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1. Intréduction

The permutation layout problem introduced by Cutler-
Schiloach[l] is not only of theoretical interest as the
planar routing problem, but also has possibilities for
practical applications to the wiring of PCB (Printed
Circﬁit Boéfd), to the layout for hybrid IC's, and to the
routing of gate arrays (the master slice).

In Reference [1] three types of permutation layout are
given, namely: packed-packed layout, packed-spaced layout,
and spaced-spaced layout. Among them, only in the packed-
packed layout, a good algorithm for realization has been
proposed. The packed-spaced layout algorithm is similar to
the routing method in [2,3]. However, no algorithm was
proposed for the spaced-spaced layout, which is fhe most
general case. o

As pointed out by Shirakawa[4], the permutation layout

* This work was supported in part by the Grant in Aid for
‘Scientific Research of the Ministry of Education, Science, and
Culture of Japan under Grant: Cooperative Research (A) 435013
(1980).
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problem can be transformed into a single-row single-layer

routing problem. Thus the technique introduced in the single-
TOW Case can be used to solve the permutation layout problem.
In this paper, we introduce a more sophisticated transforma-
tion and solve the spaced-spaced layout problem with the use

of a graph‘theoretical algorithm.

2. Preliminary Definitions

2.1 Permutation Layout Problem

Let us consider two parallel horizontal lines called
upper and lower rows, respectively, and consider nodes placed
on these rows, as shown in Fig. 1(a). A net is a set of nodes

to be connected by conductor lines which are composed of

horizontal and vertical line segments. A net list is a set

of disjoint nets. A realization of net list is a set of

conductor lines, each of which connects all nodes in a net
and does not intersect any other conductor lines.

Given a permutation

’ u u oL, u
-n=(U ) N1 N2 Nn>
W oW w
W Ny Ny = Ny
consider a net list Lz(w) = [U,W] such that nodes uy and LA

are contained in nets Ng and N?, respectively. Namely, each
net in LZ(ﬂ) is composed of a pair of nodes; one is.located
in the upper row and another in the lower row.
. . _fUY_ (1 2345 6)
For example, given a permutation m = (MI)_ (4 65231/,

the net list Lz(ﬂ) = [U,W] and a realization of it are
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shown in Fig. 1(b).

In the realization of a net 1list Lz(n), a crossing number

Xu on the upper row is the number of intersections between

the upper row and the conductor lines, not counting the

intersections at nodes. A crossing number X, on the lower row

is defined similarly. For example, in a realization shown in

Fig. 1(b), Xu=2,and Xw=3. A crossing number X is the maximum

of Xu and Xw.

The Permutation Layout ( Spaced-Spaced Layout ) Problem

( abbriviated PL ) that we shall consider in this paper is
stated as follows:

PL Problem: Given a permutation 7 =(g), find a realiza-
tion of net list Lz(ﬂ) = [U,W] with the minimum crossing
number X.

Now, we impose a restriction on the pattern of the
conductor lines.

Restriction: We do not allow the conductor line for a net

to run from the upper low to the lower row more than once.
The restriction is illustrated in Fig. 1(c), in which

(D is allowed, but not (II). With this assumption, we can

see that there always exists a horizontal line between the

upper and lower rows, which intersects exactly once with any

conductor line of net as shown in Fig. 1(b). Let us call such

horizontal line the middle row. Let M = ( NT,,N?,---, Ng )

be a sequence of nets on’the middle row such that for

1 <ig<n, NY

indicates the net of the ith intersection.

We take the following approach to attack the problem PL:
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Step I: Given a permutation w = (%) , construct a sequence

M= (N, Nj,---,

. _{U _ (M)
two permutations "u"(M) and nw-—(w).

Nﬁ) Of'integers'l-through n. Then, create

Step I: Find a realization of Lz(mu)=[U,Wu=M] such that the
crossing number Xﬁ‘on the upper row is minimal and in addi-
tion, there exists no conductor line below the middle row
‘as shown in Fig. 2(a). Also, find é realization: of Lz(ﬂw)=
[UW=M,W] such that the crossing number Xw on the lower row
is minimal and there exists no conductor liné above the
middle row as shown in Fig. 2(b).

For example, for the net list Lz(ﬂ) given in Fig. 1(b),

if sequente'(6,4,1;2,§;5) is generated as M, and if realiza-

tion of Lz(ﬂu)“and Lz(ﬂw)’aré given as shown in Fig. 2(a)

and (b), respectively, then the realization of LZ(W) is

obtained by ‘combining these: tiwo realizations, which is ‘the

same as in Fig. 1(b).

The brdblémfo?‘finding"a~realization‘oij2tﬂw)~iS%5imilar
to that“ofilz(nd)-since the probléms are the same if we turn

~ two Tows Of'Lz(ﬂ&) upside down. Thus, our problem of PL:is

reduced to the following two problems: '

Half-PL Problem: Given a'net list L°(m ) = [U,M], find

a'realization with a mihimum crossing number X (=Xﬁ) such
that no conductor line passes below the lower (i.e., middle)
TOW.

Middle Sequence Problem (MSP): Given ‘a permutation

m =(%), find a sequence M which minimizes max[ Xu’Xw‘]"

where X, ‘and Xwﬁare'the minimum crossing numbers of
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. . 2 2.
realizations of L‘(ﬂu) = [Q,M],vgnd L (ﬂw) = [M,W],

respectively.

2.2 Interval Graphical Representation

In this section, we introduce the interval graphical

representation[s] for formulating and solving the Half-PL

problem.

Given a net list Lz(ﬂu) = [U,M], let us consider two
subsequences M, and Mp of M with M-L_MR = M, where A B
represents a concatination of two sequences. Construct»a
sequence M; U Mp by}concetineting M, U, and Mp in this
order, and consider Zn nodes on the single row as‘singleerow
problem.{ For example, given»a,net_list Lz(n )_=[U}Mirand
subsequences ML and MR shown_in Pig. S(a), those nodes on
the single Tow are shown in Fig. S(b) Let us denote the net
115t deflned on these nodes by L (M U M )

- The interval graphical representatlon of the net llst
L (M U MR) on the 51ng1e Tow 15 deflned 1n the same way ég
[5]. For example, given a net list shownfln Flg.,S(b),
consider an\ordering f :;L}(Sj +‘{1@23 n} such that
£(6)=1, £(5)=2, £(3)=3, £(4)=4, f(f)=5, and_f(l);s “then the
interval graphical representetion agsocreted‘wrth fle
depicted as in Fig._S(cj, where each horrzontei iine
corresponding to. a net is arranged according to the ordering
f from top down Nodes Wthh pertaln to a net are marked as

shown. Let us deflne the reference 11ne[ ] in an 1nterva1

graphical_representatlon. Introduce fictitious nodes
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QD and QE) on the top-left and the top-right of the represen-
tation, respectively. Connect node (§> to the node ul,'Which
belongs to the first net in sequence U, with a line segment.
Then connect the nodes Uy, Ug, «enp U, and . in
succession from left to right serially with line segments,
as shown in Fig. 3(c). This continuous line from <§>-to (E)
is called the reference line.
Now, let us stretch out the reference line and map it
into the upper row. In the mean time, place the nodes
m, (1<i<n) on the lower row as shown in Fig. 3(d). In such
topological transformation, each net represented by an
’interval line is transformed into a path composed of
horizontal and vertical line segments. This gives a‘reali—
zation of the problem Half-PL.
In order to ensure that, in the realization of Half-PL
Problem, conductor lines do not go beyond the lower row,

we require that the following two conditions be satisfied:

CL: For nets N? and N? in ML with i<j, there holds
m m
f(Ni) < f(Nj). .
Cp: For nets N? and N? in Mp with i<j, there holds

£(N]) > f(NI;) :
It is clear that for each interval graphical representation
associated with an ordering satisfying conditions CL and CR,
there corresponds a unique realization of Half-PL Problem.
Furthermore, the crossing number of such a realization is
simply the number of intersections between the reference

line and the inteval lines, not counting the intersections at
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nodes. Let Xf(ML,U,MR) be the number of such intersections
between the reference line and the interval lines in the
interval graphical representation of the net list Ll(ML_U_MR)
associated with orderingAf.‘Then the crossing number X in

the realization obtained by the above topological transforma-
tion is equal to Xf(ML,U,MR).

Therefore, problem Half-PL is formulated as follows:

Half-PL Problem: Given a net list Lz(nu) = [U,M], find

subsequences ML and MR and an ordering f : Ll(ML_U_M

R) 7
{1,2,-+-,n} such that
i) ML—MR = M,
i) (=CL) for nets N? and N? (i<3j) in My, there holds
.l m
f(Ni) < f(Nj),
i) (=CR) for nets»N? and N? (i<j) in MR’ there holds
e . M
f(Ni) >.f(Nj)

) xF (M, U,Mp) is minimum.

Without loss of generality, we may assume that a net list
Lz(nu) = [U,M] of the problem Half-PL does nct have any
net consisting of an isolated node or any net containing two
consecutive nodes on a row.

Also, inherent in the approach of using the interval
graphical representation, several patterns of conductor lines
are excluded from considerations. These are shown in Fig. 4,
where (a) indicates a forward-backward zigzagging around a row

and (b) a combination of conductor lines which can not be

generated by the method of the interval graphical represen-

tation.
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3. Mergi

ng Algorithm

In this section, we propose a graph theoretical algorithm

for probl

em Half-PL. We adopt the following approach to

tackle fhe problem Half-PL.

<Algo

rithm for Half-PL>

Input

Output:

Step I:

Step I:

A net list Lz(nu) = [U,M].

t: Subsequences M; and Mp of M and an ordering
£ Lo M) - {1,2,---,n) such that f
satisfies conditions CL and CR and Xf(ML,U,MR)

is minimum.

m - »
Let M A (Nm 2,---,Nn), then set ML <+ (NT) and
M < (Nm ?,- NT).CPut i+ 1 and X « e,

Solve the follow1ng problem called S1mple Half PL

Problem

Simple Half-PL Problem: Given a net list Ll(S)

= Ll(M U MR),lflnd'ah ordering f : sy »
“ll‘Z'- .,n} such that f satlsfles Cp aﬁdlcR, and

"'X (ML,U M, ) 55 minimum.

If for the solutlon £ to Slmple Half- PL there holds

Step II:

If Si

PL is als

xt (M ,U MR) < X, then store'ML, M;, and f as the
current solutlon to problem Half PL, ‘and set
X « X (M ,U MR) | | | |
Set i « i+1. If i < n-1, then return to Step I

fo o ‘ m m I L
by setting ML “« ML——(Ni) and My +v(Ni+l’Ni+2""’Nn)’
else terminate. ‘

mple Half-PL is solved in polynomial time, then Half-

o solved. So, let us consider problem Simple Half-PL,
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in the following.
From conditions Cp and Cp, we can see that all possible
orderings satisfying CL and CR correspond one-to-one to the

. N = - m .. m
sequences obtained by merging M, with Mg s where MR?Q(Nn’Nn—l’

m
R 2+1°

quence Qé(ql,qz,---,qn) of ML and MR’ consider ordering f such

m m )
2+2""’Nn)‘ Namely, for merged se

"’Nle) for M, = (N N
that f(qi)=i (i=1,2,---,n), then this f automatically satisfies
C and Cp. - Conversely, for an ordering f satisfying CL'and Cr»
-1/,
consider the sequence Qé(ql,q2,~--,qn) such that qi=f (1),

then sequence Q 1is a éequnece obtained by merging ML with MR{

From this observation, we can estimate the number of all

possible ordering as follows

. ‘ o . , [ML+MR|! o
# of possible orderings = ~ -
. , . IML|! |MR[! (n/2)! (n/f2)! .
vZrn n e oy R

~

[ vZm7Z(/2)M 26 0212 R
Thus, an exhaustive search algorithm cannot Isad 'to a
polynomial time algorithm for Simple Half-PL Problem.

Now, let us definé a Iabeled‘gfid'digfaﬁh GQ[VZE],'“

in which -we will see that all merged sequenceés of ML-éﬁd'ﬁR

correspond one-to-one to the directed paths from source to sink.

Let ML A (Nl,Nz,-

©+,N,) and M

R 4 (Nn’N

N Te A : - ) *
n-107 M)
Then, each vertex corresponds to a pair of integers, and
vertex set V is defined as

VoA { <i,j> | 1<i<e+1, 1;j;n—2+1'}.

In particular, vertices <1,1> and <2+1,n—2+1$ are designated

* We have dropped the superscript m, for convenience, since there is no
confusion.
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as source and sink, respectively. Edge set E consists of two
disjoint sets E; and Ep defined as
Ep A { (<i,j>,<i+1,j>) | 1<i<f, 1<j<n-2+1 }, and

E, A { (<i,j>,<i,j+1>) | 1<i<e+1l, 1<j< n-2 }

R =
Each edge (<i,j>,<i+1l,j>) in E. has label net N;, and each edge

(<i,j>,<i,j+1>) in Ep has label net N Fig. 5 shows the

n-j+1°
grid digraph G for M, = (NI’NZ’NZ) and MR = (N7,N6,N5,N4).

For each directed path from source to sink, we can create
a sequence of labels according to the edges passed by the
directed path, which is a sequence obtained by merging‘ML ana
MR‘ And we can easily verify that each directed path
corresponds one-to-one to a merged sequence of ML and MR'
Therefore, the ordering f which satisfies both CL and Cr
corresponds one-to-one to the directed path from source to
sink in the grid digraph G.

For example, the directed path shown by the bold-1line in
Fig. 5 corresponds to merged sequence (NI,N7,N6,N2,NS,N3,N4),
and hence corresponds to ordering f : f(N1)=1, f(N2)=4,
f(N3)=6, f(N4)=7, f(N5)=S, f(N6)=3, and F(N7)=2.

Therefore, if we can assign an appropriate weight to
each‘edge so that the total sum of the'Weigﬁts of all the
edges on each directed path is exacﬁly equal to the crossing
number Xf(ML,U,MR) in the interval graphical representation

associated with the ordering f corresponding to the directed

path, then we can solve problem Simple Half-PL by usihg a

shortest path algorithm on the grid digraph. Note here that

if weights assigned to edges satisfy the following two

-10-
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conditions, then the weights are appropriate ones.

(i) The weight of edge (<i,j>,<i+1,j>) with label N; (1<i<t)
is equal to the number of intersections between the
interval line of Ni and the reference line, which are

caused if Ny is ordered between N, and-Nn That is, -

3 SIS

N Nn-j’ and Nﬁ are arranged in the order as

i’ -j+1

(evvvey N .,oe=, N.yerey, N

n-j ««++) in the merged

n-j+1’
sequence.

(ii) The weight of edge (<i,j>,<i,j+1>) with label Nn_j+1(1éj;n-2)
is equal to the number of intersections between the
reference line and the interval line of Nn-j+1’ which are

caused if N is ordered between N. and N..
n i-1 i

-j+1
Thus, let us consider how to assign such weights satisfying
these conditions. 7

An interval between two consecutive nodes is called a unit
interval, and the‘two nodes are designated as endnodes of the
unit interval. A net containing én endnode of the unit interval
is an end-net of the unit interval. If the net Ng containing
the ith node u; belongs to sequence M; or Mp, then u; is called
an L-node or an R-node, respectively; A unit interval is called

an L-L interval, an L-R interval, or an R-R interval, if both

its endnodes are L-nodes, one .is an L-node and another an

R-node, or both are R-nodes, respectively, where the fictitious

nodes @ and are both regarded as L-nodes. The portion

of the reference line fbr a unit interval H is denoted by RL(H).
Consider a unit intervai H with end-nets Na and Nb' As can

be readily seen, only the interval lines of nets which cover

-11-
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interval H may or may not intersect RL(H), depending on the
relative order with respect to Na and Nb' Let us consider it
in the following.

I. Let N. be anet in M; which covers H. (See Fig. 6)

i) H is an L-L interval. We ean assume a<b without loss
of generality. In thie case, RL(H) and Ni intersect
each other when a<i<b. Thus, edges with label
Ni(a<i<b) mus t havevweights corresponds te this
interse;tion

ii) L-R interval. Let NbéNn-j+l
Case 1 (a<i),,In this ease, RL(H) and Ni

interseets, if and only if the ordering f satisfies
£(N;)<f(Np). Therefore, only edges (<i,h>,<i+1,h>)
with h<j must have weights corresponding.to this

intersection.

- Case 2 _(a>i). In this case, RL(H) and Ni intersect,
rf end qn1y if the ordering f satisfies f(Ni)>f(Nb)’
‘jTherefore, only edges (<i,h>,<i+1,h>) with h>j must
’ have'ﬁeights corresponding to this intersection. ..

‘iii), R-R interval. Let Nagﬂ and N

n-k+1 b

‘éNn4j+l and assume .
 k<j without ‘loss of generality. In this case, RL(H)
- . and N; .intersect, if and only if the ordering -
satisfies*f(Na)<f(NiJ<f(Nb); Therefore, only edges:
- (<i,h>,<i+1,h>) with k<h<j must have weights
corresponding to this intersection. -

II. -A similar analysis can be given for a net in MR;

-12-
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Based on the above discussion, we can’devise an algorithm
of finding the desired weights for edges, by processing unit
intervals successifely from the left to the right. This is
'given in Appendix.

If we apply <Weight Assignment Algorithm> in Appendix to
a net list Ll(S)=L1(ML_U_MR) shown in Fig. 7(a), then we have
the weights for all edges shown in Fig. 7(b), In the Figure,
the number in a bracket and the sequence of alphabets beside
an edge show the weight of the edge and the unit infervals at
which the weight of the edge ‘is increased by one, fespéctively,
The interval graphical representation shown in Fig. 7(a) is
associated with the 6rdering'correspondihg to the directed path
from source to sink through the lower ‘left corner of the grid
digraph. Hence, as shown by the weight and sequence (c,d)

‘beside edge label N, on'the directed path in Fig. 7(b), net

1
N; has 2 intersections at unit ‘intervals c arid 'd in the inter-
val graphical representation of Fig. 7(a). '

Let the length of a directed path in the grid digraph be
the sum of the weights of ‘all edges on the directed path, then
the following lemma can be readily verified from the above
discussion.

Lemma 1: The length of a directed path in the grid digraph
for a net 1ist Ll(S)=L1(ML_U_MR) is equéi'fd tHe'érossiﬁg"
number Xf(ML,U,MR) in the interval graphical representatioﬁ
associated with the ordering f‘corresponding to ‘the directed
path.

Thus, an optimum ordering f for Simple Half-PL is obtained

-13-
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by'a‘shortest path algorithm on the grid digraph. In the

following, we describe an algorithm for Simple Half-PL Problem.

<Merging Algorithm>

Input : A met list L1(S) =L1(M] U MJ).
Output: An ordering f : Ll(SI ~ {1,2,-+-,n} such that f
satisfies CL and CR and Xf(ML,U,MR) is mi;imum.
Step 1. Create grid digraph G=[V,E] for MLA(NT,Ng,;..;Ng) and

MpA (NTLNT LN

Step 2. <Weight Assignment Algorithm>.

Step 3. Compufe shortest distance from source to each vertex
<i,j>. Noting that in the grid digraph any directed path
froﬁ source to vertix <i,j> passes though vertex
either <i-1,j> or <i,j-1>, we can implement this
process in the processing time propotional to the
numbef of vertices of the grid digraph.

Step 4. Find a shortest path from source <1,1> to siﬁk
<2+1,n-2+1> by tracing back from sink to source.

By substituting <Merging Algorithm> for Step II>in
<Algorithm for Half-PL>, we can complete the algorithm, for
which we have the following theorem. |

Theorem 1: <Algorithm for Half-PL> can find an optimum
solution to problem Half-PL in the processing time of order
0(n4) and\in the memory space of order O(nz)f

Proof. We can easily see from Lemma 1 that the algorithm
can find an optimum solution. Noting that O(nz) space is

required for the grid digraph and that 0(n) space is

-14-
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sufficient for a given net list and for other sets and
sequences, we can also verify that the algorithm is implemented
in O(nz) space.

Let us consider the processing time. In <Merging Algorithm>
Steps 1 and 3 can be executed in O(nz) time and Step 4 in 0(n)
time. As is shown in Appendix, the total time required for
<Weight Assignment Algorithm> is O(ns),’and therefore the
total time of <Merging Algorithm> is O(ns). Hence, the theo-
rem has been proven, since the loop of Steps T-II in <Algo-

rithm for Half-PL> requires n-1 times iterations. 0

4, Middle Sequence Problem

In this section, we consider the problem of finding a
sequence M, for which a good algorithm has not been devised.
However, we can éonstruct a heuristic algorithm with a better
upper bound for the crossing number than [1].

Let u, and w5 (12j<n) be nodes on the upper and the
lower rows, respectively., For a net Ni’ the subscript-number
of node in Ni on the upper row is denoted by u(Ni), and that
on the lower row by w(Ni). In the upper row, if the node
uu(Ni) of net N. is contained in the left-half of the upper
row (i.e., ]ﬁgu(Ni);;Ln/ZJ), then net N; is said to be an

upper-left net, where LxJ denotes the largest integer not

greater than x. Otherwise, Ni is called an upper-right net.

Similarly, we define a lower-left net and a lower-right net

on the lower row.

A set of nets can be partitioned into four subsets <f, 4?,

-15-



xfs, and X?4 as follows.

=

{ N, [Ni is a lower-left, upper-right net }.

>

g, L { N; | N; is a lower-left, upper-left net }.
LA 1N | N; is a lower-right, upper-left net 3.
xf4 A { N; |N; is a lower-right, upper-right net }.

In a sequence M, the nets are arranged in the order of Af s
kgz, xgs, and *f; from the left to the right, as shown in the
following algorithm.

<Middle Sequence Algorithm>

Input : A net list LZ(m) = [U,W].
Qutput: A sequence M.
Step 1: Compute subsets xfl, xfz, ng’ and ‘<g4 of nets.
Step 2: Let Ul and U2 be the left half subsequence |
Ny, Ny, --e, NLH?ZJ) of U and the right half sub-
sequenée (Ntn?2J+1’ NLn?2J+2""’ Nz) of U, respec-
tively. And let us define subsequences W1 and W2
“of W similar to Ul and U2, respectively. Then, set
S1 « WI ), 52 « UT n 4,
w2 0,6;, where for a set <f and a sequence A, A 04?

S3 < Ul n.f,, and S4 <

represents a subsequence of A by deleting all the
elements not contained in . from A without changing
the order of nets in A, and A denotes a sequence with
the reverse order of A.
Step 3: " Set M < Sl__SZ__SS_;S4.
An illustrative example of this algorithm is shown iﬁ
Fig. 8.

. As discussed in [1]}, let us consider the upper bound for

-16-
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the crossing number of a reaiization obtained by the proposed
algorithm. We show that our algorithm gives a slightly better
upper bound than [1] in what follows.

Given an interval graphical representation associated

with ordering f, let us define an unconnected node and block

similar to an unconnected point and block defined in {1}. For

a net Na in the representation, a node contained in a net Nb

with f(Na)<f(Nb) is said to be an unconnected node for Na’

and a maximal set of consecutive unconnected nodes is called
a block for N,. Moreover, let ai be the number of blocks for
net f—l(i) and let Bi be the number of intersections between
the reference line and the interval line of net f'l(i). Then,
as seen from Fig. 9(a), we have the following lemma.
Lemma 2[1]: For a net f_l(i), there hold
B; £ 20; - 1 and

o minf n-1i+1, i ].

A

i
Consider the interval graphical representations for
Li(r) = [U,M] and LE(r) = [W,M] shown in Fig. 9(b). Let X,
and X; be the crossing numbers of these representations, then
we can easily verify from <Merging Algorithm> that xu;xz and
xw;x;’ where Xu and Xw‘are the crossing numbers on the upper

and the lower rows obtained by <Algorithm for Half-PL>,

. * %
respectively. By using X, and X, and Lemma 2, we can show the
following theorem.

Theorem 2: Let Lz(ﬂ) ='[U,W] be a givén netwlist with n
nets. Then, for the crossing number Xlé max[,Xu,Xw ] obtained

by the proposed algorithm, we have

-17-
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X, < n?/8 + 0(n).

* *
Proof: Let us count Xu and'Xw.

% Iz':l I'n/ZW . n
X, = B, <2( I a, + 5 @. ) - n
e i=1 ' i=fn/27+1 1
n/21
22 I min[ Tn/27-di+1,1i7] + |4 ') - n
i=1 2

IA

n/217+1
4(1+2+~°+J17fL—)+2L42]-n

< (n+—$%01+9) + Z,Kle - n

L (m+5)(m+9)
3

since I{fzi < In/2J, where [x] deontes the smallest integer

not less than x.

% n n/27 n
X = I B. < 2¢( z a., + by a. ) - n
A S i=1 Y  di=rn/27+1 *
n/21
< 2( lnf;l + L min|[ n/271-1+1, i ]
i=]4,]+1
n/21
+ lell + 2 min[ n/27-i+1, i 1) - n
i=|dyl+1
n/21 n n/21
=2 I min[r51-i+1,i] + I min[r31-i+1,i] )
i=|d,|+1 i=]d | +1

e 20 1G]+ 1&,1 ) - .

Noting that |<f1|-+}<54l = fn/271, there holds

X <2( T  min[ n/27-i+1, 1] ) + 2fn/27 - n
W i=1

< (n+5)8(n+9) + 1.

-18-
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Thus, we have

* * (n+5)(n+9)
X; A max [ Xu’ X < 3

+ 1
= n2/8 + 0(n). 0

In [1], no algorithm is proposed for a spaced-spaced
layout. Therefore, their upper bound for a spaced-spaced
layout 1is n2/4-+0(n), which is the same for a packed-spaced
layout. We can see from the above discussion that the upper
bound for a spaced-spaced layout is almost half of that for
a packed-spaced layout, which can be expected from the
definitions of both layouts.

Finally, it is easy to see that this <Middle Sequence

Algorithm> is implemented in 0(n) time and 0(n) space.

5. Conclusion

In this paper, we have considered the permutation layout
problem with the ‘crossing number as a criterion for minimization,
which is called the spaced-spaced layout problem in Ref. [1].
Our approach that we have taken to tackle this problem is to
break up the original problem into two manageable subproblems;
Half-PL Problem and Middle Sequence Problem. For the first
proBlem, we have devised a polynomial time algorithm with the
use of a shortest path algorithm on the weighted grid digraph,
and for the second problem, we have proposed a heuristic
‘algorithm with an analysis on the upper bound for the crossing
number of the solution given by the algorithm. -
As pointed out in Ref. [1], there still reméin a numbér of

intriguing problems regarding the permutation layout. Among
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them, of practically importance is the problem with the
maximum number of conductor lines between two consecutive

nodes on a row (the between-nodes congestion) as a criterion

(6]

for minimization
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Appendix: (Weight Assignment Algorithm)

<Weight Assignment Algorithm>
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Input : A net list Ll(ML_U_MR] and a grid digraph G =

... N M
[V,E] for MLé:(N ,hz) and MRé=(Nn’Nn

1082 -1

Ny L)

Output: Weight WT(e) for each edge e ¢ E.

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Set WT(e) « 0 for every edge e c E.
Pick up the leftmost unit interval H, on which the
following steps have not been conducted. If there
is no such H, then terminate; else execute the
followings on H.
If H is an L-L interval, then go to Step 4. If H is
an R-R interval, then go to Step 5. Otherwise, go
to Step 6.
Let N, and Ny be end-nets of H with a <b.
For each net Ni in ML whi;h vasses through H and
satisfies a <i<b, conduct (i).
(i). For every e é(<i,hé,<i+1,h>) with 1shsn-2+1,
WT(e) « WT(e) + 1.

For each net Nn—j+1 in MR which passes through H,
conduct (ii). o
(ii). For every e==(<h,j>,<h,j+1>) with a<h<b,

v WT(e) « WT(e) + 1.
Then, return to StepiZ.

Let N and N__ ., be end-nets of H with a<b.

-a+l
For each net N in My which passes through H, conduct
(i) ..

(iii) . For every e = (<i,h>,<i+1,h>) with a<h<b,

WT(e) « WT(e) + 1.

-21-
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2°. For each net Nn—j+1 in ﬁR which passes through H and
satisfies a<j <b; conduct ().
(). For every e = (<h,j>,<h,j+1>) with I<h<g+1,
WT(e) <« WI(e) + 1.
3°. Then, return to Step 2.
Step 6: Let N, «M and N 4.4 Eﬁk be end-nets of H.
1°. For each net N; in M; which passes through H and
satisfies a <i, conduct (v).
(v). For every e =(<i,h>5<i+1,h>) with h<b,
WT(e) <« WT(e) + 1.
2°. For each net Ny in My which passes through H and
satisfies a>1i, conduct (vi).
(vi). For every e = (<i,h>,<i+1,h>) with h>b,
WT(e) <« WT(e) + 1.

3°, For each net N

3° n-j+1 in MR which passes through H and

satisfies b < j, conduct (vﬁ).
(vil) .For every e = (<h,j>,<h,j+1>) with h<a,
| WT(e) « WT(e) + 1.
4°. For each net Nn-j+1 in MR which passes through H and
satisfies b > j, conduct (viii).
(viii). For évery e =(<h,j>,<h,j+1>) with h>a,
WT(e) « WT(e) + 1.
5°. Then, return to Step 2.
Let us consider the processing time required in this
algorithm. We can easily see that Steps 4, 5 and 6 are

implemented at most in O(nz). Therefore, the total time

required by the loop through Steps 2 to 6 is O(ns), and hence

-22-
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the total time required for <Weight Assignment Algorithm> is

O(ns), since Step 1 is implemented in O(nz) time.

upper row

0 0 -0 --- 0
w w W W

1 2 3 n

lower row

Fig. 1(a). Nodes on the upper and lower rows.

, ol

i R T"“ """""" upper row

---middle row

---lower row

(1) 1 @

o ? 1l 0 0 o o o ] 0 ‘-a

Fig. 1(c). Allowed pattern (I) and prohibited pattern (II).

it 0 R R o TR o THPRPY , WISy . W

Fig. 2(a). A realization of Lz(ﬂu)- Fig. 2(b). A realization of Lz(ﬂw).
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Fig. 3(a). Net list L (ﬂu)==[U,M] and subsequences ML and MR of M.
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Fig. 3(b). Net list Ll(’ML___U__MR).
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Fig. 3(c). An interval graphical representation of Ll(ML__U__MR)

and the reference line.

Fig. 3(d). A realization transformed from the interval

graphical representation of (¢).
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Fig. 5. Grid digraph G for ML and ﬁk, and a directed path

corresponding to merged sequence (Nl,N7,N6,N2,N5,N3,N4).‘
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Fig. 6. Unit interval H and net Ni which may intersect each other.
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Fig. 7(a). DNet list L (ML—U——MR) and an interval graphical representation.
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Grid digraph for net list in (a)

-

and weights of edges.
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Fig. 8. A frame of middle sequence M.
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