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1. Introduction

In recent years, many models for graph L-systems or para11e1 graph
grammars have been proposed. One of the reason why those méde]s were pro-
posed is to generalize the string L-systems to hypner-dimensional or more
complex structures. Unlike the string L-systems, the basic brimitive in
a graph L-system is a directed graph which is a set of 1abe11ed‘nodes and
labelled edges. In this paper, as the graph L-systems, we treat only one
model which is called a node-replacement graph L-system with explicit
connection transformation and its extensions. About other models for graph
L-systems, see e.g. [3].

On the other hand, many grammars to generate two-dimensional patterns
have been studied. Generally, in those two-dimensional grammars, to pre-
serve topological relations between each point in generated arrays a re-
striction called "isometric" is inserted in each production rule. If we
consider the application of graph L-systems to two-dimensional pictures
then we can reduce this restriction and construct more natural two-dimen-

sional pictures generating systems. From this point of view, the relation-
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ships between graph L-systems and matrix grammars are discussed in Chapter
8 of Rajasethupathy [1]. In [1], it is shown the following facts:

The class of extended tabled node-replacement graph L-systems ( es-
pecially without terminal set for alphabet of edge labels )

1. contains the class of matrix grammars properly,

2. generates several kolam patterns forming subclass of ( CF:R )

array grammars. ‘

Furthermore fhis system without tables

3. generates "staircase of X's", "Kirsch's right triangles" etc.
From above facts, Rajasethupathy conjectured that for every array grammar
there exists an equivalent extended tabled node-replacement graph L-system.

In this paper, we wi]] show that the class of extended tabled node-
replacement grahh L-systems contains the class of isometric array grammars,
by using isometric array L-systems which were introduced in Nakamura [2].
It seems to be a very interesting result to generate isometric array lan-

guages by graph L-systems which replace each node in context-free style.

2. Basic Definitions and Properties

In this section, we review definitions and properties used in the next
section. In the following definitions of graph L-systems, we will use basic

definitions and notations in [4].

Definition 2.1. A node-replacement graph L-system with explicit con-

nection transformation, denoted by nGL-exp-system, is a 6-tuple G = ( V,
ZV,ZE,RR,CR,dO ), where V is a nonempty finite set of node generators, ZV

is a nonempty finite set of node labels, ZE is a nonempty finite set of
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edge labels, dOEd( V,ZV,ZE )-{de} is the axiom graph. RR is a finite set

of replacement rules which is complete in the sense that for any one-node
subgraph of the axiom graph or right hand sides of replacement rules, there
is at least one replacement rule in RR having this one-node graph as left
hand side. CR is a finite set of connection rules which is complete in the
sense that for any triple (V]’a’VZ)EZVXZEXZV there is at least one connec-
tion rule such that Vis V, are the labels of the source and target node

and a is the label of the edge of the left hand side of the connection
rule. The language of a nGL-exp-system G is defined as

ot(G) = { D | Ded( V,ZV,ZE )/= and dy/= _Fgeég 1.

Since, in this paper, we consider only explicit connection transfor-
mation systems, hereafter denote nGL-exp-system as nGL-system if no confu-

sion occur. The extension of this nGL-system is as follows:

Definition 2.2. An extended tabled nGL-system, denoted by ETnGL-system,

is a 7-tuple G = ( V,ZV,ZE,P,dO,AV,AE ), where V, ZV, ZE and d0 are the
same as defined for a nGL-system, P = { ( RR.,CR; ) | 1 <is<n} for some
integer n, where RR{ is a finite set of replacement rules, and CRi is a
finite set of connection rules, AyE Iy is a terminal alphabet of node la-
bels, AEQQZE is a terminal alphabet of edge labels. A derivation is ob-
tained as in the case of nGL-systems except for the condition that for any
single step of derivation all replacement rules used in this step must
belong to the same set RRi for some i; similarly all connection rules used
at this step must belong to the corresponding CRi' Then the language of an

ETnGL-system G is defined as

i(G) = { D | Ded( VAL )/= and dO/E——p*eeD }.
: G
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Now, we review some definitions of isometric array grammars [6] and

jsometric array L-systems [2].

Defintion 2.3. An Zsometric array grammar, denoted by IAG, is a 5-tuple

G = ( VN’VT’P’S’# ), where VN T
is a finite nonempty set of terminals, VNnVT = ¢, SevN is the start symbol,

#@EVNUVT is the blank symbol, and P is a set of production rules. Each mem-

is a finite nonempty set of non-terminals, V

ber of P is a pair of arrays of finite size ( a,B ), for all of which
(a) o and B are geometrically identical,
(b) o does not consist entirely of #s, and
(c) B satisfies the following conditions:
(1) If the non-#s of a do not touch the border of o, then the non-#s
of B must be connected ( and nonempty ).
(2) Otherwise,
(i) every connected component of non-#s in 8 must be contained
in the intersection of some component of non-#s in o with
the border of a;
(i1) conversely, every such intersection must be connected in
some component of non-#s in B.
The array language generated by an IAG G is defined as

*.
Ji_(G) = { A | S=>A, and A is a terminal array }.

Definition 2.4. Let k], k2, k3, k4 be nonnegative integers. An isomet-
k2
ric array L-system with < k3 k] > array interactions, denoted by
k 4
IA< k3 2 k] >L2-system, is a 4-tuple G = ( z,#,P,w ), where T is a fi-
k
4

nite nonempty set of symbols ( th: alphabet of G ), # is a symbol which
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designates blank points of array ( the blank symbol of G ), w is the start

array ( the axiom of G ), P is a finite nonempty set of relations satisfy-

ing the following;

(1)

each element of P has such a form as

G-
B304

where o and B are arrays over ZU{#}, and are isometric. o contains
exactly one element of T in context of #'s. o - B is called core pro-
duction. gi, 1 < i< 4, are rectangular arrays over ru{#}, and they
are called array contexts. E] consists of the first quadrant and pos-
itive part of horizontal axis, 52 consists of the second quadrant and
positive part of vertical axis, 53 consists of the third quadrant and
negative part of hrizontal axis, and 54 consists of the fourth quad—
rant and negative part of vertical axis. Thus their sizes are k]X(ké
+1), (k3+])xk
tively.

9> k3X(k4+1), and (k]+1)><k4 ( w1dth by height ), respec-
P is complete in the sense that for every array contexts E], 52, g3,
54, and a = which is contained in o, there exists at least one array B

over ZU{#} such that

£ £
<: 2 o ]:> - B S P,
E3 &

( each element of P is called a production rule ).

The array language of an isometric array L-system G is defined as

Ji(g) = { a | a is an array over zU{#}, and m:=5i> o }.
G

Definition 2.5. An extended isometric array L-system, denoted by

k

IEA< k3 2 k] >L2-system, is a pair G = ( H,A ), where H = { Z,#,P,0 )

kg
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is an underlying isometric array L-system, and ASZ is the target alphabet
of G. The language of an extended isometric array L-system G is defined as

Zi(G) = { a | a is an array over AU{#} and aEJf(H) }.

Note. While IAGs are the sequential grammars, isometric array L-systems
are the parallel systems, as in the string case [5]. In a parallel deriva-
tion step, there exist some possibilities such that rewritten arrays are
duplicated. In such a case, one of the duplicating subarrays are chosen as

the rewritten subarray of duplicating area, in nondeterministically.

The following theorem which was shown in Nakamura [2] will clerify a
relation between IAGs and isometric array L-systems.

0
Theorem 2.1. The class of languages generated by IEA< 1 0 >L2-sys-
1

tems is exactly the same one generated by IAGs.

3. Some Relations Between ETnGL-systems and Picture Languages

In this section, we will show some relationships between ETnGL-systems
and isometric array languages. To show these relationships, we will use the

following numbering technique for core productions of the isometric array

L-systems.
Let k], k2, k3, and k4 be nonnegative integers. Let G = ( 5,#,P,w,A )
k
be an IEA< k3 k] >L.2-system. For some positive integer n, let P = {
k
4

PsPos e Py }, where P; is a production rule of G. As an example, let us
suppose that the core production of i-th production rule Pj is of the fol-

lowing form;
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a

ISR
oo o

#
# - c
#

# o
¢, where a, b, c€r.

Then as the origin, we take the point of right hand side, which is corre-
sponding to only one point of left hand side whose symbol is non-#. Each
point of right hand side is numbered by a 3-tuple of integers as follows:

(i,0,2) | (i,1,2) |
(1,0,1)
(i,-1,0) {(i,0,0) | (i,1,0)

(1,1,-1)

And we will use a notation T(pi) ={ (i,0,2),(i,1,2),...,(i,0,0),...,(1,1,

-1) } to denote the above situation. Since the right hand side array of

every production rule has finite size, the number of 3-tuple, i.e. the num-
n .

ber of elements of the set l_)T(pi), is determined uniquely and only finite

i=1
for any aiven system. Now we chose u and v as follows:

u = MAX ( MAX 131 ),
p;eP (i,3,k)eT(p;)
v = MAX  ( MAX 1kt ).

pieP  (i,3,k)ET(p,)
Then for 1 £ i<£n, -usj<u, and -v £ k £ v, we define two functions

g: IxIxI - {0,1} and t: IxIxI - ¥ as follows:

] if there exist point (i,j,k)
o(i,j,k) =

0 otherwise,

the symbol of the point (i,j,k) if  (i,3,k)=1
(1,3,k) =

undefined otherwise.

Here we stipulate two different way to regard an array as a £-graph.

Stipulation 3.1.

(1) A symbol in an array is regarded as a label of the corresponding node

of a £-graph.
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(2) A horizontal connection of two points is regarded as an edge labelled
by "h". The direction of the edge is left to right.
(3) A vertical connection of two points is regarded as an edge labelled by

"v". The direction of the edge is up to down.

D
Example 3.1. An array ABC is regarded as a £-graph
EFG
H

in the sense of Stipulation 3.1.

tet £ be a set of arrays. Let L' be a set of £-graphs such that for
each element £ of L' there exists an element of gi which regarded as the £-
graph £ in the sense of Stipulation 3.1 and for each element of Jﬁ there
exists such a element of £'. Then we will use a notation L T L' to rep-

resent above relation.

Stipulation 3.2. An array is regarded as a £-graph which takes the

square pattern such that if all nodes which are labelled by #s are ignored,

the array is regarded as the £Z-graph in the sense of Stipulation 3.1.

As for the case of Stipulation 3.1, we will use a notation Jf ; L.
Now we are ready to show that the class of ETnGL-systems contains the class
of IAGs. Firstiy we will show a relationship between ETnGL-systems and iso-

metric array L-systems.



55

0
Lgm@g_ng, For every IEA< 1 0 >L2-system S there exists an ETnGL-

1
system G such that Ji(G) 5 Jf(s).
proof. Let S= ( Z,#,P,w,A ) and let P = { PysPpseesPy }. Then we con-
struct the following ETnGL-system.

6= (V,552Ps(0)s8y 50 )
where I, = TUZUL UL UT U {# 4", 4" 57, Z = {h,v,D}, P = {(RR.,CR.)|1 < i <5}

A |Aex and t(i,3,k)=A},

Tu{#}, A = {h,v}. Here T = {A|Aes}, L, =

13k
{K[AEZ }. Since (RR 1:CRy ), (RRZ’CRZ)’ and.

v

i
]

z {UL,UR,DL,DR,U,D,L,R}, Z

d

(R 5,CR ) are easily constructed, we describe in detail only (RR3,CR3) and

(R 4’CR4) in FIgure 3.1. Note that in the proof of Theorem 2.1, isometric
array L-system which simulates IAG requires only two points as its cdntexts,
i.e. left-context and Tower-context. Without Toss of generality, we can as-
sume that the start array of extended isometric array L-system consists of
only one symbol. '

The following outline Wi11 be useful in order to understand~the opera-
tions of G.
(1) Firstly, G constructs a square pattern as shown in Figure 3.2 by using

tab]es(RR],CR1) and (RRZ,CRZ). By m-time applications of (RR CR ), G can

],
construct the pattern whose size is (2m+1)x(2m+1). Once G use table (RR 0
CRZ) then the square pattern remains in same size in the rest of derivation.
(2) Then, G simulates the derivatioh’of S using tables (RRB,CR3) and (RR4,
CR4). In general, each single step of S is simulated by two steps of G. FQr
each node which has label from T, G guesses what production of S is applied.
Then G replaces allnodes having labels froh ¥ and necessary nodes havinq
label # by one-node graphs having labels from ZS, acbording to the guessed

productions. Another nodes are replaced by one-node graphs having labels

from fdu{#"}. Next, to make certain of legality of its replacement opera-

-9-
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tions, G checks subscripts of node labels of adjacent nodes using connection
rules from CR3. If adjacent nodes are replaced in regal way, they are con-
nected as before. If not, they are connected by an edge having label D. Note
that the edge labelled by D cannot be replaced by any other edges. Then G
replaces all nodes having labels from ZSU{#“} by one-node graphs having la-
bels from Tu{#}.

To simulate derivations of S, the step (2) are repeated.
(3) Finally, G guesses the end time of derivation of S and sets its -graph
right by using table (RR5,CR5). G replaces all nodes having labels from
Tu{#} by one-node graphs whose labels are corresponding one from TU{#}. Also
G replaces all nodes having labels from Zd by one-node graphs labelled by a
symbol #.

In this way, we obtain Ji(G) 5 Ji(S).

Figure 3.1. Constructions of table (RR3,CR3) and (RR4,CR4)

w

(E}OO for every A,BEr such that there exists i-th produc-
tion rule whose core production is A - a, and o(1,
0,0)=1, t(i,0,0)=B.

@

1i= @jk for every B and i,j,k such that o(i,j,k)=1 and (i,
j,k)=B.
<:> 1= <:> for every AgTU{#}.
CR3

.o b \\' h 'I' h Z ' '
Pi= CAi’J;‘-maCBi‘jk for every A,BETU(F} and A 1\.Bij
EZS SUCh that @ = @j-]k’ sz @Jk GRR3. 1f j=k=03

A must be the left-context of B in S.

-10-
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v e NV S
ti= Aij,k § Bi'k—] for every A,BeTu{#} and A13k’ 1k-1

EZS such that A ::= ATJk’ B ::= R1Jk 1 ERR3. If j=k=0,

B must be the lower-context of A in S.

h i
Mj'k' for every A,BeTu{#} and A1 k’ 1 g

A;Jk’

j+1,k}=0 or o(i',j'-1,k')=0. If j'=k'=0, A must be the left-

€, such that A B ::= Bi'j'k‘ERR3’ and o(1,

context of B in S.

ri= @NJ—E"—A@\JK for every A,BETU{#} and Al Bl i,

€L such that A A1Jk’ B ::= B k'ERR3’ and o(1,

J,.k=1)=0 or o(i',j',k'+1)=0. If j=k=0, B must be the lower-

context of A in S.

\ /
<:}—1Le(5>,::= (:)41Lingyk for every XEE u{#}, Aczu{#} and X'

GZdU{ﬁ"} A' keZ such that A ::= A%]k’ X = X! ERR3

and o(i,j-1,k)=0. If j=k=0, # must be the left-context of A

in S.
3 7
v ! ! ] = U < (4 t
pi= Mk for every Xer u{#}, Aczu{#} and X
ezdu{¥'} Al Jkez such that A ::= A]Jk’ X = X! ERR3

and o(i,j,k+1)=0.

v
h - 1h ! = = '
<E>~———e<:> s (E}EE—*a<:> for every XeX,u{#}, ACTU{#} and X

EZdU{#"} A: such that A ::= A} X ::= X' €RR

ik ijk’

and 0(1,J+1,k)—0.

\ ’
\ . N1V = 5 = 7 )
1i= \Ajjk 1 for every Xer U{#}, Aczu{#} and X

EZdU{# } A Jk such that A ::= A;Jk’ X ::= X' €RR

and o(1,J,k—1)—0. If j=k=0, # must be the lower-context of

3

A in S.
Figure 3.1 (continued).

-11-



M = for every X,YEEdU{_#}, X',Y'Efdu{#"},

]

and aezE.

a L lal - - =
1= for every A,BEXU{#}uzr,, a€l. and
A',B'EZSUEdU{#"} such that A' and B' don't satisfy the con-

ditions which are stated in above connection rules.

@’i@ = for every A,BZIu{#}, aex; .
RR4
®

i
@jk::z @ for every Aijkezs'
@ : @ for every AZZ U{#"}.
i)
@ 1= for every A,BEZV and A€ such that

1

@ 1= , 1= ERR4.

Figure 3.1 (continued).

In above construction of G, if we construct table (RR CR5) such that

5!
G replaces all nodes having labels from de{?} by empty graph, then we have
G' which is equivalent to S in the sense of Stipulation 3.1. Therefore we
get next lemma immediately.

0

Lemma 3.2. For every IEA< 1 0 >L2-system S there exists an ETnGL-
1

system G' such that cf_(G') 3 i(S).

From Lemmas 3.1, 3.2, and Theorem 2.1, we get the following theorem.

Theorem 3.1. The class of extended tabled node-replacement graph L-sys-

tems contains the class of isometric array grammars.

-12-
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Figure 3.2. A square pattern constructed by G

LG, UG, S
OB ... D

4. Conclusion

In section 3, we have shown that the class of ETnGL-systems contains
the class of isometric array grammars. In an ETnGL-system, each node is re-
placed in a context-free style, but the connection rules can bring some
contexts into this replacement. This can be considered to be a main factor
of our results.

In this paper, we considered only ETnGL-systems. However, as in the
strihg case, we conjecture that the class of ETnGL-systems is the same as
the class of EnGL-systems. So it seems that our results can be extended to

the case of EnGL-systems.

-13-
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