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On The Symplectic Lazard Ring
by Kazumoto KOJIMA

0. Introduction

In 'Elementary proofs of some results of cobordism theory using
Steenrod oparations' ( Advances in Math.,7 (1971), 29-56. ), D.Quillen
determined complex cobordism ring MU, wusing the formal group theory.
This method is not applicable directly for the symplectic case.

However there are some works along i@ghis line.

Espetialy, BuhstaberwNovikov stadied two-valued formal groups and gave
some applications to symplectic cobordism ring MSp, .

We will define symplectic formal system using formal power series
like as (two-valued) formal group, and construct a geometrical example
of symplectic formal system. To construct this geometrical example,

We need some stable maps between the complex (or symplectic) projective
and quasiprojective space.

Moreover, we can construct a ring assocated with symplectic formal
system. We denote the symplectic Lazard ring IMSp as the associated
ring for the universal symplectic formal system.

Then, we can construct a homomorphism f: LMSp — MSp*/Torsion.
By.some calculations and the result of R.Okita ('On the MSp Hattori-Stong

problem', Osaka J, math. 13 (1976), 547-566.), we can conclude that if we

apply the rational indecomposable functor Q( ), then Q(6) is an isomorphism.
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1. Stable maps

There is a symplectification map q : CP¥ — HP®,

Since q is a fibre bundle whose fibre is 82, there is a
Becker-Gottlieb transfer ¢t : HP:-—-(-S—)bCPf .

Let F be C or H and S; unit sphere in .

Ler Gn(C) = U(n) and an(H) = Sp(n).v
The quasiprojective space Qn(F)_ is defined to be the space of generalized
reflections,. that is, the image of

p :spx s% —> 6_(F)

where 9S(u,q) is the automorphism which leaves v fixed if <u,vy =0
and sends u to uq.

We may define Qn(F) as the space obtained S; X S%
the equivalence relation (u,q) ~~ (ug,g_lqg) (g « S%‘ ), and collapsing

by imposing

S; x 1 to a point.
By the second definition, we can easily show that Qn(C) X Z(CPE_I).
We put o = Qn(C) and /H\I;n = Qn(H). Clearly

W

we have a symplectification map q : CP¥—— HP ™

- ~n ~2n
Now we comstruct a map from HP to CP .
Let zel-ln and z = x + jy where x,y&Cn.
n 2n . 2n
We denote complexification map ¢ : H —= C by setting c¢(z) = x®y & C .
let g=a+ jb& H where a,be C. Since Sé is a maximal
1 1 -1 1 -1 e
torus of SH , there is a ge SH such that g “qg ¢ SC . If g qg=e s

where -1< t < 0, then (gj)-lqgj = it .

- Thus there isa ge S; such that g-lqg = eM't where 0 < t < 1.

-2-
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m.-’)

So a representative element of HP" can be taken as (x + jy;e

where x,y & ¢® and 0 <t <1,

~ ~n ~2n .
We define tn : P —> CP by the equation

Zimt) 1.

Then the following proposition holds.

izt

’En[(x + jy,e D]l = [x@® y,e

Proposition. The diagram

~n t:n ~2n
HP —— CP

lj lj

SP(n) _E—a U(2n) commutes up to homotopy.

By the theorem of Becker-Segal,
Q(HP*™) 3 BSp x F

Lig Q) .
n

& where Q( ) is a stabilize functor

So we have a map r : JHP®—> Q(HP™) such that the diagram
I®P” 3, s

r L ll
Q(HP™) _—j—f—» BSp commutes up to homotopy.

We may regard r as a stablemap r : Zﬁﬁ“ ——(5—9 HP® .
~1~

.

We put ﬁ_P“=Z'f1'I?ﬁ’°°, =35 q and t=2 "t .

Then we have following stable maps :

) t

CP:_-ia mPY — CP

+ 2

CP_‘: g, ﬁ: £ CPY - and

zzr‘ﬁ“.———ar .

We can easily calculate the homomorphisms induced by these maps on the ordinaly

-3-
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homology theory.

Let yMSP be the euler class of MSp, y the claés of ordinaly homology.

Then in H MSp-theory, we have yMSp = h(y) = 2. h

izO
Let x be the complex euler class of the ordinaly homology H.

Now we can define the symplectic formal system.
Let R be a commutative ring with unit and R[[X,X,Y,Y]] formal power
series ring with four variables X, X, Y and Y.
Definition 4.1. A symplectic formal system is a set of formal power
series E(X), F (X'X Y,¥) and Gk(X,i,Y;Y) (for k2 1) such that satisfy
(1) E(X) = Zax ,

iz1 i
Z pE xlyd 4 T () g 511§ y3-1

F, (X,%,1,9) by} i3
- LI0 @ g1 B s 1.
6, (X,X,7,) = Z dy ] (X-X + Y Yt gy
_ 1,3 ’
and under X2 E(X), Yi = E(Y), satisfy also

(ii) (unitary relation) bil% = dil% 1, bilé = délé =0 for n#1l,

(iii) (associative relatiom)
D(F, (%,%,Y,9),6, (X,X,Y,9),2,2)

= D(x,i,Fl(Y,’fz,z,Z),Gl(Y,Y,z,‘Z)) for D=F, or G ,

- ) (1) S <1
(iv) (commutative relation) bi,j j, €1, T %,1

. . A L _ - ( ) (1)
(v) (differntial relation) cl’1 = -2, cl,n = n 1= =0 for n#1l,

s

(vi) (power relation) Fk(X;X,Y,Y) = (Fl(X,i;Y,Y))
Gk(x,'Y,Y,?) = 6, (X,X,Y7,7) Fk_l(x,'i,Y,Y) and

(vii) (équar relation) (Gl(X,i,Y,Y))Z = E(Fl(X,E;Y,§))



70

Definition 4.2.
Let 1-' = (E, F ., Gk} be a symplectic formal sySteﬁ: over R .
An associated symplectic ring for [ , - Rf' , 1s the subring of R which

is generated by the elements 8a,, 4b (2k-1) (2k) (k)

12 855 e 2oy gs o5y s

4d(k). and 1 .
i3

Now we can define symplectic Lazard ring IMSp as follows.
ORI

Let S be Z[ a, b(k) (k) dik).] where a , C and d(k)

1,3 * %1,3 * %4,3 1’ %13 61,3 1,3
are variables and I the ideal of relations that appear in (i) ~ (vii) of
(4.1).

Then we get a universal symplectic formal system over S/I .

We denote [7 as this system over S/I and do LMSp as (S/I) .
univ I univ

Next we want to construct a symplectic formal system over H_(MSp) .
For simplicity, we denote f(x) and f(x) ap's h(—xz) and %—g;h(—xz)
H, (MSp) [[x]] where h(—xz) is as previous.
We denote é symplectic formal system L—'H by setting,
E @) = (En?,
FL (£ (x), (), £ ), E ()

G (£ ), T, £, E (7))

(f(x'*)'))k and
?(x‘*}')'(f(x'i'y))k_l for kz 1.

Then the relations (i) ~ (vii) except (v) are almost trivial.

Proposition 4.4, In [’

i differential relation holds.

i
We have a ring homomorphism b: IMSp —> H, (MSp) by the universarity.

Ly

Theorem. Im( § ) ¢ Im(hurewicz homomorphism : MSp, —> H,(MSp)).

~5-



