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J~-groups of 1ens spaces

by Kensd FUJII

(Department of Mathematics, Hiroshima University)

§1. Introduction

The standard lens space mod m is the orbit manifold

2
=S_n+1

L% (m) /2. (7 ={zestiz"=1})

2n+1(ccn

of- the (2n+l)-sphere S +1) by the diagonal action

z(zo,-",zn)= (ZZO,"‘,ZZn).

The J-groups of lens spaces were studied by several authors
(e.g. [2]1,[51,[61,[8],[10] ana [11]).

Let " be the canonical complex line bundle over Ln(m).
Then we have the following theorem by making use of the results
due to J.F.Adams [1] and D.Quillen [12].

Theorem 1.1. Let p be a prime and let r(nir—l)eﬁb(Ln(pr))
p

(pr;3) be the real restriction of the stable class of the i-fold

tensor product of n r; Then the order of the J-image
p

I -1) €« FM)

f (n,r;v)
is equal to p proeme R

S=V

fp(n,r;v) =nmx{s;v+[n/ps(p—1)]p :vEs<r and ps(pfl)sn},
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where v=vbf3) is the exponent of p in the prime power
decompdsition of i and max ¢$=0. |

In this lecture, we prove the above theorem only the case
p=2, since we can prove the above theorem for odd prime p in the
similar way (see [10]). -

Remark 1.2. By Theorem 1.1 and Proposition 1.3 below, we
can determine the order of Jr(ni—l) in 3(Ln(m)) for any m.

Let Lg(m) be the 2n-skeleton of L7(m) and m=Hpr(p) be the
prime power decomposition of m. Then we have

Proposition 1.3. (i) The sequence

2n+1

0 =3Py S ¥ m)) A5 F (i) —o

is a split extension for odd m.

(ii) There exists a natural isomorphism

£=@r* : F(LA(m) = @F (2T P)Y)  (m:oaa),
P 0 DI (L

P=@(1 om )@r*: T (1 m)) > @ | JaRe P @i (2" ®) (mieven),
p P P 2 p:odd prime 0

which satisfies
i

pr(p)—l)’

f(Jr(ni—l)) =szr(n

where nq:Ln(q)eLn(m) and ip:Lg(pr(p))+Ln(pr(p)) are the natural
projection and inclusion, respectively.

Proof. (1) is immediate from Puppe exact sequenceAin-KO—
theory and the fact that E(Lg(m))‘is of 0dd order if m is odd.
(ii) We can show the similar result for KO instead of J by
noticing that f is surjective and the both sides groups HaVe'thé

same order (cf. [3, Lemma 2.3 (ii)] and [13. Th.(0.1)1). The

-2 =
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last equallty follows from the definitions of f, n  and npr(p)-

g.e.d.

§2. The structure of 3(Ln(2r))
Let n be the canonical complex line bundle over Ln(2r) and

p be the non-trivial real line bundle over Ln(2r) and put
o(s) =n2°-1, o(0)=0 <R(L™(2)),
~ n r
K=p=1 €KO(L (27)).
Then EB(L“(gP)) is generated additively by the elements
o s
k and r(o o(s)) (0sssr-2, 0sd<27),

and its explicit additive and multiplicative structures are known

([9, Th.1.91).

The calculation of Adams operations ¥¥ on X(L™(2¥)) and the

k

reT of Adams operations on X and Ka imply the

property roW§==W
following
Lemma 2.1. Let J :ﬁa(Ln(Er))-af(Ln(Er)) be the J-~homomorphism.

Then Ker J 1is generated additively by the elements
d s
r(c (l+o)o(s)) (Osssr-1, 0sd<27-1).
From now on, we use the foilowing notation
as:=Jro(s) e J(L7(27)).

K
Here, we notice that a =0 if szr and a, ;=2Jk, since n2%=1 if szr

and n2r_1=2p.
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From the above lemma, we see easlily the following

Proposition 2.2. 3(Ln(2r)) is generated by

Jx and oy (0sssr-2),

Combining the relations of KO(L®(2%)) given in [9, Th.1.9]
and the relations arisen from KerJ in Lemma 2.1, we have the

following theorem on the group structure of the reduced J-group

Ft2"y) (PQZ), where

= s _ S
as-[n/2 1, bs-n-2 ag (O§s<r),

X(d,v) =§jez(—l)j(2V+l)(digvj),

2d-1

Y(d,v) = Ly (quov(ng41))

Theorem 2.3. (i) [5, Th.4.5] J:KO(L™(L))= J(LP(4).
(1i) The relations of E(Ln(Zr)) for rz3 are given as follows:

(a) The case n#l mod 4:

~1+2 -1-s
(2.3.1) 2 *ar-1gk=g, 2771 ala0=o, or-1 S+aSas=o (1sssr-2).
a Py r=1-v(1+a 2 -
(2.3.2) 2 -1y + 3072 (1+ap_y- o =0 if a,2277°
v=0 v 1
r-s-2+ag g-1.r-5-3+25"V(1+ag) s
(2.3.3) 2 us-+2v=02 av-O (lgssr-2, 2 gal).

r-s-4+25+1=V(a_ 1 +6)

(2.3.4) 23=0(—1)2S‘V2 X(d,v)a,=0

(1sssr-2, 1sd<2®, 2°+dsa)),
where 6=1 if 2d§bs'+l

t
v=1

, =0 otherwise,

1

(2.3.5) 22324 -2%_ v(1,v)a, =0 where 2tsi<2t+1(a1<i<2r~

).

(b) The case n=1 mod 4: The relations in (a), excluded the

-4 .
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one in (2.3.4) for s=1'~-‘.g,*2’d=‘1+br;'l ‘and thé one in (2.3.5) for '

i=a,+1, and in addition,
24 =2 t oo P t t+1 . r-2
(2.3.6) 2 g -ZV=1Y(1,V)aV-O wherée 2 sa1+1<2 if a1<2 .

For the special case that n=2r_1a, we can reduce the
relations of J(L™(2¥)) in (ii) of the above theorem to more simple
ones, and E(Ln(2r)) is given by the following explicit form,
where Zh(X) denotes the cyclic group of order h generated by the
element x.

r-1 T,.Nn, T .

Theorem 2.4, If n=2 a (rz3, az22), then J(L '(27)) is the

direct sum

a -a.tl
s-17%s a S

-2
> -
<a,>@d Zzas_1<aS 2 s-1

Zgr—l—n 0 s=1

a -a
r-2"%r-1
@Zgar'—l<JK+2 ar_2>,

By using the above theorem, the known fact about the kernel
of i*:ﬁb(Ln(Zr))->ﬁ6(Ln—1(2r)) ([9, Prop.4.47) and the calculation
3

of Adams operation ¥~ on ﬁa(Ln(2P)), we can determine the kernel of
(2.5) 1* : F(2T)) — T L2ry)
as follows :

Proposition 2.6. i% in (2.5) is isomorphic if n=3 mod 4,

epimorphic otherwise, and

Zu<2J52m+l> 1f n=l4mt2
Ker i¥ = 22<Jc72m+1> if n=lm+1
zu<JE{2m> if n=b4m>0,

where g=r(n-1) ¢ KO(L™(2Y)) ana

min{r+1,2+2}

u=2 for n=Mm=2Qq with (2,g)=1.
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§3. Proof of Theorem 1.1

To prove Theorem 1.1 for p=2, we prepare some lemmas.

Lemma 3.1. The following equality holds in J(L"(2%)) (rz2):
1. _ .
Jr(n —l)-—Jro(v)-—av for iz1,

where v=v2(i) is the exponent of 2 in the prime power decomposition
of i.
Proof., By Lemma 2.1, we notice that the kernel of J:

ﬁB(Ln(2r))-%3(Ln(2r)) is generated additively by

r(njo(s)) (0ss<r, lgj<2s).

1r 25¢1<2%%1 | then nt-1=nto(s)+nd-1 wher j =1-25%. If j>0 in
addition, then Jr(n=1) =Jr(n‘-1) by the above notice and o(s)=0
(szr). By continuing this process, we have the desired equality.

g.e.d.

Now, let fg(n,r;v) be the non-negative integer such that

_ 2f2(n,r;v)

#Jro(v) = #av in J(L™(2)) (nz0, rz2),

where #a denotes the order of a. Then by the definition of a ,
we see that

(3.2) f2(n,r;\0 =0 if n=0 or vzr.
r-1
Lemma 3.3. If n=2 a and rz3, then

f2(n,r;v)::r-l—v+zr—l—va for n>0, Osv<r.
Proof. The lemma for az2 is easily seen from Theorem 2.4

and ar_l=2JK.
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Consider the case n=27"1, Then, by Proposition 2.6,

1

#35°M = 2T gp 321Ny (am=2"Y).

r-—-2m r+im-2—
=2 o]

On the other hand, 2 ¢ in ﬁB(L2r-l(2r)) by [7, Lemma

2.3]. Thus, we obtain
— - r-1

(3.4) g, = #35 = 27 T1TET

Furthermore, we have the following relations in 3(L2r_1(2r))

by Theorem 2.3 :

- - -
2 T, 2 av—l (1svsr-3),
(3.5)
2 5 AL 2
2 ar_2-+2 ur_3-0-2JK-+2 ar_z.

The relations (3.4) and (3.5) imply immediately

1-v

#av==r~1~v+2r_ (0sv<r),

which is the equality for a=1l. q.e.d.

Consider the commutative diagram (rz3)

Ker 1% < F(LP(27)) — 1 Fu1(2T))

(3.6) .n.*l l,n,v*

~ e s 1 ¥ A - -—
Ker 1'#cJ (L (28 H)y 255 Fott )

of the induced homomorphisms, where i and i' are the inclusions
and w and w' are the natural projections. Then we have the
following

1 (rz3), then

Lemma 3.7. If n#¥0 mod 27~
m#|Ker i* : Ker 1* 5 Ker1'¥

is isomorphic.

Proof.. If n=4m=22q (q:0dd), then the assumption ng0 mod 2f'~

1
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implies r-1>% and so min{r+l, 2+2} =2+2 =min{r, 2+2}. Thus, we
see immediately the lemma by Proposition 2.6, by noticing that
m¥pn = rT¥n = rn and hence T*JGT = Jor, | q.e.d.

Lemma 3.8. If n#0 mod ot =1 (rz3), then
f2(n,r;v)==max{f2(n-1,r;v), fz(n,r-l;v)}.

Proof. Consider the diagram (3.6). Then the definition of

f2(n,r;v) implies that
f2(n,r;v) znmxifz(n-l,r;v), f2(n,r-l;v)},

il Tk = * = { i
since 1 av oy and w av Oy Moreover, 1if
f2(n,r;v):>max{fg(n—l,r;v),%(n,r-l;v)}, then the non-zero element

fo(n,r;v)-1 -
p 2t a, in J(Ln(ZP)) is mapped to O by i* and 7w¥. This

contradicts Lemma 3.7. Thus we have the lemma. qg.e.d.

Proof of Theorem 1.2. By (3.2), it is sufficient to show

that

S-v

(3.9) an,r;v)==max{s—v+[n/28]2 :vss<r and 2°sn} (0sv<r).

(3.9) for r=2 is easy consequence of Theorem 2.3 (i) and

[4, Th.B]. By Lemma 3.3, (3.9) holds if r23 and n=0 mod 2771,

r_1a<n<2r—l(a+1), assume inductively

For the case rz3 and 2
that (3.9) holds for (n-1,r;v) and (n,r-1;v) instead of (n,r;v).
Then, we see easily that the right hand side of the equality in

Lemma 3.8 is equal to

{ f2(n,r—l;v) if a=0,

1]2r-1—v

max{f,(n,r-1;v), r-1-v+[(n-1)/2"" } if a>0,
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and hence to the right hand side of (3.9). Thus Lemma 3.8 implies
(3.9) by the induction on n and r.

These complete the proof of Theorem 1.2. q.e.d.
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