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Scheduling in File Processing and Related Problems

T. Kameda
Dept.iof Eiec. Eng.
Univ. of Waterloo, Canada

1. Introduction

A stage of fiie processing may fequife iﬁput files stéred
in a certain number (nl) of magnetic tapes and may producévout-
put files in a certain number (nz)Aof magnetic tapes. We |
represeht thils stage by a néde labeied by‘(n2_ni> in a graph.
(See Fig. 1) Edges of the graph répresent the precedence const-
raints among thelstages; which are in general a partial order.
A‘totally ordered sequencé of the nodes consistent with the |
given precedence constraints will be called a schedule. We

consider the following two problems;

(1) Find an M-optimal schedule, which minimizes the maximum

number of tapes required during processing.

(2) Associate with each node the processing time ti. Find an

tégoptimal'schedule, which minimizes the total tape-hours.

Solution to the problem (1) is relevant to the feasibility
of processing with the available number of tapes, and (2) is
relevant to the minimization of resource (i.e., tape) cost-over .
time.

Consider the example of Fig. 1, where the nodes represent

processing stages and the edges represent precedence constraints.
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For the stage C, for example, two more input tapes are used than
output tapes. We call this 2 the cost of stage C. Suppose stag-
es are executed sequentially according to a certain schedule.

For a partially executed schedule, the cumulative cost (cc) at

this point is the sﬁm of the costs of the stages that have
already been executed. For example, Fig. 2 shows the change of
the CC for the schedule Gi = ABCDEF for the example of Fig. 2.
Note that it reaches the maximum value of 6 when the stage B

is being executed. We call this the M-value of Gi and express

it by M(Gi) = 6, Consider another schedule Gé = ACBEDF of the

1

same example. As one can easily verify, M(Gé) 5. It turns

out that Gé is an M-optimal schedule for this problem.

Now suppose that the processing time for node i is ti.
Then during the execution of stage 1, a certain number of
tapes, which equals the CC at this point, are used for the
duration t,. We define the A-value of a schedule to be the
sum of cumulative costs weighted by the processing times.
More precisely, | |
)t

A(0) = cytq + (cl+c +.. .04 (cl+.’..+cn)tn

2772

where (= Sls2m..sn and cy and ti are cost and processing time,

respectively, of the stage Si' If tA = tB = tC = tE = tF =1

and ty = 4 in the example of Fig. 1, then A(Gi) 35 and A(Gé) =

36, as the reader can easlily verify. From the above examples,

it 1s seen that an M—optimai schedule is not necessarily an A-

optimal schedule.

2. Related Problems

1) The register allocation problem [9] is encountered in.

(28]
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the evaluation of an arithmetic expression using a computer.
Since the hardware registers are scarce resource, 1t is desirable
to use as few of them as possible. The expression A¥B +.C may
be represented by Fig. 3(a). Using our convention the multipl=-
ication node is labeled by -1 (Fig. 3(b)), since the operands
are stored in two registers and the result appears in one.
Nodes A, B, and C are labeled.by 1, since these operands must
first be placed in registers. This expression can be evaluated
using only two registers, since M(ABDCE) = 2. 1In the above
example, the precedence constraints are represented by a tree.
In a more complei case, where the precedence constraints are
represented by a general acyclic digraph, the problem of find-
ing an M-optimal schedule is NP-hard [9]. Such an example is
shown in Fig., 4. ©Note that we introduced a dummy node labeled
by'—l'in Fig. 4(b).

2) In the minimum weighted completion time problem, we

are given a number of jobs, Sl’ 82, .o Sn' Associated with

each job Si is its processing time ti (>0) and a weight LA

which may be negative. Also given is a precedence relation

among the jobs. The weighted completion time (WCT) for a

schedule § = 8182...Sn is defined by

WCT(6) = ¢ + (tl+t2)w2 +...+ (tl+...+tn)wn

1"
This is superficially similar to the formula for A(§), if we
replace ti by cy and Wy by ti. However, such a replacement is

not allowed, because ti>-0, and cy and w, can be negative. If

we rewrite WCT({) as
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WCT(6) = Wntn + (wn+w )t

n-1)%n_1 +...+ (Wn+"'+wl>tl

and replace w by ¢, and .t _-..q by t;, then we see that the

n-i+1 n-i+1

two problems are equivalent.

3. Difficulty Resuits

1) M—optlmal schedullng problem is NP—oomplete.
This follows from a result of Sethi [9] that the reglster
allocatlon problem 1s NP- complete, since the reglster allocation

'problem is polynomlally tranformable to our problem (ef. Flg 4).

2) A-optimal scheduling problem is NP-complete.
This follows from a result of Lawler [6] that the minimum
weighted completion time problem is NP-complete and the equiv-

alence of the two problems as shown in Section 2.

‘Because of the above results, we consider in Section 5
a special case where precedence constraints are series-~parallel

and develop an efficient algorithm for this special case.

4, Adjacent Sequences Interchange

We shall introduce the concept of adjacent sequences

interchange (or AST) propefty [7] in terms of the A-optimal

scheduling problem. For the sake of simplicity consider first
scheduling of only two stages, Sy = (cl, t ) and S, (02, t ),
where cy and ti denote the cost and processing time of stage i,

respectively. Suppose there is no precedence constraint bet-

.
2

ween Sl and 82. By definition, we have
A(Slsg) = Cltl + (cl+e2)t2,-and
A(S2Sl) = 02t2 + (cz+cl)tl
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and therefore,
A(Slsz) - A(S2Sl) = t1t2(cl/tl—c2/t2)'
If we define the rank of Si byrr(si)‘= Ci/ti’ then A(SlSZ)—
-A(SESI) = tltZ(r(Sl)_r<S2))’ and thus A(Slsg) S'A(SESl) iff
r(s;) < r(s,). | |
We now generalize the concept of the rank and define it
for arbitrary sequences. Let C(6) be the sum of all costs, Cys
such that Si belongs to the sequence 0, and T(0) be the sum
of all processing times, ti, such that Si belongs to the seg-
uence 6. Then A(6Y) can be defined recursively as follows.
A(S;) = cit, ' ‘
{ (1)
A(670%) = A(gy) + A(6,) + C(07)T(0,) for sequences
oy amidb.
We thus have

A(UiGé) - A(6261) = T(Gi)T(Ué)[C(Ui)/T(Wi)—C(dé)/T(GE)]
and so A(GEUE) S_A(Gédi) iff r(di) < r(Gé), where rank r(g) of

6" is defnied by

r(@) = C(0)/T(). (2)

Lemma 1:
For arbitrary sequences o, p, 03> and Gé, such that(%didéé
and<$qé¢ig are both legal schedules, we have A(ﬁﬁldéé) <

A(ro,078) 1FF r(6y) < r(0,).

Proof: By the recursive definition of A, we have
AG07) + A(T,R) + C(0])T(6,P)
A(R)+A (G ) +A(6,)+A(B)+C(OR) [T( 07 ) +T(65)+T(@) ]

AEAG0,8)
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+ 0(0,)T(g) + C(03)[T(0y) + T(@)].

We thus have
AW 6 0,0) - A(RD,036) = T(67)T(6,)[r(ay)-r(5,)].

The lemma follows directly from this equation. Q.E.D.

A cost function f is said to satisfy the ASI property [T7]
if there exists a rank r, such that f(ig,0,8) < £(#0,0,8) for

all &, 07, 0,, and @ iff rf(di) < rf(Gé). Lemma 1 shows that

12 -2

the cost function A satisfies the ASI property (let rA(W) =

C(0)/T(¢)). The ASI property plays an important role in what

follows, i.e., efficient algorithms for the case where preced-

ence constranis are series-parallel. -
A subset S of jobs (or stages) is said to be a module 1if

each job not in S is constrained by the.precedence relation

a) to precede all jobs in S, or

b) to succeed all jobs in S, or

c) to be before or after any job in S, even between jobs of 3
(i.e., no constraint). |

The following lemma is valid for general precedence

constraints.

Lemma 2 [7]:
Let f satisfy the ASI property and letciﬁidé@ be a schedule

such that 07 and Ué are chains (in the precedence graph), 6162.

1
is a module, 6561 is not allowed , and rf(Gi)‘Z rf(ﬁé). Then
there is an optimal schedule in which Gi immediately precedes Gé.

5. Series-Parallel Precedence
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Suppose there is a chain that 1is also a module. The figure

O——C

(3,2) (1,3) (6,5)
is such an example, where the node lables are (c, t) pairs.
By computing ranks we find r(A) = 3/2>r(B) = 1/3. According to
Lemma 2, we may always assume A immediately precedes B in the
search for an A-optimal schedule. For fhe chain AB, we have
r(AB) = (3+1)/(2+3)< r(C) = 6/5, and therefore we can not
assume C immediately succeeds AB. Consider now the following

module. Such a module always exists in a series-parallel graph.

We have already seen that A and B can be considered as a single
node AB. Since r(AB)<r(D) <r(C), there is an optimal schedule

in which these nodes appear in the following sequence. Start-

ing with a series-parallel graph, if a loop is replaced by
a chain in this way repeatedly, we end up with a single chain,
i.e., an optimal schedule. A straightforward implementation of
the above procedure requires O(n2) time [1].

’In the above we have obftained an A-optimal schedule when
the precedence constraints were series-parallel. The same
algorithm can be used to obtain an f-optimal schedule, provided

f has the ASI property. By using a clever data structures, the
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time complexity of the algorithm can be improved.

Theorem 1 [T]:
If a cost function f satisfies the ASI property, an f-
optimal schedule can be obtained in O(nlogn) time in the case

where the precedence constraints are series-parallel.

The algorithm is a generalization of ‘the one given by

Lawler [6].

6. M-optimal Schedules

In this section we shall show that the M-function has the
ASI property, so that the algorithm of the previous section
can be used to obtain an M-optimal schedule. For an arbitrary

string 0, we define M(0") to be the maximum cumulative cost, i.e.,

M(0) = Max {C(%){ o is a prefix of G}Z (See Fig. 2.)
We introduce a rank function for M by
[—l/M(G") if c(@) <o
r, () = Iov , if C(6) = 0

1/M(0)-C(e)]  if C(o) >0

Lemma 3:

The function M satisfies the ASI property.
Proof: It can be shown that MEq;6,0) < Mltoyeyp) 1ff ry(ey) <
rM(Gé). See [2] for details. Q.E.D.

Monma has recently shown that the M-optimal scheduling problem

is equivalent to Johnson's two-machine maximum completion time

problem [3,5,8].
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(a) Representation for A*B+C (b) Formulated in our model

Fig, 3. Register allocation for A*B+C

(a) Representation for A*B+B

{(b) Formulated in our model

Fig, 4. Example of a general precedence
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