(p)} \simeq BP_{*}(X)$.

By Quillen's splliting theorem, we can prove

$$\text{MU}(p,v_{\texttt{i}_1},\ldots)_{\star}(\texttt{X}) \simeq \text{MU}(p) \underset{\texttt{BP}_{\star}}{\textcircled{\tiny BP}}(p,v_{\texttt{i}_1},\ldots)_{\star}(\texttt{X}).$$

In particular,

This fact shows that $H_{\star}(X;Z_p)$ is essentially the bordism theory of type $(p,v_1,v_2,...)$. (Of course, $H_{\star}(X;Z_p)$ is the bordism theory of type $(p,x_1,x_2,...)$ but the above fact shows singularities of x_i , $i \neq p^j-1$ do not appear.)

Recall the Milnor operation Q_i , namely, $Q_0^{=}$ the Bockstein operation and $Q_{i+1}^{=} \circ^p Q_i - Q_i \circ^p i$.

Theorem 1. [6] In $H^*(X;Z_p) = BP(p,v_1,..)^*(X)$, the cobordism operation induced from a Milnor manifold is the Milnor operation, i.e., $Q_{v_i} = Q_i$.

Proof. Since Q_{V_i} is defined from taking the boundaries, Q_{V_i} is a derivation. Recall that the product of Lens spaces $L_p^m \chi \dots \chi L_p^m$ is a retract of the Eilenberg MacLane spectrum KZ_p .

Hence we have only to prove $Q_{v_i} = Q_i$ in $H^*(L_p; Z_p)$.

It is well known

 $H^*(L_p; Z_p) \simeq Z_p[x]/(x^m) \otimes A(\alpha), \quad Q_i \propto = x^{p^i} \text{ and } Q_i x = 0.$

By the Gysin sequence, it is also well known

$$BP^*(L_p) \simeq BP^*(x)/(p), (x^m))$$

where $[p] = c_1(\xi_1 \otimes e_2) = px + a_1x^2 + \dots = px + v_1x^{p-1} + \dots$, $a_{p_1-1} = v_1 \mod (p, \dots, v_{i-1})$.

In BP*(L_p), that (p)=0 means there is a manifold Y such that $\exists Y = pxx \lor a_1^x x^2 \lor \dots \lor a_p^i_{-1}^x x^p^i \dots$ $= pxx \lor (v_1^x x^p \lor v_1^x w_1) \lor (v_2^x x^p \lor v_2^x w_2) \lor \dots$

where wie BP+ BP*(Lp).

Attach the cones.

$$\hat{Y} = Y \cup \text{conev}_{i} x (x^{p} \vee w_{i}).$$

Then we have

$$Q_{\mathbf{v},\mathbf{Y}} = \mathbf{x}^{\mathbf{p}_{\mathbf{v}}^{\mathbf{i}}} \mathbf{w}_{\mathbf{i}}$$

In $H^*(X; Z_p)$, $BP^+BP^*(L_p)=0$ and hence $Q_{v_1} = x^{p^i}$. In particular, $Q_{p-points} = x^{p^i}$. It is immediate seen that $Q_{p-points} = x^{p^i}$ the Bockstein Q_0 . Since there is only one x^{p^i} such that $Q_0 = x$, we have $x^{p^i} = x^{p^i}$. Hence $Q_{v_i} = Q_{v_i} = x^{p^i} = Q_i = Q_i$.

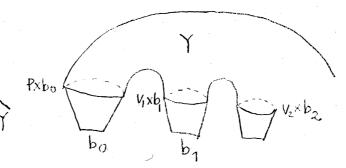
Since x is a closed manifold and x has no singularities, $Q_{i}x=0$. Hence we have the theorem. q.e.d.

§4. Relations $BP^*(X)$ to $H^*(X;Z_D)$.

Theorem 2. If $pb_0+v_1b_1+...+v_nb_n=0$ in $BP^*(X)$, then there is $y \in H^*(X; Z_p)$, such that $Q_j(y)=i(b_j)$ where $i: BP \to KZ_p$ is the natural inclusion map (Thom map).

Proof. Because there is Y such that

q.e.d.



Example 1. Let X be a finite H-space. By [2], there is a system of even dimensional indecomposable elements in H(X; $^{\rm Z}_{\rm p}$)

$$(y_k, \dots, y_1), |y_i| = (p^{k+1}-1)/(p-1)-p^i,$$
 (*)

such that there is i_{ℓ}, ℓ' with $y_{\ell} = Q_{\ell'} i_{\ell}, \ell' (1 \le \ell + \ell' \le k)$.

Conjecture 1. If there is a finite H-space of type (*), then there are y_{ℓ}' such that $i(y_{\ell}') = y_{\ell}$ and $v_h y_{\ell}' + v_{\ell} y_h' = 0 \quad \text{in } BP^{\frac{\pi}{\ell}}(X) \ .$

This conjecture is true for Lie groups, for example, we have

- (1) $H^*(F_4; Z_3) \cong Z_3(X_8)/(X_8) \otimes \Lambda(X_3, ...), Q_1 X_3 = 0.$ In $BP^*(F_4)$, $V_1 X_8' = 0.$
- (2) $H^*(E_8; Z_3) \simeq Z_3[x_8, x_{20}]/(x_8^3, x_{20}^3) \otimes \Lambda(x_3, x_7, x_{15},...)$ In $BP^*(E_8)$, $v_1x_8'+v_2x_{20}'=0$, $v_1x_{20}'=0$.

Example 2. Let K be the Eilenberg MacLane $\operatorname{spaceK}(Z,3)$. The mod p cohomology ring is

$$\begin{split} & \text{H}^{\bigstar}(\textbf{K};\textbf{Z}_{p}) \simeq & \textbf{Z}_{p} \text{ set,} \text{ set, a.e., a.e., a.e., ...} \\ & \text{For simplicity of notations, let denote } \mathbb{Q}^{p-1} \text{ for } \textbf{Z} = \textbf{C}_{n}, \text{ set, a.e., a.e., ...} \\ & \text{Then } \textbf{Q}_{m}\textbf{Z} = \textbf{b}_{m}, \text{ Q}_{m}\textbf{C}_{n} = (\textbf{b}_{n-m})^{p^{m}} \text{ for } \textbf{n} \text{ and } \textbf{Z}_{m} = (\textbf{b}_{m-n})^{p^{m}} \text{ for } \textbf{m} \text{ and } \textbf{Z}_{m} = \textbf{Z}_{m} = \textbf{Z}_{m} \text{ and } \textbf{Z}_{m} = \textbf{Z}_{m} = \textbf{Z}_{m} \text{ and } \textbf{Z}_{m} = \textbf{Z}_{m} = \textbf{Z}_{m} = \textbf{Z}_{m} \text{ and } \textbf{Z}_{m} = \textbf{Z}_{m} \text{ and } \textbf{Z}_{m} = \textbf{Z}_{m} = \textbf{Z}_{m} \text{ and } \textbf{Z}_{m} = \textbf{Z}_{m} = \textbf{Z}_{m} \text{ and } \textbf{Z}_{m} = \textbf{Z}_{m} = \textbf{Z}_{m} = \textbf{Z}_{m} = \textbf{Z}_{m} \text{ and } \textbf{Z}_{m} = \textbf{Z$$

Conjecture 2. There are b'_j in BP*(K) such that $i(b'_j)=b_j$ and $v_1b'_1+v_2b'_2+\ldots=0$.

Proposition 1. In BP*($\kappa^{2p^4+2p^3}$; z_p)=P(1)*($\kappa^{2p^4+2p^3}$), there are b' for $1 \le j \le 4$ such that $i(b'_j)=b_j$ and mod $(p,v_1,...)^2$

$$\begin{array}{l} v_1b_1'+\ldots+v_4b_4'=0 \\ v_1b_3'^p+v_2b_2'^p+v_3b_1'^p=0, \ v_1b_2'^p+v_2b_1'^p=0, \ v_1b_1'^p=0. \end{array}$$

Proof. We will prove only the first relation. We notice that $|b_1| = 2(p^n + 1)$ and $|c_1| = 2(p^n + 1) - 1$. The degrees of the differentials of Atiyah-Hirzebruch spectral sequence $p(1)^E$ which convergents $p(1)^*$ (X) are 4m-1. Hence we can prove $p(1)^E$ are permanent in $p(1)^E$. Since $p(1)^E$ we have $p(1)^E$. Since $p(1)^E$ but $p(1)^E$ but 4m-dimensional elements are generated, as an $p(1)^E$ -module, by $p(1)^E$.

Therefore there is a relation

$$v_1b_1+...=0$$
 in $P(1)^{4}(K^{2p^4+2p^3})$.

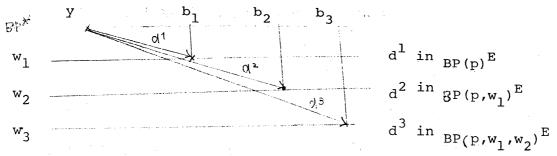
The fact that there is only one ν with $\nu_1 = \nu_1$ implies $\nu_1 = \nu_2 = \nu_1$. q.e.d.

§5. Relations between A-H spectral sequence and the Sullivan exact sequence.

Lemma. Let wx=0 in P(1)* (X)=BP*(X;Z_p)=BP(p)*(X) for $0 \neq w \in P(1)^*$, and let $i(x)=x \neq 0$ in $H^*(X;Z_p)$. From Sullivan exact sequence there is $y \in BP(p,w)^*(X)$. Then in A-H spectral sequence $P(1)^E r$, $d_r(y')=\lambda wx$,

where $\lambda \neq 0 \in \mathbb{Z}_p$, $y \in_{P(1)} E_r^{\star, \star}$ corresponds to y.

Theorem 3. Let $(w_1,\ldots,w_s)=J_s$ $|w_i\rangle > |w_{i+1}|$, regular sequence in $P(1)=BP^*/p$. Let $b_j\in P(1)^*$, $0\nmid i(b_j)$ in $H^*(X;Z_p)$. Suppose $w_1b_1+\ldots+w_sb_s=0$ in $P(1)^*(X)$. Then there is $y\in_{P(1)}E_2^{*,*}$ such that $d_r(y)=\lambda_tw_ti(b_t) \qquad \text{in} \quad {}_{BP}(p,J_{t-1})^{E_r}, \quad 0\leqslant t \leqslant s$ where $\lambda_t \nmid 0$ in Z_p .



When we study relations in BP * (X) with decomposable elements of BP * , Theorem 3 is useful. For example, there is a relation in BP(p) * (K $^{2p}^4$ +2p 3)

$$v_1^p b_2 + v_2 b_1^p + v_3 b_2^p + v_4 b_3^p = 0 \mod ((p, v_1, v_2, ...)^2 - (v_1^2)).$$

References

- [1] N.Baas; On bordism theories of manifolds with singularities, Math. Scand, 33 (1973), 279-302.
 - [2] R.Kane; BP-torsion in finite H-spaces, to appear.
- [3] D.Ravenel and S.Wilson; The Morava K-theories of Eilenberg-MacLane spaces and the Conner-Floyd cojecture, Amer.J. 102 (1980), 691-748.
- (4) D.Quillen; Elementary proofs of some results of cobordism theory using Steenrod operations, Advances Math, 7 (1971) 29-56.
- [5] D.Sullivan; Geometric seminor notes, Princeton Univ, (1967).
- { 6 } N.Yagita; On the algebraic structure of cobordism
 operation with singularities, J. London Math. Soc. 16 (1977)
 131-141.
- [7]; Brown-Peterson cohomology groups of exceptional Lie groups, J. Pure and Applied Algebra 17 (1980) 223-226.