On Canonical Partition of Edge Set

Shoji SHINODA *
Chiyoko ISHIDA **
Tatsuya KAWAMOTO ***

- * Faculty of Science and Engineering, Chuo University, Tokyo, 112 Japan
- ** Kyo-yo-bu, Niigata University, Niigata, 950-21 Japan
- *** Faculty of Engineering, Tokyo Institute of Technology, Tokyo, 152 Japan

(Abstract)

Let E be the edge set of a nonseparable graph G. For each edge e , let t(e) be the number of trees which contain e , and $\overline{t}(e)$ be the number of trees which does not contain e . Here, let E_+ , E_0 , E_- be edge sets which satisfy $t(e) < \overline{t}(e)$, $t(e) = \overline{t}(e)$, $t(e) > \overline{t}(e)$, respectively, then we have the tripartition (E_+ , E_0 , E_-) of E. We call this tripartition the <u>canonical</u> partition of edge set E.

This paper presents properties in connection with the structure of graphs which satisfy $E=E_{_{\scriptsize O}}$, $E_{_{\scriptsize +}}=E_{_{\scriptsize -}}=\emptyset$. G is called to have the complementary tree structure when E is partitioned into $E_{_{\scriptsize 1}}$, $E_{_{\scriptsize 2}}$ and each $E_{_{\scriptsize i}}$ is the edge set of a tree of G. [Theorem 1] Let (\emptyset , E, \emptyset) be the canonical partition of E, then G have the complementary tree structure.

[Example 1] The canonical partitions of E of Graphs L $_2$, K $_4$ and K $_3$, 4 shown in Fig. 1 are all (\emptyset , E , \emptyset) , and they also have the complementary tree structures.

[Theorem 2] Let G_1 , G_2 be graphs whose canonical partitions are $(\emptyset$, E_1 , \emptyset) and $(\emptyset$, E_2 , \emptyset), respectively. If we delete any edges $e_i = (u_i, v_i) \in E_i$ (i=1,2) and connect u_1 and u_2 , v_1 and v_2 , respectively, then the canonical partition of the obtained graph G is $(\emptyset$, E, \emptyset), where $E = E_1 \cup E_2 - \{e_1, e_2\}$. (END)

Fig. 2 explains the manner obtaining G from ${\rm G}_1$ and ${\rm G}_2$ by the procedure stated in Theorem 2.

The converse of this theorem is stated as follows. [Theorem 3] Let G be the graph shown in Fig. 2(b) which is connected by two vertices u and v, and its canonical partition is $(\emptyset, E, \emptyset)$. If we delete $E-E_i$ and add an edge e_i between u and v, then the canonical partition of the obtained graph G_i is $(\emptyset, E_i, \emptyset)$, respectively, where $E_i = E_i - \{e_i\}$ (i=1,2). [Theorem 4] Let G be the graph whose canonical partition is $(\emptyset, E, \emptyset)$. The canonical partition of any graph G which contains G as a partial subgraph is not $(\emptyset, E, \emptyset)$. Also, the canonical partition of G which is contained in G as a partial subgraph is not $(\emptyset, E, \emptyset)$. (END)

The following conjecture is of interest. [Conjecture] The canonical partition of edge set E of three connected graph G is $(\phi$, E $,\phi$) if and only if G is K_4 or $K_{3,4}$.

